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1 Projection

Definition 1.1. A projector is a square matrix P which satisfies P 2 = P .

We want to study the behavior of a vector in the range space of P . It is an important topic in
approximation theory. If v 2 range(P ), or v = Pu for some u, then the projection is its own
shadow, i.e., P (Pu) = Pu.

Definition 1.2. I �P is also a projector if P is a projector. I �P is called the complementary
projector of P .

One can verify this as follows. (I � P )2 = I � 2P + P 2 = I � P . The next theorem tells us
that: onto which space does the I � P project? Or, what is the range of the complementary
projector?

Theorem 1.3.

range(I � P ) = null(P ).

Proof. Let v 2 null(P ), it follows that (I � P )v = v, i.e., v 2 range(I � P ). On the other side,
range(I � P ) = {(I � P )v, 8v}. It follows that (I � P )v = v � Pv, but P (v � Pv) = 0 since P
is a projector. Hence range(I � P ) ⇢ null(P ).

Remark 1. Let P = I � (I � P ), since (I � P ) is also a projector, it follows from the last
theorem that range(P ) = null(I � P ).

Theorem 1.4.

range(P ) \ null(P ) = 0. (1)

Proof. We first claim that null(I � P ) \ null(P ) = 0. Assume not, i.e., let v 6= 0, Pv = 0
and (I � P )v = 0, but this implies that v = 0 which is the contradiction. Since null(I � P ) =
range(P ), we have range(P ) intersects null(P ) trivially.

Remark 2. The Rank theorem shows that dim(null(P ))+rank(P ) = n, but since null(P ) and
rank(P ) intersect trivially, this implies that range(P ) and null(P ) separate Rn. A projector
will separate Rn into two spaces. Conversely, let S1 and S2 be two subspaces of Rn, where
S1 \ S2 = 0 and S1 + S2 = Rn. Can we find a projector P such that range(P ) = S1 and
range(I �P ) = null(P ) = S2? This is an important question, and one solution to this problem
is the orthogonal projection, which we will discuss later.
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2 Inner product

We will review the orthogonality. We will revisit this topic later.

Definition 2.1. Let u and v be vectors in Rn,
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then the inner product, also referred to as a dot product, of u and v is
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Theorem 2.2. Let u, v and w be vectors in Rn, and let c be a scalar. Then

a. u · v = v · u

b. (u+ v) · w = u · w + v · w

c. (cu) · v = c(u · v) = u · (cv)

d. u · u � 0, and u · u = 0 if and only if u = 0

Definition 2.3. The length (or norm) of a v is the nonnegative scaler ||v|| defined by

||v|| =
p
v · v =

q
v21 + v22 + · · ·+ v2n, and ||v||2 = v · v. (4)

For any scalar c,

||cv|| = |c|||v||. (5)

3 Orthogonality

Definition 3.1. Two vectors u and v in Rn are orthogonal to each other if u ·v = 0. Zero vector
is orthogonal to every vector in Rn.

Theorem 3.2 (Pythagorean). Two vectors u and v in Rn are orthogonal to each other if and
only if ||u+ v||2 = ||u||2 + ||v||2.

Theorem 3.3. If {q1, q2, ..., qk} is a set of nonzero orthogonal vectors, then the set is linearly
independent.

Proof. Assume not. There is j  k such that:

qj = c0q0 + ...+ cj�1qj�1 + cj+1qj+1 + ...+ ckqk,

where ci not all zero. Now,

qj · qj = 0.

This implies that kqjk = 0, which is a contradiction.
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