- 1. W^{\perp} is a subspace.
- 2. $(W^{\perp})^{\perp} = W$.
- 3. Let W be a subspace of \mathbb{R}^n with dimension d, W^{\perp} has dimension n-d. Moreover, W and W^{\perp} separate \mathbb{R}^n .

Proof. Let $A \in \mathbb{R}^{n \times d}$ such that col(A) = W. By the Complement theorem, $col(A)^{\perp} = null(A^t)$. It follows from the Rank theorem that,

$$dim(null(A^t)) + dim(col(A^t)) = n.$$
(8)

Since $dim(col(A^t)) = dim(row(A)) = d$, this implies that $dim(null(A^t)) = dim(col(A)^{\perp}) = n - d$. $W \cap W^{\perp} = 0$, this implies that W and W^{\perp} separate \mathbb{R}^n .

6 Orthogonal projection

Definition 6.1. An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Theorem 6.2. Let $\{u_1, \dots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^m . For each y in W, the weights in the linear combination

$$y = c_1 u_1 + \dots + c_p u_p \tag{9}$$

are given by

$$c_j = \frac{y \cdot u_j}{u_j \cdot u_j},\tag{10}$$

for all j = 1, ..., p. Moreover, if $\{u_1, \cdots, u_p\}$ is orthonormal, $c_j = y \cdot u_j$ for all j.

Proof. Inner product u_i on both side of the equation, this gives,

$$\langle y, u_i \rangle = c_i \langle u_i, u_i \rangle, \forall i = 1, ..., p.$$
(11)

It follows that $c_i = \frac{\langle y, u_i \rangle}{\langle u_i, u_i \rangle}$. When the set is orthonormal, $\langle u_i, u_i \rangle = 1$.

Theorem 6.3. Let W be a subspace of \mathbb{R}^n . Then for each $y \in \mathbb{R}^n$, y can be uniquely written as:

$$y = \hat{y} + z,$$

where $\hat{y} \in W$ and $z \in W^{\perp}$. Moreover, let $\{u_1, \cdots, u_p\}$ be an orthogonal basis for a subspace Wof \mathbb{R}^n , then $\hat{y} = c_1 u_1 + \cdots + c_p u_p$, c_i are defined in theorem 6.2 *Proof.* Let us first show that z is orthogonal to \hat{y} . For any u_i , $u_i \cdot z = y \cdot u_i - \sum_{j=1}^p c_j u_j \cdot u_i = 0$, $u_i \cdot z = y \cdot u_i - \sum_{j=1}^p c_j u_j \cdot u_i = 0$, $y = \hat{y}_1 + z_1$, where $\hat{y}_1 \in W$ and $z_1 \in W^{\perp}$. We have $\hat{y} - \hat{y}_1 = z - z_1$, but $\hat{y} - \hat{y}_1 \in W$ and $z - z_1 \in W^{\perp}$ due to the closedness of subspace. This shows that $\hat{y} - \hat{y}_1 = z - z_1 = 0$. 1 were product (x) with all u_i z = 0. **Remark 5.** By the previous theorem, given any y and W (a subspace with an orthonormal basis), there exist unique $\hat{y} \in W$, and $v \in W^{\perp}$, where $W \cap W^{\perp} = 0$. Based on the theorem, we will show that there exists a projector P such that range(P) = W and $range(I - P) = W^{\perp}$. Because W and W^{\perp} are orthogonal to each other, we call P an orthogonal projector. \hat{y} is denoted by $\operatorname{proj}_W y$ and is called the orthogonal projection of y onto W. Let us now find the projector P.

6.1 Orthogonal projector

An orthogonal projector projects onto S_1 along S_2 , where S_1 and S_2 are orthogonal. Let $Q = [q_1, ..., q_n] \in \mathbb{R}^{m \times n}$ and q_i are orthonormal, and $S_1 = col(Q)$. In this section, we will construct an orthogonal projection onto the column space of Q. Let $v \in \mathbb{R}^m$, by Theorem 6.3 we have

$$v = r + \sum_{i=1}^{n} (q_i q_i^t) v,$$

$$v = r + \sum$$

vanze (CR)

and r is orthogonal with $\sum_{i=1}^{n} (q_i q_i^t) v$. Thus, the linear transform from v to $\sum_{i=1}^{n} (q_i q_i^t) v = QQ^t v$ is an orthogonal projection onto range(Q). We claim that QQ^t is an orthogonal projector onto the column space of Q.

 $p^2 = p$ *Proof.* First, we need to verify that QQ^T satisfies the definition of the projection. We then need to verify $col(QQ^T) = col(Q)$. Let y = Qx for any $x \in \mathbb{R}^n$. Need to find a $y \in \mathbb{R}^m$ such that $x = Q^T y$. Since $rank(Q^t) = n$ by Theorem 6.7 in the last note, this implies that $\mathbb{R}^n = col(Q^t)$. That is, there always exists $y \in \mathbb{R}^m$ such that $x = Q^t y$.

Remark 6. $dim(QQ^T) = n$, the projector has rank n. We claim that the complement projector has rank m - n. $(\bigcirc (\bigcirc (\square - \square)) = M - M)$, $(\bigcirc (\square - \square)) = M - M)$ An important special case is the rank-one projector that isolates the component in a single direction q. Specifically, Q = [q], the projector onto the column space of Q is:

$$P_q = qq^t, (13)$$

where $rank(P_q) = 1$ and SVD theorem explains this directly. The complements are the rank m - 1 orthogonal projectors:

$$P_{\perp q} = I - qq^t. \tag{14}$$

6.2 Projection with an arbitrary basis

We have discussed the projector construction if a set of orthonormal basis is given. Let us now consider the general case. Specifically, let $A \in \mathbb{R}^{m \times n}$, $S_1 = col(a_1, ..., a_n)$ and rank(A) = n. Given v, denote its projection onto range(A) as y. Moreover, let $x \in \mathbb{R}^n$ such that y = Ax. Due to the orthogonal assumption (orthogonal projection is our target), we have y - v orthogonal to col(A), or it is orthogonal to all columns of A. That is, $a_i^t(y - v) = 0$ for all i. Equivalently $a_i^t(Ax - v) = 0$. Recall matrix multiplication (row-column rule); we have

$$A^t(Ax - v) = 0, (15)$$

or $A^tAx = A^tv$. Since A^tA is invertible, $x = (A^tA)^{-1}A^tv$. The projection then follows:

$$y = A(A^t A)^{-1} A^t v, (16)$$

or $A(A^tA)^{-1}A^tv$ is the projector onto col(A).

Remark 3.

Question:
$$S_1 \otimes S_2$$
, $|k^n = S_1 + S_2$, $S_1 \cap S_2 = O$
Can we find a projector P, Srl. range (P) = S_1
range (I-P) = S_2

Def: orthogonal projection; given a projector P,
P is called an orthogonal projection, if
hange (P)
$$\perp$$
 range (I - P)
very ($(Q(Q^{+}) = range (P))$
If is easy to see col($(Q(Q^{+}) \leq col(Q))$
It is easy to see col($(Q(Q^{+}) \leq col(Q))$
let $y = Qx$ $\times \in IR^{N}$ (carbitang vector in col((Q))
Next to that, $\exists \geq \in IR^{N}$, set, $x = Q^{+} \geq .$ [then $y = QQ^{+} \geq .$
Give rank ($(Q^{+}) = rank(Q) = h$.
 $=$) col($(Q) = IR^{N}$.
 $=$) there alwage exists \geq set, $x = Q^{+} \geq .$

G.2.

$$S_{1} = col(A).$$

$$A = \{ \alpha_{1} \alpha_{2} \dots \alpha_{v} \} \in \mathbb{R}^{m \cdot n}, \quad \alpha_{1} \alpha_{2} \dots \alpha_{n} | \frac{d a not + e give outhonormal.}{d u e lindur indep}$$

$$V \in \mathbb{R}^{n}, \quad d a note the projection of U outlo col(A) as y.$$

$$C = 3 \times C (\mathbb{R}^{n}, sit).$$

$$Y = A \times$$

$$F = A \times$$

$$Y = V = rs \quad outhogonal \quad projection.$$

$$Y = y + z$$

$$Y = V = rs \quad outhogonal \quad to \quad col(A).$$

$$Y = z$$

$$Y = V = rs \quad outhogonal \quad to \quad col(A).$$

$$Y = z$$

$$Y = V = rs \quad outhogonal \quad to \quad col(A).$$

$$Y = z$$

$$Z = z$$

$$Y = V = rs \quad outhogonal \quad to \quad col(A).$$

$$Y = z$$

$$Z = z$$

$$A^{\dagger} (g - v) = 0$$

$$\begin{pmatrix} c \\ a_{1}^{\dagger} \\ \vdots \\ a_{n}^{\dagger} \end{pmatrix}$$

Because y= AX

Ð

$$y = A \times = A \times A^{\dagger} \times A^{\dagger}$$

= pv

Theorem 6.4 (The best approximation theorem). Let W be a subspace of \mathbb{R}^m , let y in \mathbb{R}^m and \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y in the sense that:

$$||y - \hat{y}|| < ||y - v||$$

for any $v \in W$ and $v \neq \hat{y}$.

Proof. Let $v \in W$ and $v \neq \hat{y}$. It follows that,

$$y - v = y - \hat{y} + \hat{y} - v \tag{17}$$

We have $y - \hat{y}$ is orthogonal to W, by the Pythagorean theorem,

$$|y - v||^{2} = ||y - \hat{y}||^{2} + ||\hat{y} - v||^{2}.$$

6.3 Gram Schmidt process

The Gram–Schmidt process is a simple algorithm for producing an orthogonal or an orthonormal basis for any nonzero subspace of \mathbb{R}^n . Given a basis $x_1, ..., x_p$ for a nonzero subspace W, define

$$v_{1} = x_{1}$$

$$v_{2} = x_{2} - \frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$$

$$v_{3} = x_{3} - \frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$$
...
$$v_{p} = x_{p} - -\frac{x_{p} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{x_{p} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} - \frac{x_{p} \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}.$$

Then $v_1, ..., v_p$ is orthogonal basis for W, i.e., $span\{x_1, x_2, ..., x_p\} = span\{v_1, v_2, ..., v_p\}$.

17 of 6.4. Let U E W, V # ý Need to prove IIV-YII is always bigger IIV-ýII Jistane Letween y & V.