
Definition 3.4. A set {u1, · · · , up} in Rm is an orthonormal set if it is an orthogonal set of unit
vectors. If W is the subspace spanned by such a set, then {u1, · · · , up} in Rm is an orthonormal
basis for W , since the set is automatically linearly independent.

4 Orthogonal matrix

Theorem 4.1. An m⇥ n matrix U has orthonormal columns if and only if UTU = I.

Remark 3. However, UU t may not be an identity matrix!

Definition 4.2. An n⇥n matrix U is orthogonal if its columns are orthonormal. An equivalent
definition: if U tU = UU t = I, i.e., U�1 = U t, then U is called an orthogonal matrix.

Remark 4. The eigenvalues of an orthogonal matrix A. Suppose Ax = �x, and let us consider
the length of �x, i.e.,

��̄x⇤x = |�|2x⇤x = x⇤A⇤Ax = x⇤x.

This implies that � = ei�, or, � has module 1 and lies on the unit circle.

Theorem 4.3. Let U be an m ⇥ n matrix with orthonormal columns, and let x and y be in
Rn. Then

1. ||Ux|| = ||x||

2. (Ux) · (Uy) = x · y

3. (Ux) · (Uy) = 0 if and only if x · y = 0.

5 Orthogonal complement

Definition 5.1. If a vector z is orthogonal to every vector in a subspace W of Rn, then z is
said to be orthogonal to W . The set of all orthogonal vectors to W is called the orthogonal
complement of W and is denoted by W?.

Theorem 5.2 (Complement Theorem). Let A be an m⇥n matrix. The orthogonal complement
of the row space of A is the null space of A, and the orthogonal complement of the column space
of A is the null space of AT :

(RowA)? = NullA and (ColA)? = NullAT . (6)

Proof. Let A = [a1, ..., am], where ai 2 R1⇥n is ith row of A. If x 2 null(A),

Ax = [a1x, a2x, ..., amx]t = 0. (7)

This implies that x is orthogonal to each row of A, hence x is perpendicular with Row(A), or
Null(A) ⇢ Row(A)?. Similarly, let x 2 Row(A)?, we have aix = 0, where ai is the i�th row of
A, this implies that Ax = 0 or x 2 Null(A), we then have Row(A)? ⇢ Null(A).

The other result can be proved similarly.

Theorem 5.3. Some useful properties of complement space. Suppose W is a subspace of Rn
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1. W? is a subspace.

2. (W?)? = W .

3. Let W be a subspace of Rn with dimension d, W? has dimension n�d. Moreover, W and
W? separate Rn.

Proof. Let A 2 Rn⇥d such that col(A) = W . By the Complement theorem, col(A)? = null(At).
It follows from the Rank theorem that,

dim(null(At)) + dim(col(At)) = n. (8)

Since dim(col(At)) = dim(row(A)) = d, this implies that dim(null(At)) = dim(col(A)?) =
n� d. W \W? = 0, this implies that W and W? separate Rn.

6 Orthogonal projection

Definition 6.1. An orthogonal basis for a subspace W of Rn is a basis for W that is also an
orthogonal set.

Theorem 6.2. Let {u1, · · · , up} be an orthogonal basis for a subspace W of Rm. For each y in
W , the weights in the linear combination

y = c1u1 + · · ·+ cpup (9)

are given by

cj =
y · uj
uj · uj

, (10)

for all j = 1, ..., p. Moreover, if {u1, · · · , up} is orthonormal, cj = y · uj for all j.

Proof. Inner product ui on both side of the equation, this gives,

hy, uii = cihui, uii, 8i = 1, ..., p. (11)

It follows that ci =
hy,uii
hui,uii . When the set is orthonormal, hui, uii = 1.

Theorem 6.3. Let W be a subspace of Rn. Then for each y 2 Rn, y can be uniquely written
as:

y = ŷ + z,

where ŷ 2 W and z 2 W?. Moreover, let {u1, · · · , up} be an orthogonal basis for a subspace W
of Rn, then ŷ = c1u1 + · · ·+ cpup, ci are defined in theorem 6.2.

Proof. Let us first show that z is orthogonal to ŷ. For any ui,

ui · z = y · ui �
pX

i=1

cjuj · ui = 0,

where we use the theorem 6.2 in the last step. Next, let us consider the uniqueness. Suppose
y = ŷ1 + z1, where ŷ1 2 W and z1 2 W?. We have ŷ � ŷ1 = z � z1, but ŷ � ŷ1 2 W and
z � z1 2 W? due to the closedness of subspace. This shows that ŷ � ŷ1 = z � z1 = 0.
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