Eigenvalue

Zecheng Zhang

February 1, 2023

1 Eigenvalue and eigenvector

An eigenvector of an $n \times n$ matrix A is a nonzero vector **x** such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an eigenvalue of A if there is a nontrivial solution **x** of A**x** = λ **x**, such an ERNN AX = XX **x** is called an eigenvector corresponding to λ .

 λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

Tf λ=0 (1) an eigen value ace of the matrix nding to λ. which e. Vector has a nontrivial solution. The set of all solutions of (1) is just the null space of the matrix $A - \lambda I$, so this set is a subspace of \mathbb{R}^n . It is called the eigenspace of A corresponding to λ , which =) there exists × +0 consists of the zero vector and all the eigenvectors corresponding to λ .

Remark 1. 0 is an eigenvalue of matrix A if and only if the equation

$$A\mathbf{x} = 0\mathbf{x}$$

(2) (A)) > 0 has a nontrivial solution. Furthermore, the system has a nontrivial solution if and only not invertible. (=) vank (A) < h

$\mathbf{2}$ Characteristic polynomial

The scalar equation

 $det(A - \lambda I) = 0$ (3)

is called the characteristic equation of A. A scaler λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characteristic equation.

Remark 2. $det(A - \lambda I)$ is a polynomial in λ . It can be shown that if A is an $n \times n$ matrix, then $det(A - \lambda I)$ is a polynomial of degree n. This polynomial is called the characteristic polynomial of A. The (algebraic) multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

Remark 3. Matrix A always has n eigenvalues if count the multiplicity.

Theorem 2.1. If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \cdots, \mathbf{v}_r\}$ is linearly independent.

eigen-vector cannot be O but I can be equal to O

sit. Ax = 0

(=)

(=) A is non-singular

Proof. Let $\lambda_1 \neq \lambda_2$ be two eigenvalues and v_1 and v_2 be the corresponding eignevectors. Assume v_1 and v_2 are linear dependent. That is, there exists $a \neq 0$ such that,

$$v_1 + av_2 = 0.$$
 (4)

Multiply A on both sides of the equation,

$$Av_1 + aAv_2 = \lambda_1 v_1 + a\lambda_2 v_2 = 0.$$
(5)

Multiply 4 by λ_1 , we have $\lambda_1 v_1 + a\lambda_1 v_2 = 0$. Subtract 4 from 5, it follows that,

$$a(\lambda_2 - \lambda_1)v_2 = 0.$$

This implies $\lambda_1 = \lambda_2$, which is the contradiction.

3 Similarity $A: s:s:milar to 13, 2f \exists p now singular sit. A = PB p^{-1}$

A and B are $n \times n$ matrices, then A is similar to B if there is an invertible matrix P such that $P^{-1}AP = B$, or, equivalently, $A = PBP^{-1}$. We say that A and B are similar. Changing A into $P^{-1}AP$ is called a similarity transformation.

Theorem 3.1. If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Proof. A and B are similar, i.e., $A = PBP^{-1}$ for some P. Let λ and v be an eigen-pair of A, i.e., $Av = \lambda v$. We now show that λ is also an eigenvalue of B. Substitute $A = PBP^{-1}$ into $Av = \lambda v$, it follows that,

$$BP^{-1}v = \lambda P^{-1}v.$$

Let us denote $w = P^{-1}v$. w is not zero since P is invertible (because the null space of B is zero). This implies that λ is also an eigenvalue of B.

Theorem 4.1. An $n \times n$ matrix A is diagonalizable if only if A has n linearly independent eigenvectors.

In fact, $A = PDP^{-1}$, with D a diagonal matrix, if and only if

4

- the columns of P are n linearly independent eigenvectors of A.
- the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

Remark 4. If $A = PDP^{-1}$ for some invertible P and diagonal D, then A^k is easy to compute.

$$D^{2} \begin{pmatrix} \lambda_{1} \\ \ddots \\ \lambda_{n} \end{pmatrix} \Rightarrow AP_{2} = \lambda_{i}P_{i}$$

Thm 3.1.

IS A & B cive similar, 3 p (in vertindle) s(t) A= PR P⁻¹ Suppose (R-V) is an eigen pair of A, $Av = \lambda V \quad (v \neq b)$ Replace A by PBPT By the Rouk the Oven PBPTV = NV $\dim(n-1)((2^{-1})) + \min(p^{-1}) = n$ $BP^{\dagger}v = \lambda P^{\dagger}v$ => q:m (null (b,1) = D Ę ⇒ ~~11(p⁻¹) = {0} R w = N w Since V = U, vo- (p) = N $(=) \quad \text{mull} \ p^{-1}) = \{0\} \Rightarrow p^{-1}v \neq 0 \Rightarrow (\Pi, w) \text{ is an eigen-pull of } B.$ 11

5 Schur Factorization

A Schur factorization of a matrix A is a factorization

$$A = QTQ^{\bigstar},\tag{6}$$

where Q is unitary and T is upper-triangular. A and T are similar, the eigenvalues of A necessarily appear on the diagonal of T.

Theorem 5.1 (Schur). Every square matrix $A \in \mathbb{C}^{n \times n}$ has a Schur factorization.

Proof. Let us prove by induction. Case n = 1 is trivial. Let us prove the result for n > 1. Assume the result is true for n - 1 size square matrix. Let y be any eigenvector of A with eigenvalue λ , define an unitary matrix $U = [x, P_{n \times (n-1)}] \in \mathbb{C}^{n \times n}$ with the first column being normalized y (denoted as x).

$$\begin{bmatrix} x^* \\ P^* \end{bmatrix} A \begin{bmatrix} x & P \end{bmatrix} = \begin{bmatrix} x^*A \\ P^*A \end{bmatrix} \begin{bmatrix} x & P \end{bmatrix} = \begin{bmatrix} x^*Ax & x^*AP \\ P^*Ax & P^*AP \end{bmatrix} = \begin{bmatrix} \lambda & B \\ 0 & C \end{bmatrix},$$
(7)

where $B \in \mathbb{R}^{1 \times (n-1)}$ and $C \in \mathbb{R}^{(n-1) \times (n-1)}$. By the inductive hypothesis, there exists a Schur factorization of VRV^* of C, where V is unitary and R is upper-triangular. Define,

$$Q = U \begin{bmatrix} 1 & 0\\ 0 & V \end{bmatrix}.$$
 (8)

It is easy to verify Q is unitary and we have,

$$Q^*AQ = \begin{bmatrix} 1 & 0 \\ 0 & V^* \end{bmatrix} \begin{bmatrix} \lambda & B \\ 0 & C \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix}$$
(9)

$$= \begin{bmatrix} \lambda & B \\ 0 & V^*C \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix} = \begin{bmatrix} \lambda & BV \\ 0 & R \end{bmatrix} := T.$$
(10)

Since A and T are similar, they have the same eigenvalues.

Thm 5.1. (Schur)

let us prove by muthemotical induction.

Step 3. Let
$$A \in C^{h,h} \otimes (\lambda, \chi)$$
 be an eigen-pair of A_{j}
without mutrix:
 $\& \text{ further assume that } \|\chi\|^{2} = 1$.
 $R = \int_{0}^{h,h} \int_{0}^{h$

$$\begin{array}{c} \chi^{*} \left[A \times \right] \\ = \chi^{*} \left[\lambda \times \right] \\ = \chi^{*} \left[\lambda \times \right] \\ = \chi \chi^{*} \chi \\ = \chi \chi^{*} \chi$$

 $C \in C^{(n+1)\times(n+1)}$. By the hypothesis, there exist unitary matrix V& an upper triangular matrix R s.t. $C = VRV^{*}$

Define
$$(Q = U_{n:N} \bigcup V_{(n+1)(n-1)})$$

Now let us verify OR is unitary.

$$\begin{array}{c} (\mathbf{x}, \mathbf{x}) \\ (\mathbf{x}, \mathbf{x})$$

$$T =: Q^* \land Q$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & R \end{bmatrix}$$