Definition 3.4. A set $\left\{u_{1}, \cdots, u_{p}\right\}$ in \mathbb{R}^{m} is an orthonormal set if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\left\{u_{1}, \cdots, u_{p}\right\}$ in \mathbb{R}^{m} is an orthonormal basis for W, since the set is automatically linearly independent.
4 Orthogonal matrix $\begin{aligned} U & =\left[u_{1}-\cdots u_{n}\right] \\ & \left\langle u_{i} u_{j}\right\rangle= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases} \end{aligned}$
Theorem 4.1. An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I$.
Remark 3. However, $U U^{t}$ may not be an identity matrix! In general $U U^{t} \neq 1$, whene has u orthonormal
Definition 4.2. An $n \times n$ matrix U is orthogonal if its columns are orthonormal. An equivalent columns. definition: if $U^{t} U=U U^{t}=I$, i.e., $U^{-1}=U^{t}$, then U is called an orthogonal matrix.
Remark 4. The eigenvalues of an orthogonal matrix A. Suppose $A x=\lambda x$, and let us consider $U=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$
the length of λx, i.e.,

$$
\lambda \bar{\lambda} x^{*} x=|\lambda|^{2} x^{*} x=x^{*} A^{*} A x=x^{*} x .
$$

This implies that $\lambda=e^{i \phi}$, or, λ has module 1 and lies on the unit circle.
Theorem 4.3. Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbb{R}^{n}. Then

1. $\|U \mathbf{x}\|=\|\mathbf{x}\| \quad$ pueserve the norm, innerproduct, orthogonality.

5 Orthogonal complement $w^{\perp}=\{w,\langle w, v\rangle, v \in w\}$

Definition 5.1. If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^{n}, then \mathbf{z} is said to be orthogonal to W. The set of all orthogonal vectors to W is called the orthogonal complement of W and is denoted by W^{\perp}.

Theorem 5.2 (Complement Theorem). Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^{T} :

$$
\begin{equation*}
(\operatorname{Row} A)^{\perp}=\operatorname{Null} A \text { and } \quad(\operatorname{Col} A)^{\perp}=\operatorname{Null} A^{T} . \tag{6}
\end{equation*}
$$

Proof. Let $A=\left[a_{1}, \ldots, a_{m}\right]$, where $a_{i} \in \mathbb{R}^{1 \times n}$ is i th row of A. If $x \in \operatorname{null}(A)$,

$$
\begin{equation*}
A x=\left[a_{1} x, a_{2} x, \ldots, a_{m} x\right]^{t}=0 . \tag{7}
\end{equation*}
$$

This implies that x is orthogonal to each row of A, hence x is perpendicular with $\operatorname{Row}(A)$, or $\operatorname{Null}(A) \subset \operatorname{Row}(A)^{\perp}$. Similarly, let $x \in \operatorname{Row}(A)^{\perp}$, we have $a_{i} x=0$, where a_{i} is the $i-$ th row of A, this implies that $A x=0$ or $x \in \operatorname{Null}(A)$, we then have $\operatorname{Row}(A)^{\perp} \subset \operatorname{Null}(A)$.
The other result can be proved similarly.

Theorem 5.3. Some useful properties of complement space. Suppose W is a subspace of \mathbb{R}^{n}
(i) $0 \in W^{-},\langle 0, v\rangle=0$, for $\forall v \in W$.
(ii)

$$
\begin{array}{ll}
u \in W^{\perp} \\
v \in W^{\perp}, & \langle u, y\rangle=0 \\
& \langle v, y\rangle=0, \forall y \in W . \\
& \langle u+v, y\rangle=0 \Rightarrow \quad u+v \text { is orthogonal to } \\
& \forall y \in W \Rightarrow u+v \in W^{\perp} .
\end{array}
$$

(iii) $u \in W^{\perp}, \quad c u \in W^{\perp}$.

Thu 5.2.

$$
\begin{gathered}
\operatorname{Row}(A)^{\perp}=\operatorname{nn\| }(A) \\
A=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right] \in \mathbb{R}^{\min }, a_{2} \in \mathbb{R}^{1 \cdot n} \\
\text { let } x \in \operatorname{nn\| }(A) \\
A x=0 \\
{\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right] x=0}
\end{gathered}
$$

Row t column rule

$$
\left[\begin{array}{c}
a_{1} x \\
a_{2} x \\
\vdots \\
a_{m} x
\end{array}\right]=0 \quad \Leftrightarrow \quad\left\langle a_{i}, x\right\rangle=0 \text {, for all } i .
$$ rows of A.

$\Leftrightarrow \quad x$ is orthogonal with $\operatorname{rov}(A)$.

$$
x \in \operatorname{row}(A)^{\perp} \quad \Leftrightarrow \quad \text { mill }(A) \subseteq \operatorname{rov}(A)^{\perp}
$$

1. W^{\perp} is a subspace.
2. $\left(W^{\perp}\right)^{\perp}=W$.
3. Let W be a subspace of R^{n} with dimension d, W^{\perp} has dimension $n-d$. Moreover, W and W^{\perp} separate \mathbb{R}^{n}.

Proof. Let $A \in \mathbb{R}^{n \times d}$ such that $\operatorname{col}(A)=W$. By the Complement theorem, $\operatorname{col}(A)^{\perp}=\operatorname{null}\left(A^{t}\right)$. It follows from the Rank theorem that,

$$
\begin{equation*}
\operatorname{dim}\left(n u l l\left(A^{t}\right)\right)+\operatorname{dim}\left(\operatorname{col}\left(A^{t}\right)\right)=n . \tag{8}
\end{equation*}
$$

Since $\operatorname{dim}\left(\operatorname{col}\left(A^{t}\right)\right)=\operatorname{dim}(\operatorname{row}(A))=d$, this implies that $\operatorname{dim}\left(\operatorname{null}\left(A^{t}\right)\right)=\operatorname{dim}\left(\operatorname{col}(A)^{\perp}\right)=$ $n-d$. $W \cap W^{\perp}=0$, this implies that W and W^{\perp} separate \mathbb{R}^{n}.

6 Orthogonal projection

Definition 6.1. An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthogonal set.

Theorem 6.2. Let $\left\{u_{1}, \cdots, u_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{m}. For each y in W, the weights in the linear combination

$$
U=\left[\begin{array}{lll}
u_{1} & \ldots & u_{p}
\end{array}\right], c=
$$

$$
y=c_{1} u_{1}+\cdots+c_{p} u_{p}
$$

$$
\text { solve the linaur system }(9)
$$

are given by

$$
\begin{equation*}
c_{j}=\frac{y \cdot u_{j}}{u_{j} \cdot u_{j}}, \tag{10}
\end{equation*}
$$

for all $j=1, \ldots, p$. Moreover, if $\left\{u_{1}, \cdots, u_{p}\right\}$ is orthonormal, $c_{j}=y \cdot u_{j}$ for all j.
Proof. Inner product u_{i} on both side of the equation, this gives,

$$
\begin{equation*}
\left\langle y, u_{i}\right\rangle=c_{i}\left\langle u_{i}, u_{i}\right\rangle, \forall i=1, \ldots, p \tag{11}
\end{equation*}
$$

It follows that $c_{i}=\frac{\left\langle y, u_{i}\right\rangle}{\left\langle u_{i}, u_{i}\right\rangle}$. When the set is orthonormal, $\left\langle u_{i}, u_{i}\right\rangle=1$.
Theorem 6.3. Let W be a subspace of \mathbb{R}^{n}. Then for each $y \in \mathbb{R}^{n}, y$ can be uniquely written as:

$$
y=\hat{y}+z, \quad\left(w \& w^{\perp} w^{\prime} \| l \text { separate } \mathbb{R}^{n}\right)
$$

where $\hat{y} \in W$ and $z \in W^{\perp}$. Moreover, let $\left\{u_{1}, \cdots, u_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}, then $\hat{y}=c_{1} u_{1}+\cdots+c_{p} u_{p}, c_{i}$ are defined in theorem 6.2.

Proof. Let us first show that z is orthogonal to \hat{y}. For any u_{i},

$$
u_{i} \cdot z=y \cdot u_{i}-\sum_{i=1}^{p} c_{j} u_{j} \cdot u_{i}=0
$$

where we use the theorem 6.2 in the last step. Next, let us consider the uniqueness. Suppose $y=\hat{y}_{1}+z_{1}$, where $\hat{y}_{1} \in W$ and $z_{1} \in W^{\perp}$. We have $\hat{y}-\hat{y}_{1}=z-z_{1}$, but $\hat{y}-\hat{y}_{1} \in W$ and $z-z_{1} \in W^{\perp}$ due to the closedness of subspace. This shows that $\hat{y}-\hat{y}_{1}=z-z_{1}=0$.
pf thu 5.3 (iii).

$$
A \in \mathbb{R}^{n \times d}, \operatorname{col}(A)=w, \operatorname{vank}(A)=d \text {. }
$$

By the Complement the,

$$
w^{\perp}=\operatorname{col}(A)^{\perp}=\operatorname{unll}\left(A^{t}\right)
$$

By the rank theorem

$$
\begin{aligned}
& \operatorname{tim}\left(\operatorname{unll}\left(A^{+}\right)\right)+\quad \sin \left(\operatorname{col}\left(A^{+}\right)\right)=n \\
& 11 \\
& \operatorname{fin}(\operatorname{now}(A)) \\
& 11 \\
& \operatorname{rank}(A)=d
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \quad \operatorname{sim}\left(n_{n} \|\left(A^{+}\right)\right)=n-d \\
\quad \| \\
\sin \left(W^{\perp}\right)
\end{gathered}
$$

Assume not. $\exists v \neq 0, y \in W$ \& $V \in W^{\perp}$

$$
\left\langle v_{1} v\right\rangle=0 \Leftrightarrow v=0 . \quad \text { 歹 }
$$

$\Rightarrow \quad \omega$ \& w^{\perp} separate \mathbb{R}^{n}.

Thm 6.2.

$$
\begin{aligned}
& \left\{\begin{array}{lll}
u_{1} & \ldots & u_{p}
\end{array}\right\} \text { orthogounl } \\
& y=\sum_{i=1}^{p} c_{i} u_{i} \\
& \left\langle y, u_{j}\right\rangle=\left\langle\sum_{i=1}^{p} c_{i} u_{i}, u_{j}\right\rangle, \quad j=1, \ldots, \mid \\
& \left(y, u_{j}\right) \stackrel{T \ln 2.2}{=} \sum_{i=1}^{p} c_{i}\left\langle u_{i}, u_{j}\right\rangle \\
& =\quad c_{j}\left\langle u_{j}, u_{j}\right\rangle \\
& \Rightarrow \quad c_{j}=\frac{\left\langle y_{1}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle}
\end{aligned}
$$

Thm 6.3.
$y=\hat{y}+z$ is unigne de composition.

Assume not true,

$$
\begin{aligned}
& \exists \hat{y}_{1} \neq \hat{y}_{1}^{\epsilon W} z_{1} \neq z_{1}^{\in W} \\
& \text { sit. } \hat{y}+\mathcal{W}^{\perp}=\hat{y}_{1}+z_{1}=y \\
& \Rightarrow \\
& \underbrace{\hat{y}-\hat{y}_{1}}_{\in W}=z_{\in W^{\perp}}^{\underbrace{}_{\epsilon}-z}=0
\end{aligned}
$$

coselvess of $\omega \& W^{\perp}$

