1. A is normal.
2. A is unitarily diagonalizable.
3. $\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}$.
4. There is an orthonormal set of n eigenvectors of A.

Proof. By the Schur factorization, there exist a unitary matrix U and an upper-triangular matrix T such that:

$$
\begin{equation*}
A=U T U^{*} . \tag{3}
\end{equation*}
$$

Let us show 1 to 2 . To show A is unitarily diagonalizable, we only need to show T is diagonal. Since A is normal, we have

$$
\begin{equation*}
T T^{*}=U^{*} A U U^{*} A^{*} U=U^{*} A A^{*} U=U^{*} A^{*} A U=U^{*} A^{*} U U^{*} A U=T^{*} T \tag{4}
\end{equation*}
$$

This implies that T is normal. Since T is triangular, the homework question implies that T is diagonal.
Let us now prove 2 to 4 and leave the others as exercise. From the second argument,

$$
\begin{equation*}
A=U T U^{*}, \tag{5}
\end{equation*}
$$

where T is diagonal and $U=\left[u_{1}, \ldots, u_{n}\right]$ is unitary. It follows that,

$$
\begin{equation*}
A U=U T \tag{6}
\end{equation*}
$$

This is equivalent to $A u_{i}=\lambda_{i} u_{i}$ for all i, i.e., u_{i} are the orthonormal eigenvectors.

3 Hermitian (symmatric mutrix, \mathbb{R})

Definition 3.1. A matrix A if $A^{*}=A$, where $A^{*}=\bar{A}^{T}$.

```
is Hermitian
```

Theorem 3.2. A is Hermitian if and only if at least one of the following holds:

1. $x^{*} A x$ is real for all $x \in \mathbb{C}^{n}$.
2. A is normal and all the eigenvalues of A are real.
3. $S^{*} A S$ is Hermitian for all $S \in \mathbb{C}^{n \times n}$.

Proof. Let us first prove the first statement. Take the complex conjugate of $x^{*} A x$, we have $\left(x^{*} A x\right)^{*}=x^{*} A^{*} x$, since $A=A^{*}, x^{*} A x$ is real for all x. Now suppose $x^{*} A x$ is real for all x., we have

$$
\begin{equation*}
\left(x^{*}+y^{*}\right) A(x+y)=\left(x^{*} A x\right)+\left(y^{*} A y\right)+\left(x^{*} A y+y^{*} A x\right), \tag{7}
\end{equation*}
$$

is real for all x, y. The first two terms of 7 are real; we conclude that the sum of the last two terms is real. Now let $x=e_{k}$ and $y=e_{j}$, this implies that $a_{k j}+a_{j k}$ is real, i.e., $\operatorname{img}\left(a_{k} j\right)=\operatorname{img}\left(a_{j k}\right)$.

The 2.2.

$$
2 \Rightarrow 4
$$

$A=U T U^{x}, \quad U$ is unitary \& T is fiagonalizable. $T=\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ 0 & & \\ 0 & \lambda_{n}\end{array}\right)$

$$
\begin{aligned}
& \underbrace{A U}=U T \cup^{x} U=\underbrace{U T}, \quad U=\left[u_{1}, u_{2} \ldots, u_{n}\right] \\
& \text { eth column of } A U=A u_{i} \Longrightarrow \lambda_{i} u_{i}
\end{aligned}
$$

$\Rightarrow\left(u_{i} \lambda_{i}\right)$ is an eijeupair of A, all eigenvectors are orthonormal to each other.

$$
\begin{aligned}
& 4 \Rightarrow 2 \quad\left(\lambda_{i} u_{i}\right) \text { is an eijen-pair \& }\left\{u_{1} \ldots u_{n}\right\}:=U \\
& A u_{i}=\lambda_{i} u_{i}, \text { for all } i=1, \ldots, n \\
& A U=U T, \quad T=\left(\begin{array}{ll}
\lambda_{1} & \\
\ddots & \\
A & \lambda_{n}
\end{array}\right) \\
& A \\
& \text { orthonormal } \\
& A T U^{*}
\end{aligned}
$$

Application of symmetric matrix.

$$
\begin{aligned}
& \left\{\begin{array}{l}
-u^{\prime \prime}=f, \quad x \in[0,1] . \\
u(0)=u(1)=a .
\end{array}\right. \\
& \begin{aligned}
\left(u^{\prime \prime}\right)_{i} & =\frac{\left(u_{i}\right)^{\prime}-\left(u_{i-1}\right)^{\prime}}{h}= \\
& =\left(\frac{u_{i+1}-u_{i}}{h}-\frac{u_{i}-u_{i-1}}{h}\right) / h
\end{aligned} \\
& \left(u^{\prime \prime}\right)_{i}=\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}} \\
& h=x_{i+1}-x_{i} \text {, for } i=0, \ldots 1^{n} \\
& i=1, \quad-\frac{U_{2}-2 U_{1}+U_{0}}{h^{2}}=f\left(x_{1}\right) \\
& -\frac{u_{2}-2 u_{1}}{h^{2}}=f\left(x_{1}\right)+\frac{u_{0}}{u^{2}} \\
& \begin{array}{r}
-\frac{u_{3}-2 u\left[u_{2}+u_{1}\right.}{h^{2}}=f\left(x_{2}\right) \\
\cdots-u^{\prime \prime} \text { at } x=x_{2}
\end{array} \\
& i=n-1, \quad-\frac{u_{n}-2 u_{n-1}+u_{n-2}}{h^{2}}=f\left(x_{n-1}\right) \\
& \Leftrightarrow \quad-\frac{-2 u_{n-1}+u_{n-2}}{n^{2}}=f\left(v_{n-1}\right)+\frac{u_{n}}{n^{2}}
\end{aligned}
$$

Thu 3.2.
statement 1 .
Assume $x^{*} A x$ is real for all x, want to prove A is Hermitian.
$\Rightarrow \quad x^{*} A y+y^{*} A x$ is real.

Let $x=e_{k} \quad y=e_{j}$

$$
(0,0, \ldots 1, \ldots 0)(
$$

$$
\begin{aligned}
& \left(x^{*}+y^{*}\right) A(x+y) \\
& =x^{*} \underbrace{A x+y^{*}}_{\text {real }} A y+x^{*} A y+y^{*} A x=\text { real } \\
& x^{x} \& y t \in K^{n}
\end{aligned}
$$

$$
\begin{aligned}
& y^{*} A x=A_{j k} \\
& A_{h j}=a+b_{i} \\
& A_{p j}+A_{j k}=\text { veal unuber } \\
& A_{j k}=c+d i \\
& A_{k j}+A_{j k}^{\prime} \\
& \Rightarrow \quad \operatorname{img}\left(A_{p_{j}}\right)=-\operatorname{img}\left(A_{j k}\right) \\
& =(a+c)+(d+b) i \\
& \Rightarrow b+d=0 \\
& x=i e_{k}, \quad y=e_{j} \\
& x^{*} A y=-i A_{k j} \quad y^{*} A x=i A_{j k} \\
& -i A_{k j}+i A_{j k}=\text { real number } . \\
& \Rightarrow \operatorname{ven}\left(A_{k j}\right)=\operatorname{real}\left(A_{j k}\right) \\
& \begin{array}{ll}
\Rightarrow \quad A_{k j}=\vec{A}_{j k} & \begin{array}{l}
\text { vel came } \\
\text { part }
\end{array} \\
\Rightarrow \quad A=a=c \\
\Rightarrow \quad \text { ing part } \Rightarrow b=-d
\end{array} \\
& \begin{array}{ll}
\Rightarrow \quad A_{k j}=\vec{A}_{j k} & \begin{array}{l}
\text { ven came } \\
\text { part }
\end{array} \\
\Rightarrow \quad A=a=c \\
\Rightarrow \quad \text { ing part } \Rightarrow b=-d
\end{array} \\
& \left\{\begin{array}{l}
p=a+b i \\
q=c+d i
\end{array}\right. \\
& \Rightarrow \quad A \text { is Hermitian matrix. }
\end{aligned}
$$

