1. W is a subspace.
2. (WHt =w.

3. Let W be a subspace of R” with dimension d, W+ has dimension n —d. Moreover, W and
W+ separate R”.

Proof. Let A € R™*4 such that col(A) = W. By the Complement theorem, col(A)* = null(A?).
It follows from the Rank theorem that,
dim(null(A")) + dim(col(A")) = n. (8)

Since dim(col(A?)) = dim(row(A)) = d, this implies that dim(null(A')) = dim(col(A)*) =
n—d. WNW+ =0, this implies that W and W+ separate R™. ]

6 Orthogonal projection
Definition 6.1. An orthogonal basis for a subspace W of R” is a basis for W that is also an
orthogonal set.

Theorem 6.2. Let {ug,--- ,u,} be an orthogonal basis for a subspace W of R™. For each y in
W, the weights in the linear combination

Yy =crur + -+ cpup (9)
are given by
Y- uj
_ , 10
Cj uj - (10)
for all j =1,...,p. Moreover, if {uy,--- ,up} is orthonormal, ¢; = y - u; for all j.

Proof. Inner product u; on both side of the equation, this gives,
(y,u;) = ciui, ui), Vi =1, ..., p. (11)

It follows that ¢; = <<yi"l> When the set is orthonormal, (u;, u;) = 1. O

U Uy )

Theorem 6.3. Let W be a subspace of R". Then for each y € R", y can be uniquely written
as:

y=y-+z
where § € W and z € W+. Moreover, let {u1,--- ,up} be an orthogonal basis for a subspace W
of R", then § = ciu1 + - - - + cpuyp, ¢; are defined in theorem- Turigk vt 1o dhg ,La Ly
Proof. Let us first show that z is orthogonal to ¢. For any u;, 2= g lﬂ
ui-zzy-ui—chuj-ui:O, LE]N ;?-:\CSM\] (*)
§= wlew C\'\ = ¢4 A2

where we use the theorem in the last step. Next, let us consider the uniqueness. Suppose
y = 91 + 21, where §; € W and 2z, € W+. We have § — i1 = 2z — 21, butg)—g)l € W and
2z — 21 € W due to the closedness of subspace. This shows that § — 1 = 2z — 2, =

Tuwer @voduc‘t (;k) il VL\

<y Wi> = (W 7~ Ui, w7

4 \®
9 1

L



Remark 5. By the previous theorem, given any y and W ( a subspace with an orthonormal
basis), there exist unique § € W, and v € W+, where W N W+ = 0. Based on the theorem, we
will show that there exists a projector P such that range(P) = W and range(I — P) = W+.
Because W and W+ are orthogonal to each other, we call P an orthogonal projector. ¢ is
denoted by projyyy and is called the orthogonal projection of y onto W. Let us now find the
projector P.

6.1 Orthogonal projector \PM“‘A’LC&)

An orthogonal projector projects onto Sy along S3, wher /él and Sy are orthogonal. Let @ =
[q1, -y qn] € R™*™ and ¢; are orthonormal, and S; = col(Q). In this section, we will construct

an orthogonal projection onto the column space of Q). Let v € R™, by Theorem we have N

" +
n - 1 = P\/ =
N SRV o, YV =
v:r—l—Z(qi\qf)v, ;77:\ Gi b i 6)\\/\r—’P(12 é
-1 Y, g1 > ol-ro v
and r is orthgonal with Y7, (¢i¢})v. Thus, the linear transform from v to >« (¢:ig})v = QQ'v

is an orthogonal projection onto range(Q). We claim that QQ? is an orthogonal projector onto

the column space of Q). )

-
—

Proof. First, we need to verify that QQ7 satisfies the definition of the projection. We then need

to verify col(QQT) = col(Q). Let y = Qz for any € R”. Need to find a y € R™ such that

r = QTy. Since rank(Q') = n by Theorem 6.7 in the last note, this implies that R™ = col(Q?).

That is, there always exists y € R™ such that = = Q'y. O

Remark 6. dim(QQT) = n, the projector has rank n. We claim that the complement projector JM(CO]C P)—)
has rank m — n. £ A\M( f,:\(il:t)j = M- , CU\C 1,.\3) = el CP) ¥
&&-l: by e th -klMUV‘E"") d‘m ((b\ [1—\’]) = m~n
An important special case is the rank-one projector that isolates the component in a single
direction ¢. Specifically, @ = [g], the projector onto the column space of @ is:

P, =qq', (13)

where rank(FP,;) = 1 and SVD theorem explains this directly. The complements are the rank
m — 1 orthogonal projectors:

Pgrl—qd" (14)

6.2 Projection with an arbitrary basis

We have discussed the projector construction if a set of orthonormal basis is given. Let us now
consider the general case. Specifically, let A € R™*" S; = col(ay,...,a,) and rank(A4) = n.
Given v, denote its projection onto range(A) as y. Moreover, let = € R" such that y = Az. Due
to the orthogonal assumption (orthogonal projection is our target), we have y — v orthogonal
to col(A), or it is orthogonal to all columns of A. That is, al(y — v) = 0 for all i. Equivalently
at(Az — v) = 0. Recall matrix multiplication (row-column rule); we have

Al(Ax —v) =0, (15)
or A!Ax = Alv. Since A'A is invertible, x = (A'A)~! A’v. The projection then follows:
y = A(A'A) "L Aly, (16)

or A(A'A)~! Ay is the projector onto col(A).
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Theorem 6.4 (The best approximation theorem). Let W be a subspace of R™, let y in R™ and
7 be the orthogonal projection of y onto W. Then g is the closest point in W to y in the sense
that: v

fle

ly =gl < lly —ol,
for any v € W and v # §.
Proof. Let v € W and v # g. It follows that,
Yy—v=y—y+y—v (17)
We have y — ¢ is orthogonal to W, by the Pythagorean theorem,

ly = ol = lly = gl + 1§ — v]I*.

6.3 Gram Schmidt process

The Gram—Schmidt process is a simple algorithm for producing an orthogonal or an orthonormal
basis for any nonzero subspace of R". Given a basis z1, ..., z, for a nonzero subspace W, define

U1 = T1
T2 - U1
V2 = T2 — o0 U1
1°V1
T3 -1 T3 - U2
U3 = I3 — - 2
U101 V2 - V2
Iy V1 Ty V2 Ty * Up_1
Up = Tp — — P V1 — P Vo — P P Up—1-
V1 - U1 V9o - V2 Up—1 *Up—1

Then vy, ..., vy is orthognal basis for W, i.e., span{zy, x2,...,x,} = span{vi,ve, ..., vp}.
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