Definition 3.4. A set {u1,---,u,} in R™ is an orthonormal set if it is an orthogonal set of unit
vectors. If W is the subspace spanned by such a set, then {u1,--- ,u,} in R™ is an orthonormal
basis for W, since the set is automatically linearly independent.
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Theorem 4.1. An m x n matrix U has orthonormal columns if and only if UTU = I.

I fenerd pt e 1, » U fhos \
Ov-Pll'oll\W‘m.v\

Definition 4.2. An atrix U is orthogonal if its columns are orthonormal. An equivalent ¢ olurng

definition: if U'U = UU* =1, i.e., U"! = U?, then U is called an orthogonal matrix.

Remark 3. However, UU? may not be an identity matrix!
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Remark 4. The eigenvalues of an orthogonal matrix A. Suppose Az = Az, and let us consider U= LO | :J
the length of Az, i.e., od

Mz = Moz = 2% A* Az = 2™z,
This implies that A = €?, or, A has module 1 and lies on the unit circle.

Theorem 4.3. Let U be an m X n matrix with orthonormal columns, and let x and y be in

R”™. Then e wilh o‘r'u" o\'\o\rww\ columns
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2. (Ux)-(Uy)=x-y P& (UV&\{- Ux = [a+ U X = lq x = <Ya¥
3. (Ux)-(Uy)=0if and only if x -y = 0. L ¢ )
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Definition 5.1. If a vector z is orthogonal to every vector in a subspace W of R™, then z is
said to be orthogonal to W. The set of all orthogonal vectors to W is called the orthogonal

complement of W and is denoted by W=.

Theorem 5.2 (Complement Theorem). Let A be an m x n matrix. The orthogonal complement
of the row space of A is the null space of A, and the orthogonal complement of the column space
of A is the null space of AT:

(RowA)* = NullA and (ColA)* = NullAT. (6)

Proof. Let A = [a1, ..., an], where a; € R is ith row of A. If z € null(A),
Az = [a1z, as, ..., ap)' = 0. (7)

This implies that = is orthogonal to each row of A, hence x is perpendicular with Row(A), or
Null(A) C Row(A)*. Similarly, let x € Row(A)*, we have a;z = 0, where a; is the i—th row of
A, this implies that Az = 0 or x € Null(A), we then have Row(A)* C Null(A).

The other result can be proved similarly.
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Theorem 5.3. Some useful properties of complement space. Suppose W is a subspace of R"
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1. W is a subspace.
2. (WHt =w.

3. Let W be a subspace of R” with dimension d, W+ has dimension n —d. Moreover, W and
W+ separate R”.

Proof. Let A € R™*4 such that col(A) = W. By the Complement theorem, col(A)* = null(A?).
It follows from the Rank theorem that,

dim(null(A")) + dim(col(A")) = n. (8)

Since dim(col(A?)) = dim(row(A)) = d, this implies that dim(null(A')) = dim(col(A)*) =
n—d. WNW+ =0, this implies that W and W+ separate R™. ]

6 Orthogonal projection

Definition 6.1. An orthogonal basis for a subspace W of R” is a basis for W that is also an
orthogonal set.

Theorem 6.2. Let {ug,--- ,u,} be an orthogonal basis for a subspace W of R™. For each y in
W, the weights in the linear combination U= Uy - ub] RS
solve e Linv s:]shm(g)

Yy =cur + -+ cpuy

are given by

6L =
¢j = m - & (10)
for all j =1,...,p. Moreover, if {uy,--- ,up} is orthonormal, ¢; = y - u; for all j.
Proof. Inner product u; on both side of the equation, this gives,
(y,u;) = ciui, ui), Vi =1, ..., p. (11)
It follows that ¢; = % When the set is orthonormal, (u;, u;) = 1. O

Theorem 6.3. Let W be a subspace of R". Then for each y € R", y can be uniquely written

o Lo R "
y=g+z (W bl o {p)

where §j € W and z € W+. Moreover, let {u1,--- ,u,} be an orthogonal basis for a subspace W
of R™,Then § = ciui + - -~ F ¢plp, ¢; are defined in theorem

Proof. Let us first show that z is orthogonal to ¢. For any u;,

P
Ui - 2 =Y U — g cjuj - u; =0,
i=1

where we use the theorem in the last step. Next, let us consider the uniqueness. Suppose
Yy = 91 + 21, where 1 € W and z; € W+. We have § — ¢ = 2z — 21, but § — 91 € W and
2z — 21 € W due to the closedness of subspace. This shows that § — g1 = z — 2z, = 0.
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