1. W^{\perp} is a subspace.
2. $\left(W^{\perp}\right)^{\perp}=W$.
3. Let W be a subspace of R^{n} with dimension d, W^{\perp} has dimension $n-d$. Moreover, W and W^{\perp} separate \mathbb{R}^{n}.

Proof. Let $A \in \mathbb{R}^{n \times d}$ such that $\operatorname{col}(A)=W$. By the Complement theorem, $\operatorname{col}(A)^{\perp}=\operatorname{null}\left(A^{t}\right)$. It follows from the Rank theorem that,

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{null}\left(A^{t}\right)\right)+\operatorname{dim}\left(\operatorname{col}\left(A^{t}\right)\right)=n . \tag{8}
\end{equation*}
$$

Since $\operatorname{dim}\left(\operatorname{col}\left(A^{t}\right)\right)=\operatorname{dim}(\operatorname{row}(A))=d$, this implies that $\operatorname{dim}\left(\operatorname{null}\left(A^{t}\right)\right)=\operatorname{dim}\left(\operatorname{col}(A)^{\perp}\right)=$ $n-d$. $W \cap W^{\perp}=0$, this implies that W and W^{\perp} separate \mathbb{R}^{n}.

6 Orthogonal projection

Definition 6.1. An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthogonal set.

Theorem 6.2. Let $\left\{u_{1}, \cdots, u_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{m}. For each y in W, the weights in the linear combination

$$
\begin{equation*}
y=c_{1} u_{1}+\cdots+c_{p} u_{p} \tag{9}
\end{equation*}
$$

are given by

$$
\begin{equation*}
c_{j}=\frac{y \cdot u_{j}}{u_{j} \cdot u_{j}} \tag{10}
\end{equation*}
$$

for all $j=1, \ldots, p$. Moreover, if $\left\{u_{1}, \cdots, u_{p}\right\}$ is orthonormal, $c_{j}=y \cdot u_{j}$ for all j.
Proof. Inner product u_{i} on both side of the equation, this gives,

$$
\begin{equation*}
\left\langle y, u_{i}\right\rangle=c_{i}\left\langle u_{i}, u_{i}\right\rangle, \forall i=1, \ldots, p \tag{11}
\end{equation*}
$$

It follows that $c_{i}=\frac{\left\langle y, u_{i}\right\rangle}{\left\langle u_{i}, u_{i}\right\rangle}$. When the set is orthonormal, $\left\langle u_{i}, u_{i}\right\rangle=1$.
Theorem 6.3. Let W be a subspace of \mathbb{R}^{n}. Then for each $y \in \mathbb{R}^{n}, y$ can be uniquely written as:

$$
y=\hat{y}+z,
$$

where $\hat{y} \in W$ and $z \in W^{\perp}$. Moreover, let $\left\{u_{1}, \cdots, u_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}, then $\hat{y}=c_{1} u_{1}+\cdots+c_{p} u_{p}, c_{i}$ are defined in theorem 6.2 .

$$
\begin{align*}
& \text { Target: want to show } \hat{y} \perp z . \\
& z=y-\hat{y} \\
&=y-\sum_{i=1}^{p} c_{j} u_{j} \tag{*}\\
& \text { were } \quad c_{j}=\left\langle y_{1} u_{j}\right\rangle
\end{align*}
$$

Proof. Let us first show that z is orthogonal to \hat{y}. For any u_{i},

$$
u_{i} \cdot z=y \cdot u_{i}-\sum_{\mathfrak{j}=1}^{p} c_{j} u_{j} \cdot u_{i}=0
$$

where we use the theorem 6.2 in the last step. Next, let us consider the uniqueness. Suppose $y=\hat{y}_{1}+z_{1}$, where $\hat{y}_{1} \in W$ and $z_{1} \in W^{\perp}$. We have $\hat{y}-\hat{y}_{1}=z-z_{1}$, but $\hat{y}-\hat{y}_{1} \in W$ and $z-z_{1} \in W^{\perp}$ due to the closedness of subspace. This shows that $\hat{y}-\hat{y}_{1}=z-z_{1}=0$.

Inner product ((x) with all u_{i}
$\left\langle z, u_{i}\right\rangle=\left\langle y, u_{i}\right\rangle-C_{i}\left\langle u_{i}, u_{i}\right\rangle$

Remark 5. By the previous theorem, given any y and W (a subspace with an orthonormal basis), there exist unique $\hat{y} \in W$, and $v \in W^{\perp}$, where $W \cap W^{\perp}=0$. Based on the theorem, we will show that there exists a projector P such that $\operatorname{range}(P)=W$ and $\operatorname{range}(I-P)=W^{\perp}$. Because W and W^{\perp} are orthogonal to each other, we call P an orthogonal projector. \hat{y} is denoted by $\operatorname{proj}_{W} y$ and is called the orthogonal projection of y onto W. Let us now find the projector P.

6.1 Orthogonal projector

varke (\mathbb{O})
An orthogonal projector projects onto S_{1} along S_{2}, where/ $/ S_{1}$ and S_{2} are orthogonal. Let $Q=$ $\left[q_{1}, \ldots, q_{n}\right] \in \mathbb{R}^{m \times n}$ and q_{i} are orthonormal, and $S_{1}=\operatorname{col}(Q)$. In this section, we will construct an orthogonal projection onto the column space of Q. Let $v \in \mathbb{R}^{m}$, by Theorem 6.3, we have
and r is orthgonal with $\sum_{i=1}^{n}\left(q_{i} q_{i}^{t}\right) v$. Thus, the linear transform from v to $\sum_{i=1}^{n}\left(q_{i} q_{i}^{t}\right) v=Q Q^{t} v$ is an orthogonal projection onto $\operatorname{range}(Q)$. We claim that $Q Q^{t}$ is an orthogonal projector onto the column space of Q.

$$
p^{2}=p
$$

Proof. First, we need to verify that $Q Q^{T}$ satisfies the definition of the projection. We then need to verify $\operatorname{col}\left(Q Q^{T}\right)=\operatorname{col}(Q)$. Let $y=Q x$ for any $x \in \mathbb{R}^{n}$. Need to find a $y \in \mathbb{R}^{m}$ such that $x=Q^{T} y$. Since $\operatorname{rank}\left(Q^{t}\right)=n$ by Theorem 6.7 in the last note, this implies that $\mathbb{R}^{n}=\operatorname{col}\left(Q^{t}\right)$. That is, there always exists $y \in \mathbb{R}^{m}$ such that $x=Q^{t} y$.

Remark 6. $\operatorname{dim}\left(Q Q^{T}\right)=n$, the projector has rank n. We claim that the complement projector has rank $m-n \Leftrightarrow \operatorname{dim}(\operatorname{col}(I-p))=m-n, \quad \operatorname{cul}(I-p)=$ unll (p)

$$
\begin{aligned}
& -(P)=m-n, \quad \operatorname{col}(I-p)=\text { null }(p) \\
& Q Q^{t}
\end{aligned} \quad \text { by the vank theorem, }(\operatorname{dim}(\operatorname{col}(I-p))=m-n .
$$

An important special case is the rank-one projector that isolates the component in a single direction q. Specifically, $Q=[q]$, the projector onto the column space of Q is:

$$
\begin{equation*}
P_{q}=q q^{t}, \tag{13}
\end{equation*}
$$

where $\operatorname{rank}\left(P_{q}\right)=1$ and SVD theorem explains this directly. The complements are the rank $m-1$ orthogonal projectors:

$$
\begin{equation*}
P_{\perp q}=I-q q^{t} . \tag{14}
\end{equation*}
$$

6.2 Projection with an arbitrary basis

We have discussed the projector construction if a set of orthonormal basis is given. Let us now consider the general case. Specifically, let $A \in \mathbb{R}^{m \times n}, S_{1}=\operatorname{col}\left(a_{1}, \ldots, a_{n}\right)$ and $\operatorname{rank}(A)=n$. Given v, denote its projection onto $\operatorname{range}(A)$ as y. Moreover, let $x \in \mathbb{R}^{n}$ such that $y=A x$. Due to the orthogonal assumption (orthogonal projection is our target), we have $y-v$ orthogonal to $\operatorname{col}(A)$, or it is orthogonal to all columns of A. That is, $a_{i}^{t}(y-v)=0$ for all i. Equivalently $a_{i}^{t}(A x-v)=0$. Recall matrix multiplication (row-column rule); we have

$$
\begin{equation*}
A^{t}(A x-v)=0 \tag{15}
\end{equation*}
$$

or $A^{t} A x=A^{t} v$. Since $A^{t} A$ is invertible, $x=\left(A^{t} A\right)^{-1} A^{t} v$. The projection then follows:

$$
\begin{equation*}
y=A\left(A^{t} A\right)^{-1} A^{t} v \tag{16}
\end{equation*}
$$

or $A\left(A^{t} A\right)^{-1} A^{t} v$ is the projector onto $\operatorname{col}(A)$.

Remark ζ.
Question: $\quad S_{1} \& S_{2}, \|^{n}=s_{1}+S_{2}, \quad S_{1} \cap S_{2}=0$
Can we find a projector P, SitA. range $(P)=S$,

$$
\text { range }(I-P)=S_{2}
$$

Now, how to find a projector P, sit.

$$
\left\{\begin{array}{l}
\hat{y}=p y \\
z=(I-p) y
\end{array}\right.
$$

Def: orthogonal projection; given a projector P, P is culled an orthogonal projection, if range $(P) \perp \operatorname{range}(I-P)$

$$
\operatorname{varge}\left(Q e e^{+}\right)=\operatorname{range}(P)
$$

pf $\quad \operatorname{col}\left(Q Q^{+}\right)=\operatorname{col}(Q)$
It is eos to see $\operatorname{col}\left(Q Q^{+}\right) \leq \operatorname{col}(\theta)$
let $y=Q x, \quad x \in \mathbb{R}^{n}$ (arbitany vector in $\operatorname{col}(Q)$)
Need to that, $\exists z \in \mathbb{R}^{m}$, sit, $x=Q^{+} z$. [then $y=Q Q^{+} z$, Since $\operatorname{rank}\left(Q^{+}\right)=\operatorname{rank}(Q)=n$.

$$
\Rightarrow \quad \operatorname{col}(\theta)=\mathbb{R}^{n}
$$

\Rightarrow there cloys exists z sit. $x=Q^{+} z$.
G. 2.

$$
S_{1}=\operatorname{col}(A) .
$$

donor require orthonormal.
$A=\left\{\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right\} \in \mathbb{R}^{m \cdot n}, a_{1} a_{2} \ldots a_{n}$ ane linear indef
$V \in \mathbb{R}^{m}$. denote the projection of V outs $\operatorname{col}(A)$ as y.

$$
\Leftrightarrow \exists x \in \mathbb{R}^{4} \text {, sit. }
$$

$$
y=A x
$$

the 6.3.)
By the property of the orthogonal projection.

$y-V$ is orthogonal to $\operatorname{col}(A)$.

$$
\begin{array}{cl}
\left.\angle a_{1}, y-v\right\rangle=0 & a_{1}^{+}(y-v)=0 \\
\ldots & \vdots \\
\left\langle a_{n}, y-v\right\rangle=0 & a_{n}^{+}(y-v)=0
\end{array}
$$

$$
\begin{aligned}
& A^{+}(y-v)=0 \\
& \left(L\left(\begin{array}{c}
a_{1}^{+} \\
\cdots \\
a_{n}^{+}
\end{array}\right)\right.
\end{aligned}
$$

Because $y=A X$

$$
\Rightarrow \quad A^{+}(A x-V)=0
$$

You neal to $A^{\dagger} A X=A$ is
show $A^{+} A$ is
invertible. $X=\left(A^{+} A\right)^{-1} A^{+} V$

$$
\begin{aligned}
y=A \dot{x} & =\underbrace{A\left(A^{t} A\right)^{-1} A^{+}}_{P \text { (orthogonal projector) }} V \\
& =P V
\end{aligned}
$$

Theorem 6.4 (The best approximation theorem). Let W be a subspace of \mathbb{R}^{m}, let y in \mathbb{R}^{m} and \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y in the sense that:

$$
\|y-\hat{y}\|<\|y-v\|,
$$

for any $v \in W$ and $v \neq \hat{y}$.

Proof. Let $v \in W$ and $v \neq \hat{y}$. It follows that,

$$
\begin{equation*}
y-v=y-\hat{y}+\hat{y}-v \tag{17}
\end{equation*}
$$

We have $y-\hat{y}$ is orthogonal to W, by the Pythagorean theorem,

$$
\|y-v\|^{2}=\|y-\hat{y}\|^{2}+\|\hat{y}-v\|^{2}
$$

6.3 Gram Schmidt process

The Gram-Schmidt process is a simple algorithm for producing an orthogonal or an orthonormal basis for any nonzero subspace of \mathbb{R}^{n}. Given a basis x_{1}, \ldots, x_{p} for a nonzero subspace W, define

$$
\begin{aligned}
& v_{1}=x_{1} \\
& v_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} \\
& v_{3}=x_{3}-\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} \\
& \cdots \\
& v_{p}=x_{p}--\frac{x_{p} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{p} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}-\frac{x_{p} \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1} .
\end{aligned}
$$

Then v_{1}, \ldots, v_{p} is orthognal basis for W, i.e., $\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$.
if of 6.4 .
Let $v \in w, v \neq \hat{y}$
Need to prove $\underbrace{\|v-y\|}_{\text {distance between }}$ is always bigger $\|v-\hat{y}\|$ y\&V.

Take $\left\|\|_{1}^{2}\right.$

$$
\begin{aligned}
\|y-v\|^{2} & =\| \hat{y}_{(y-\hat{y})}^{\left(\hat{y}-v \|^{2}\right.} \text { Python goren theoven } \\
& =\| \underbrace{y-\hat{y} \|^{2}}_{\text {target }}+\underbrace{\|\hat{y}-v\|^{2}}_{\geqslant 0}
\end{aligned}
$$

$$
\Rightarrow \quad\|y-v\|^{2}>\quad\|y-\hat{y}\|^{2}
$$

