Definition 3.4. A set $\{u_1, \dots, u_p\}$ in \mathbb{R}^m is an orthonormal set if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\{u_1, \dots, u_p\}$ in \mathbb{R}^m is an orthonormal basis for W, since the set is automatically linearly independent.

U= [u1-.. Un] i=J <u: uj > = {o i+j Orthogonal matrix 4

Theorem 4.1. An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$.

In general UUt & I, where U has orthonormal **Remark 3.** However, UU^t may not be an identity matrix!

Definition 4.2. An $n \times n$ matrix U is orthogonal if its columns are orthonormal. An equivalent definition: if $U^t U = UU^t = I$, i.e., $U^{-1} = U^{t}$, then U is called an orthogonal matrix.

Remark 4. The eigenvalues of an orthogonal matrix A. Suppose $Ax = \lambda x$, and let us consider $\bigcup \supset \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$ the length of λx , i.e.,

$$\lambda \bar{\lambda} x^* x = |\lambda|^2 x^* x = x^* A^* A x = x^* x.$$

This implies that $\lambda = e^{i\phi}$, or, λ has module 1 and lies on the unit circle.

Theorem 4.3. Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in preserve the norm, innerproduct, orthogonality. $\mathbb{R}^n.$ Then

- 1. $||U\mathbf{x}|| = ||\mathbf{x}||$
- $P_{5}^{t}: (U_{4})^{t}U_{x} = y^{t}U_{y}^{t}U_{x} = y^{t}x^{t} = (y^{t}x^{t})^{t}$ 2. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
- 3. $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$.

Orthogonal complement $\bigcup_{w \in \mathcal{W}} = \{w, \langle w, v \rangle, v \rangle, v \in W\}$ $\mathbf{5}$

Definition 5.1. If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be orthogonal to W. The set of all orthogonal vectors to W is called the orthogonal complement of W and is denoted by W^{\perp} .

Theorem 5.2 (Complement Theorem). Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^T :

$$(\operatorname{Row} A)^{\perp} = \operatorname{Null} A \text{ and } (\operatorname{Col} A)^{\perp} = \operatorname{Null} A^T.$$
 (6)

Proof. Let $A = [a_1, ..., a_m]$, where $a_i \in \mathbb{R}^{1 \times n}$ is *i*th row of A. If $x \in null(A)$,

$$Ax = [a_1x, a_2x, ..., a_mx]^t = 0.$$
(7)

This implies that x is orthogonal to each row of A, hence x is perpendicular with Row(A), or $Null(A) \subset Row(A)^{\perp}$. Similarly, let $x \in Row(A)^{\perp}$, we have $a_i x = 0$, where a_i is the *i*-th row of A, this implies that Ax = 0 or $x \in Null(A)$, we then have $Row(A)^{\perp} \subset Null(A)$.

The other result can be proved similarly.

Theorem 5.3. Some useful properties of complement space. Suppose W is a subspace of \mathbb{R}^n

(i)
$$U \in W^{\perp}$$
, $O : V > = 0$, for $U V \in W$.
(ii) $U \in W^{\perp}$, $O : V > = 0$, for $U V \in W$.
 $V \in W^{\perp}$, $O : V > = 0$, $V = 0$, $V = 0$.
 $U = 0$, $V = 0$, $V = 0$, $V = 0$.
 $U = 0$, $V = 0$, $V = 0$.
 $U = 0$.

Thm 5.2.
Row
$$(A)^{\perp} = \operatorname{null}(A)$$
.

$$A = \begin{bmatrix} a_{1} \\ \vdots \\ a_{m} \end{bmatrix} \in \mathbb{R}^{m \times n}, \quad a_{1} \in \mathbb{R}^{1/n}$$

$$d + x \in \operatorname{null}(A).$$

$$A \times = 0$$

$$\begin{bmatrix} a_{1} \\ \vdots \\ a_{m} \end{bmatrix} x = 0$$

$$\begin{bmatrix} a_{1} \\ \vdots \\ a_{m} \end{bmatrix} x = 0$$

$$f_{0} = 0 \quad (=) \quad (a_{1}, x) = 0, \text{ for ell } 1.$$

$$f_{0} = x \text{ (is orthogonal to all box of } A.$$

$$(=) \quad x \text{ is orthogonal with prov}(A).$$

 $X \in ruw(A)^{\perp}$ (2) mill (A) $\subseteq ruu(A)^{\perp}$

- 1. W^{\perp} is a subspace.
- 2. $(W^{\perp})^{\perp} = W$.
- 3. Let W be a subspace of \mathbb{R}^n with dimension d, W^{\perp} has dimension n-d. Moreover, W and W^{\perp} separate \mathbb{R}^n .

Proof. Let $A \in \mathbb{R}^{n \times d}$ such that col(A) = W. By the Complement theorem, $col(A)^{\perp} = null(A^t)$. It follows from the Rank theorem that,

$$dim(null(A^t)) + dim(col(A^t)) = n.$$
(8)

Since $dim(col(A^t)) = dim(row(A)) = d$, this implies that $dim(null(A^t)) = dim(col(A)^{\perp}) =$ n-d. $W \cap W^{\perp} = 0$, this implies that W and W^{\perp} separate \mathbb{R}^n .

Orthogonal projection 6

Definition 6.1. An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Theorem 6.2. Let $\{u_1, \dots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^m . For each y in $U = [u_1 - u_p], c = \begin{pmatrix} c_1 \\ c_2 \\ c_p \end{pmatrix}$ Solve the linear system⁽⁹⁾ W, the weights in the linear combination

 $c_p u_p$

$$y = c_1 u_1 + \dots +$$

are given by

for all j = 1, ..., p. Moreover, if $\{u_1, \cdots, u_p\}$ is orthonormal, $c_j = y \cdot u_j$ for all j.

Proof. Inner product u_i on both side of the equation, this gives,

$$\langle y, u_i \rangle = c_i \langle u_i, u_i \rangle, \forall i = 1, ..., p.$$
(11)

It follows that $c_i = \frac{\langle y, u_i \rangle}{\langle u_i, u_i \rangle}$. When the set is orthonormal, $\langle u_i, u_i \rangle = 1$.

Theorem 6.3. Let W be a subspace of \mathbb{R}^n . Then for each $y \in \mathbb{R}^n$, y can be uniquely written as: ... h

$$y=\hat{y}+z,$$
 (W & W w' w! Il separate (R')

where $\hat{y} \in W$ and $z \in W^{\perp}$. Moreover, let $\{u_1, \dots, u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n , then $\hat{y} = c_1 u_1 + \dots + c_p u_p$, c_i are defined in theorem 6.2

Proof. Let us first show that z is orthogonal to \hat{y} . For any u_i ,

$$u_i \cdot z = y \cdot u_i - \sum_{i=1}^p c_j u_j \cdot u_i = 0,$$

where we use the theorem 6.2 in the last step. Next, let us consider the uniqueness. Suppose $y = \hat{y}_1 + z_1$, where $\hat{y}_1 \in W$ and $z_1 \in W^{\perp}$. We have $\hat{y} - \hat{y}_1 = z - z_1$, but $\hat{y} - \hat{y}_1 \in W$ and $z - z_1 \in W^{\perp}$ due to the closedness of subspace. This shows that $\hat{y} - \hat{y}_1 = z - z_1 = 0$.

$$= 4(m(m_{T}))$$

$$= u - q$$

Assume not,
$$\exists V \neq 0$$
, $\forall \in W \land V \in W^{\perp}$
 $\leq v_{1}, v_{2} = 0 \quad \langle = \rangle \lor V = 0$, $\langle \cdot \rangle$

=) W & W^L separate IR^N.

$$=) \quad Cj = \frac{2 \sqrt{3}}{2 \sqrt{3}}, \frac{3}{\sqrt{3}}$$

Assume not true,

$$\exists \hat{y}_{1} \pm \hat{y}_{1} \stackrel{e}{=} \stackrel{w}{=} \frac{1}{2}_{1} \pm \frac{1}{2}_{1} \stackrel{g}{=} \stackrel{w}{=} \frac{1}{2}_{1} + \frac{1}{2}_{1} = \frac{1}{2}$$

$$\exists \hat{y}_{1} \pm \hat{y}_{1} \stackrel{g}{=} \frac{1}{2}_{1} + \frac{1}{2}_{1} = \frac{1}{2}$$

$$\exists \hat{y}_{1} \stackrel{g}{=} \frac{1}{2}_{1} - \frac{1}{2} = 0$$

$$\exists \hat{y}_{2} \stackrel{g}{=} \frac{1}{2}_{1} - \frac{1}{2} = 0$$

$$\exists \hat{w} \stackrel{g}{=} \frac{1}{2} \stackrel{g}{=} \frac{1}{2} \stackrel{g}{=} 0$$

$$\exists \hat{w} \stackrel{g}{=} \frac{1}{2} \stackrel{g}{=} \frac{1}{2} \stackrel{g}{=} 0$$

$$\exists \hat{w} \stackrel{g}{=} \frac{1}{2} \stackrel{g}{=} \frac{1}{2} \stackrel{g}{=} 0$$

$$\exists \hat{w} \stackrel{g}{=} \frac{1}{2} \stackrel{g}{=} 0$$

$$\exists \hat{w} \stackrel{g}{=} \frac{1}{2} \stackrel{g}{=} \frac{1}{2} \stackrel{g}{=} 0$$