Eigenvalue

Zecheng Zhang
February 1, 2023

1 Eigenvalue and eigenvector

$$
\begin{aligned}
& \text { eijeu-vector cannot be } 0 \\
& \text { but } \lambda \text { can be equal to } 0
\end{aligned}
$$

An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{x} of $A \mathbf{x}=\lambda \mathbf{x}$, such an x is called an eigenvector corresponding to λ.
λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$
(A-\lambda I) \mathbf{x}=\mathbf{0}
$$

$$
\begin{aligned}
& A \mathbb{R}^{n \cdot n} \\
& A x=\lambda x \\
& \text { If } \lambda=0 \text { 待)an eijen value. }
\end{aligned}
$$

has a nontrivial solution. The set of all solutions of (1) is just the null space of the matrix $A-\lambda I$, so this set is a subspace of \mathbb{R}^{n}. It is called the eigenspace of A corresponding to λ, which consists of the zero vector and all the eigenvectors corresponding to λ.

Remark 1. 0 is an eigenvalue of matrix A if and only if the equation

$$
\begin{equation*}
A \mathbf{x}=0 \mathrm{x} \tag{2}
\end{equation*}
$$

$$
\text { sit. } A x=0
$$

has a nontrivial solution. Furthermore, the system has a nontrivial solution if and only if A is not invertible.

2 Characteristic polynomial

The scalar equation

$$
\Leftrightarrow \operatorname{rank}(A)<n
$$

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{3}
\end{equation*}
$$

is called the characteristic equation of A. A scaler λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characteristic equation.

Remark 2. $\operatorname{det}(A-\lambda I)$ is a polynomial in λ. It can be shown that if A is an $n \times n$ matrix, then $\operatorname{det}(A-\lambda I)$ is a polynomial of degree n. This polynomial is called the characteristic polynomial of A. The (algebraic) multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

Remark 3. Matrix A always has n eigenvalues if count the multiplicity.
Theorem 2.1. If $\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right\}$ is linearly independent.

Proof. Let $\lambda_{1} \neq \lambda_{2}$ be two eigenvalues and v_{1} and v_{2} be the corresponding eignevectors. Assume v_{1} and v_{2} are linear dependent. That is, there exists $a \neq 0$ such that,

$$
\begin{equation*}
v_{1}+a v_{2}=0 . \tag{4}
\end{equation*}
$$

Multiply A on both sides of the equation,

$$
\begin{equation*}
A v_{1}+a A v_{2}=\lambda_{1} v_{1}+a \lambda_{2} v_{2}=0 \tag{5}
\end{equation*}
$$

Multiply 4 by λ_{1}, we have $\lambda_{1} v_{1}+a \lambda_{1} v_{2}=0$. Subtract 4 from 5, it follows that,

$$
a\left(\lambda_{2}-\lambda_{1}\right) v_{2}=0
$$

This implies $\lambda_{1}=\lambda_{2}$, which is the contradiction.

$$
\begin{aligned}
& A \text { is similar to } B, I f \exists P \text { non singular } \\
& \text { sit. } A=P B P^{-1}
\end{aligned}
$$

3 Similarity
A and B are $n \times n$ matrices, then A is similar to B if there is an invertible matrix P such that $P^{-1} A P=B$, or, equivalently, $A=P B P^{-1}$. We say that A and B are similar. Changing A into $P^{-1} A P$ is called a similarity transformation.

Theorem 3.1. If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Proof. A and B are similar, i.e., $A=P B P^{-1}$ for some P. Let λ and v be an eigen-pair of A, i.e., $A v=\lambda v$. We now show that λ is also an eigenvalue of B. Substitute $A=P B P^{-1}$ into $A v=\lambda v$, it follows that,

$$
B P^{-1} v=\lambda P^{-1} v
$$

Let us denote $w=P^{-1} v$. w is not zero since P is invertible (because the null space of B is zero). This implies that λ is also an eigenvalue of B.

$$
A \text { is dingonalisatle if } A=P D P^{-1} \text {, where }
$$

4 Diagonalizable

$$
\text { is a diagonal matrix, \& } P \text { is inderticuble. }
$$

Theorem 4.1. An $n \times n$ matrix A is diagonalizable if only if A has n linearly independent eigenvectors.

$$
\begin{aligned}
& P=\left[P_{1} \ldots P_{n}\right] \\
& D=\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right) \Rightarrow A P_{i}=\lambda_{i} P_{i}
\end{aligned}
$$

In fact, $A=P D P^{-1}$, with D a diagonal matrix, if and only if

- the columns of P are n linearly independent eigenvectors of A.
- the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

Remark 4. If $A=P D P^{-1}$ for some invertible P and diagonal D, then A^{k} is easy to compute.

Thu 3.1.
If $A \& B$ are similar, $\exists P$ (invertindle)
sit. $\quad A=P B P^{-1}$

Suppose $(\lambda-V)$ is an eijen pair of A,

$$
A v=\lambda v \quad(v \neq 0)
$$

Replace A by PBP ${ }^{-1}$

$$
\begin{aligned}
P B P^{-1} V & =\lambda V \\
\Rightarrow \quad B \underbrace{B-1}_{w} & =\lambda \underbrace{P^{-1} V}_{\omega} \\
B w & =\lambda w
\end{aligned}
$$

By the Rank the orem

$$
\operatorname{dim}\left(n u l \mid\left(1^{-1}\right)\right)+\underbrace{\operatorname{rank}\left(p^{-1}\right.}_{n})=n
$$

$$
\left.\Rightarrow \operatorname{dim}(n+1)\left(p^{-1}\right)\right)=0
$$

Since $v \neq 0, \operatorname{rark}\left(p^{-1}\right)=n$
$\Leftrightarrow \operatorname{nall}\left(p^{-1}\right)=\{0\} \Rightarrow P^{-1} v \neq 0 \Rightarrow(T, \omega)$ is an eifen-puir of B.
\qquad
A is Unitary Diagonalizable.
if $A=U D U^{*}$, where U is unitary \& D is diagonal.
(1) $u^{*}=(\bar{U})^{t}$

U has orth normal
(2) U is unitary, if $U^{*} U=U U^{*}=I \rightarrow$
we will discuss more about the
(3) D is a diagonal matrix. unitary matrix next time.

5 Schur Factorization

A Schur factorization of a matrix A is a factorization

$$
\begin{equation*}
A=Q T Q^{*}, \tag{6}
\end{equation*}
$$

where Q is unitary and T is upper-triangular. A and T are similar, the eigenvalues of A necessarily appear on the diagonal of T.

Theorem 5.1 (Schur). Every square matrix $A \in \mathbb{C}^{n \times n}$ has a Schur factorization.
Proof. Let us prove by induction. Case $n=1$ is trivial. Let us prove the result for $n>1$. Assume the result is true for $n-1$ size square matrix. Let y be any eigenvector of A with eigenvalue λ, define an unitary matrix $U=\left[x, P_{n \times(n-1)}\right] \in \mathbb{C}^{n \times n}$ with the first column being normalized y (denoted as x).

$$
\left[\begin{array}{l}
x^{*} \tag{7}\\
P^{*}
\end{array}\right] A\left[\begin{array}{ll}
x & P
\end{array}\right]=\left[\begin{array}{l}
x^{*} A \\
P^{*} A
\end{array}\right]\left[\begin{array}{ll}
x & P
\end{array}\right]=\left[\begin{array}{ll}
x^{*} A x & x^{*} A P \\
P^{*} A x & P^{*} A P
\end{array}\right]=\left[\begin{array}{ll}
\lambda & B \\
0 & C
\end{array}\right],
$$

where $B \in \mathbb{R}^{1 \times(n-1)}$ and $C \in \mathbb{R}^{(n-1) \times(n-1)}$. By the inductive hypothesis, there exists a Schur factorization of $V R V^{*}$ of C, where V is unitary and R is upper-triangular. Define,

$$
Q=U\left[\begin{array}{cc}
1 & 0 \tag{8}\\
0 & V
\end{array}\right]
$$

It is easy to verify Q is unitary and we have,

$$
\begin{align*}
Q^{*} A Q & =\left[\begin{array}{cc}
1 & 0 \\
0 & V^{*}
\end{array}\right]\left[\begin{array}{ll}
\lambda & B \\
0 & C
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & V
\end{array}\right] \tag{9}\\
& =\left[\begin{array}{cc}
\lambda & B \\
0 & V^{*} C
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & V
\end{array}\right]=\left[\begin{array}{cc}
\lambda & B V \\
0 & R
\end{array}\right]:=T . \tag{10}
\end{align*}
$$

Since A and T are similar, they have the same eigenvalues.

The 5.1. (Schur)
Let us prove by mathematical induction.
ste. 1 when $n=1$, trivial.
step 2. Assume the result is true for $n-1$ square matrix.
step 3. Let $A \in \mathbb{C}^{n \cdot n}$ \& (λ, x) be an eigen-pair of A, unitary matrix: all cols are orthogonal to \& further assume that $\|x\|^{2}=1$.

$$
\begin{aligned}
& x^{*} \\
&= A x \\
& 11 \\
& x^{*} \\
& \lambda x
\end{aligned}
$$

$$
=\lambda x^{7} x
$$

$$
=\lambda p^{7} x
$$

$$
=0
$$

$$
\begin{aligned}
& \text { each other \& }\|\|=1 \text {. } \\
& \text { Refine an unitary notrix } U=\left[\begin{array}{cc}
i \\
i & P_{n(w)} \\
i
\end{array}\right] \mathbb{U}^{\text {much }} \\
& U^{*} A \cup \underbrace{\binom{x^{*}}{p^{*}}} A(\underbrace{x} \quad \searrow x=\left(\begin{array}{l}
1 \\
0 \\
i \\
0
\end{array}\right) \\
& P=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & \vdots \\
\vdots & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$C \in K^{(h-1) x(h-1)}$. By the hypothesis, there exist unitary matrix V
\& an upper triangular matrix R sit. $C=V R V^{*}$

Define

$$
C l=\cup_{n, n}\left[\begin{array}{cc}
1 & 0 \\
0 & V_{(n-1)(n-1)}
\end{array}\right]
$$

Now let us verify Q is unitary.

$$
\begin{aligned}
& Q Q^{*}=U\left[\begin{array}{cc}
1 & 0 \\
0 & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & v^{*}
\end{array}\right]}_{Q^{*}} U^{*} \\
& =U \underset{=I_{n-1}}{\left[\begin{array}{cc}
1 & 0 \\
0 & \underset{v^{*}}{ }
\end{array}\right] U^{*}} \\
& =U U^{*}=I \\
& T=: Q^{*} A Q \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & V^{*}
\end{array}\right] \cup^{*} A \cup\left[\begin{array}{cc}
1 & 0 \\
0 & U
\end{array}\right] \\
& =\left[\begin{array}{ll}
R & B \\
0 & v^{*} C
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & v
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda & B V \\
0 & R
\end{array}\right]
\end{aligned}
$$

(1) R is un upper triangular matrix
$\Rightarrow \quad T$ is also upper -triangular.
(a) T \& A Gave the same eigenvalues. (boL, T\&A ave similar \& the 3.1)
(3) T is upper triangular
\Rightarrow diagonal entries of T are e.valoses of T
\Rightarrow diagonal entries of T ane evalues of A.

