1. A is normal.
2. A is unitarily diagonalizable.
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4. There is an orthonormal set of n eigenvectors of A.

w

Proof. By the Schur factorization, there exist a unitary matrix U and an upper-triangular matrix
T such that:

A=UTU*. (3)

Let us show 1 to 2. To show A is unitarily diagonalizable, we only need to show T is diagonal.
Since A is normal, we have

TT* = U*AUU*A*U = U*AA*U = U*A*AU = U*A*UU* AU = T*T. (4)

This implies that 7' is normal. Since T is triangular, the homework question implies that T is
diagonal.

Let us now prove 2 to 4 and leave the others as exercise. From the second argument,
A=UTU*, (5)
where T is diagonal and U = [ug, ..., u,] is unitary. It follows that,
AU =UT. (6)

This is equivalent to Au; = A\;u; for all 4, i.e., u; are the orthonormal eigenvectors.
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Definition 3.1. A matrix A if A* = A, where A* = AT,

6 dewdion .
Theorem 3.2. A is Hermitian if and only if at least one of the following holds:

1. 2* Az is real for all x € C"®,
2. A is normal and all the eigenvalues of A are real.

3. S*AS is Hermitian for all S € C**".

Proof. Let us first prove the first statement. Take the complex conjugate of x*Ax, we have
(z*Az)* = 2*A*x, since A = A*, x* Az is real for all x. Now suppose z* Az is real for all z., we
have

(" +y)A(z +y) = (2" Az) + (y"Ay) + (27 Ay + y" Az), (7)

is real for all z,y. The first two terms ofare real; we conclude that the sum of the last two terms
is real. Now let « = e;, and y = e;, this implies that ay; + a;i, is real, i.e., img(arj) = img(a;ji).
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