- 1. A is normal.
- 2. A is unitarily diagonalizable.
- 3. $\sum_{i,j=1}^{n} |a_{ij}|^2 = \sum_{i=1}^{n} |\lambda_i|^2$.
- 4. There is an orthonormal set of n eigenvectors of A.

Proof. By the Schur factorization, there exist a unitary matrix U and an upper-triangular matrix T such that:

$$A = UTU^*.$$
(3)

Let us show 1 to 2. To show A is unitarily diagonalizable, we only need to show T is diagonal. Since A is normal, we have

$$TT^* = U^*AUU^*A^*U = U^*AA^*U = U^*A^*AU = U^*A^*UU^*AU = T^*T.$$
(4)

This implies that T is normal. Since T is triangular, the homework question implies that T is diagonal.

Let us now prove 2 to 4 and leave the others as exercise. From the second argument,

$$A = UTU^*, \tag{5}$$

where T is diagonal and $U = [u_1, ..., u_n]$ is unitary. It follows that,

$$AU = UT.$$
 (6)

This is equivalent to $Au_i = \lambda_i u_i$ for all *i*, i.e., u_i are the orthonormal eigenvectors.

Hermitian (symmetric mutrix, IR) 3

Definition 3.1. A matrix A if $A^* = A$, where $A^* = \overline{A}^T$. **Theorem 3.2.** A is Hermitian if and only if at least one of the following holds:

- 1. x^*Ax is real for all $x \in \mathbb{C}^n$.
- 2. A is normal and all the eigenvalues of A are real.
- 3. S^*AS is Hermitian for all $S \in \mathbb{C}^{n \times n}$.

Proof. Let us first prove the first statement. Take the complex conjugate of x^*Ax , we have $(x^*Ax)^* = x^*A^*x$, since $A = A^*$, x^*Ax is real for all x. Now suppose x^*Ax is real for all x., we have

$$(x^* + y^*)A(x + y) = (x^*Ax) + (y^*Ay) + (x^*Ay + y^*Ax),$$
(7)

is real for all x, y. The first two terms of 7 are real; we conclude that the sum of the last two terms is real. Now let $x = e_k$ and $y = e_j$, this implies that $a_{kj} + a_{jk}$ is real, i.e., $img(a_kj) = img(a_{jk})$.

The 2.2. $2 \Rightarrow 4$ $A = UTU^{*}$, $U \approx unitary & T is diagonalizable. <math>T = \begin{pmatrix} \pi_{1} & 0 \\ 0 & \pi_{n} \end{pmatrix}$ $AU = UTU^{*}U = UT$, $U = \tilde{L}u_{1}\mu_{2}..., u_{n}$ $ith column of AU = AU; \implies \pi_{1}U_{i}$ $\Rightarrow (u_{1}, \pi_{1})$ is an eigenpoir of A, all eigenvectors are orthonormal to each other.

 $4 \Rightarrow 2$ (λ_i λ_i) is an eigen-pair & $\{u_1, \dots, u_n\} := U$

$$Au_{i} = \lambda_{i}u_{i}, \text{ for all } i = 1, ..., N$$

$$AU = UT, \quad T = \begin{pmatrix} \lambda_{i} \\ \ddots \\ \lambda_{m} \end{pmatrix}$$

$$A = UTU^{*}$$

Appli cutlon of symmetric matrix.

$$\begin{cases}
-u^{11} = \frac{1}{2}, \quad x \in [0, 1], \quad (u^{11}) = \frac{(u_{11})^{2} - (u_{11})^{2}}{2} = \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{$$

$$\frac{1}{2} = 1, \qquad - \frac{1}{2} \frac{1$$

$$\frac{-\frac{U_{2}-2U_{1}}{h^{2}}}{\frac{-\frac{U_{3}-2U_{2}+U_{1}}{h^{2}}}{\frac{-\frac{U_{3}-2U_{2}+U_{1}}{h^{2}}}} = f(X_{2})$$

$$i = h-1, \qquad -\frac{U_{n} - 2U_{n-1} + b_{n-2}}{h^{2}} = f(x_{h-1})$$

$$\iff -\frac{-2U_{n-1} + U_{n-2}}{h^{2}} = f(x_{n-1}) + \frac{U_{n}}{h^{2}}$$

$$\frac{14}{h^{2}} \begin{pmatrix} 2 & -1 & 0 & --- & 0 \\ -1 & 2 & -1 & 0 & --- & 0 \\ \frac{1}{h^{2}} & & & \\ & & & \\ & & & & \\ &$$

Thm 3.2.

statement 1.

Assure
$$x^*A \times rs$$
 real for all \times , used to prove A is Hermitton
 $(x^*+y^*) A (x + y)$
 $= x^*Ax + y^*Ay + x^*Ay + y^*Ax = real$
 $x^* & y^* \in \mathbb{C}^n$
 $\Rightarrow x^*Ay + y^*Ax$ is real.
Let $x = e_k$ $y = e_j$
 $x^*Ay = b_{kh}$ row of A $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

$$y^* A \times = A_{jk}$$

 $A_{kj} = \alpha + b^2$
 $A_{kj} = \alpha + b^2$
 $A_{jk} = c + d^2$
 $A_{kj} + A_{jk} = venl unvber$
 $A_{kj} + A_{jk}$
 $A_{kj} + A_{$