
1. W? is a subspace.

2. (W?)? = W .

3. Let W be a subspace of Rn with dimension d, W? has dimension n�d. Moreover, W and
W? separate Rn.

Proof. Let A 2 Rn⇥d such that col(A) = W . By the Complement theorem, col(A)? = null(At).
It follows from the Rank theorem that,

dim(null(At)) + dim(col(At)) = n. (8)

Since dim(col(At)) = dim(row(A)) = d, this implies that dim(null(At)) = dim(col(A)?) =
n� d. W \W? = 0, this implies that W and W? separate Rn.

6 Orthogonal projection

Definition 6.1. An orthogonal basis for a subspace W of Rn is a basis for W that is also an
orthogonal set.

Theorem 6.2. Let {u1, · · · , up} be an orthogonal basis for a subspace W of Rm. For each y in
W , the weights in the linear combination

y = c1u1 + · · ·+ cpup (9)

are given by

cj =
y · uj
uj · uj

, (10)

for all j = 1, ..., p. Moreover, if {u1, · · · , up} is orthonormal, cj = y · uj for all j.

Proof. Inner product ui on both side of the equation, this gives,

hy, uii = cihui, uii, 8i = 1, ..., p. (11)

It follows that ci =
hy,uii
hui,uii . When the set is orthonormal, hui, uii = 1.

Theorem 6.3. Let W be a subspace of Rn. Then for each y 2 Rn, y can be uniquely written
as:

y = ŷ + z,

where ŷ 2 W and z 2 W?. Moreover, let {u1, · · · , up} be an orthogonal basis for a subspace W
of Rn, then ŷ = c1u1 + · · ·+ cpup, ci are defined in theorem 6.2.

Proof. Let us first show that z is orthogonal to ŷ. For any ui,

ui · z = y · ui �
pX

i=1

cjuj · ui = 0,

where we use the theorem 6.2 in the last step. Next, let us consider the uniqueness. Suppose
y = ŷ1 + z1, where ŷ1 2 W and z1 2 W?. We have ŷ � ŷ1 = z � z1, but ŷ � ŷ1 2 W and
z � z1 2 W? due to the closedness of subspace. This shows that ŷ � ŷ1 = z � z1 = 0.
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Remark 5. By the previous theorem, given any y and W ( a subspace with an orthonormal
basis), there exist unique ŷ 2 W , and v 2 W?, where W \W? = 0. Based on the theorem, we
will show that there exists a projector P such that range(P ) = W and range(I � P ) = W?.
Because W and W? are orthogonal to each other, we call P an orthogonal projector. ŷ is
denoted by projW y and is called the orthogonal projection of y onto W . Let us now find the
projector P .

6.1 Orthogonal projector

An orthogonal projector projects onto S1 along S2, where S1 and S2 are orthogonal. Let Q =
[q1, ..., qn] 2 Rm⇥n and qi are orthonormal, and S1 = col(Q). In this section, we will construct
an orthogonal projection onto the column space of Q. Let v 2 Rm, by Theorem 6.3, we have

v = r +
nX

i=1

(qiq
t
i)v, (12)

and r is orthgonal with
Pn

i=1(qiq
t
i)v. Thus, the linear transform from v to

Pn
i=1(qiq

t
i)v = QQtv

is an orthogonal projection onto range(Q). We claim that QQt is an orthogonal projector onto
the column space of Q.

Proof. First, we need to verify that QQT satisfies the definition of the projection. We then need
to verify col(QQT ) = col(Q). Let y = Qx for any x 2 Rn. Need to find a y 2 Rm such that
x = QT y. Since rank(Qt) = n by Theorem 6.7 in the last note, this implies that Rn = col(Qt).
That is, there always exists y 2 Rm such that x = Qty.

Remark 6. dim(QQT ) = n, the projector has rank n. We claim that the complement projector
has rank m� n.

An important special case is the rank-one projector that isolates the component in a single
direction q. Specifically, Q = [q], the projector onto the column space of Q is:

Pq = qqt, (13)

where rank(Pq) = 1 and SVD theorem explains this directly. The complements are the rank
m� 1 orthogonal projectors:

P?q = I � qqt. (14)

6.2 Projection with an arbitrary basis

We have discussed the projector construction if a set of orthonormal basis is given. Let us now
consider the general case. Specifically, let A 2 Rm⇥n, S1 = col(a1, ..., an) and rank(A) = n.
Given v, denote its projection onto range(A) as y. Moreover, let x 2 Rn such that y = Ax. Due
to the orthogonal assumption (orthogonal projection is our target), we have y � v orthogonal
to col(A), or it is orthogonal to all columns of A. That is, ati(y � v) = 0 for all i. Equivalently
ati(Ax� v) = 0. Recall matrix multiplication (row-column rule); we have

At(Ax� v) = 0, (15)

or AtAx = Atv. Since AtA is invertible, x = (AtA)�1Atv. The projection then follows:

y = A(AtA)�1Atv, (16)

or A(AtA)�1Atv is the projector onto col(A).
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Theorem 6.4 (The best approximation theorem). Let W be a subspace of Rm, let y in Rm and
ŷ be the orthogonal projection of y onto W . Then ŷ is the closest point in W to y in the sense
that:

ky � ŷk < ky � vk,

for any v 2 W and v 6= ŷ.

Proof. Let v 2 W and v 6= ŷ. It follows that,

y � v = y � ŷ + ŷ � v (17)

We have y � ŷ is orthogonal to W , by the Pythagorean theorem,

ky � vk2 = ky � ŷk2 + kŷ � vk2.

6.3 Gram Schmidt process

The Gram–Schmidt process is a simple algorithm for producing an orthogonal or an orthonormal
basis for any nonzero subspace of Rn. Given a basis x1, ..., xp for a nonzero subspace W , define

v1 = x1

v2 = x2 �
x2 · v1
v1 · v1

v1

v3 = x3 �
x3 · v1
v1 · v1

v1 �
x3 · v2
v2 · v2

v2

· · ·

vp = xp ��xp · v1
v1 · v1

v1 �
xp · v2
v2 · v2

v2 �
xp · vp�1

vp�1 · vp�1
vp�1.

Then v1, ..., vp is orthognal basis for W , i.e., span{x1, x2, ..., xp} = span{v1, v2, ..., vp}.
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