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1 Eigenvalue and eigenvector Lt T he. %V\u\ O

An eigenvector of an n X n matrix A is a nonzero vector x such that Ax = Ax for some scalar
A. A scalar A is called an eigenvalue of A if there is a nontrivial solution x of Ax = Ax, such an

x is called an eigenvector corresponding to A. e\

A is an eigenvalue of an n x n matrix A if and only if the equation X = AX
(A-X)x=0 1% ATO @)um e,'\y%l'\ U‘\\Wa,

has a nontrivial solution. The set of all solutions of is just the null space of the matrix Lr

A— M\, so this set is a subspace of R™. It is called the eigenspace of A corresponding to A, which [6\ Vee

consists of the zero vector and all the eigenvectors corresponding to A. 3 fhete ey X X0

Remark 1. 0 is an eigenvalue of matrix A if and only if the equation

(’7\*\ A’K = O
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has a nontrivial solution. Furthermore, the system has a nontrivial solution if and only if A is

not invertible. (2D rou R (AX <N

Ax = 0x
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The scalar equation (:3 S

is called the characteristic equation of A. A scaler A is an eigenvalue of an n x n matrix A if
and only if A\ satisfies the characteristic equation.

Remark 2. det(A — A\I) is a polynomial in A. It can be shown that if A is an n X n matrix,
then det(A — AI) is a polynomial of degree n. This polynomial is called the characteristic
polynomial of A. The (algebraic) multiplicity of an eigenvalue A is its multiplicity as a root of
the characteristic polynomial.

Remark 3. Matrix A always has n eigenvalues if count the multiplicity.

Theorem 2.1. If vq,--- , v, are eigenvectors that correspond to distinct eigenvalues Ay, -, A,
of an n x n matrix A, then the set {vq,---,v,} is linearly independent.



Proof. Let A1 # A3 be two eigenvalues and vy and v9 be the corresponding eignevectors. Assume
v1 and vg are linear dependent. That is, there exists a # 0 such that,

v1 + avg = 0. (4)
Multiply A on both sides of the equation,
Avy + aAvg = \vy + algvg = 0. (5)
Multiply [4] by A1, we have Ajv1 + aXjva = 0. Subtract [4] from [5] it follows that,
a(Ay — A\)vg = 0.

This implies A\; = A9, which is the contradiction. O
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3 Similarity “h Nz PR o

A and B are n X n matrices, then A is similar to B if there is an invertible matrix P such that
P~'AP = B, or, equivalently, A = PBP~!. We say that A and B are similar. Changing A into
P~1AP is called a similarity transformation.

Theorem 3.1. If n X n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues (with the same multiplicities).

Proof. A and B are similar, i.e., A = PBP~! for some P. Let A and v be an eigen-pair of A,
i.e., Av = \v. We now show that \ is also an eigenvalue of B. Substitute A = PBP~! into
Av = Av, it follows that,

BP v = P 1.

Let us denote w = P~!v. w is not zero since P is invertible (because the null space of B is
zero). This implies that A is also an eigenvalue of B. O
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Theorem 4.1. An n x n matrix A is diagonalizable if only if A has n linearly independent

By Pl

eigenvectors. -
L
In fact, A = PDP~!, with D a diagonal matrix, if and only if Dz (h

l’)'.:

e the columns of P are n linearly independent eigenvectors of A.

e the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigen-
vectors in P.

Remark 4. If A= PDP~! for some invertible P and diagonal D, then A* is easy to compute.

APy = N P



Thw 3.1
14 A3 R ouwe swilor, g p (inlerilnde)
§ A= PR P
s‘A\’\“’m (')\—U) ¢ GOn e'vSe\'\ lﬁa’\v Lg( A/

Av= v vk o)

Pz\:\tkw. A \03 PB\D_{
Ry tro Rovk Yha Oven

PRY TV = AV
e )T =
D gplv = 2 ¥ly .
o v D g (w0 061) =0
Rw = AW 5 AT T o)

SIUIVAV veelt LVI) =l
- A N - - \;\ O — y coun ~ |
/=) wALED fd D \:l % ) M, W) ¢ on etfen ~pulv % R.

A RS U““*av\& D'u“bbvm\\ 2 uuﬂ .

A= VD Ur, whae D vty 3D oty gl

@ UX = <U_)+ U e-"& ov+h~no|rv-:.l
/) Wl Ung w@ \/\'u\ A‘;S f(kg_g

f

@ Ly 8 wn't OL'/‘& I%,-R- UkL) = UL)S\ 1 — WS (‘/Lgou(k‘ ‘\/l/Q
®
r\/u«“*“\'”(\ Wi

@ D s J‘LMjDV\b\\ wabd KXY
V\Q\C\' -HVVQ‘



5 Schur Factorization

A Schur factorization of a matrix A is a factorization
A=QTQ*X, (6)

where () is unitary and T is upper-triangular. A and T are similar, the eigenvalues of A
necessarily appear on the diagonal of T'.

Theorem 5.1 (Schur). Every square matrix A € C"*™ has a Schur factorization.

Proof. Let us prove by induction. Case n = 1 is trivial. Let us prove the result for n > 1.
Assume the result is true for n — 1 size square matrix. Let y be any eigenvector of A with
eigenvalue A, define an unitary matrix U = [z, P,x(,—1)] € C™*" with the first column being
normalized y (denoted as x).

Pl - A i-D g e

where B € R and ¢ € R@=Y*(=1) By the inductive hypothesis, there exists a Schur
factorization of VRV* of C, where V is unitary and R is upper-triangular. Define,

10

o=vy | ®

It is easy to verify @ is unitary and we have,

N 1 0]|x B||1 O
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Since A and T are similar, they have the same eigenvalues. O
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