Orthogonality

Zecheng Zhang

January 25, 2023

1 Projection

Definition 1.1. A projector is a square matrix P which satisfies $P^{2}=P$.
We want to study the behavior of a vector in the range space of P. It is an important topic in approximation theory. If $v \in \operatorname{range}(P)$, or $v=P u$ for some u, then the projection is its own shadow, i.e., $P(P u)=P u$.

Definition 1.2. $I-P$ is also a projector if P is a projector. $I-P$ is called the complementary projector of P.

One can verify this as follows. $(I-P)^{2}=I-2 P+P^{2}=I-P$. The next theorem tells us that: onto which space does the $I-P$ project? Or, what is the $\underbrace{\text { range }}$ of the complementary projector?
Theorem 1.3. Let P be any projector;

$$
\operatorname{range}(I-P)=\operatorname{null}(P)
$$

Proof. Let $v \in \operatorname{null}(P)$, it follows that $(I-P) v=v$, i.e., $v \in \operatorname{range}(I-P)$. On the other side, range $(I-P)=\{(I-P) v, \forall v\}$. It follows that $(I-P) v=v-P v$, but $P(v-P v)=0$ since P is a projector. Hence $\operatorname{range}(I-P) \subset \operatorname{null}(P)$.

Remark 1. Let $P=I-(I-P)$, since $(I-P)$ is also a projector, it follows from the last theorem that $\operatorname{range}(P)=\operatorname{null}(I-P)$.

Theorem 1.4.

$$
\begin{align*}
& \text { (E) unll (I-p) } \cap \text { ull }(p)=0 \\
& \operatorname{range}(P) \cap \operatorname{null}(P)=0 . \tag{1}
\end{align*}
$$

Proof. We first claim that $\operatorname{null}(I-P) \cap \operatorname{null}(P)=0$. Assume not, i.e., let $v \neq 0, P v=0$ and $(I-P) v=0$, but this implies that $v=0$ which is the contradiction. Since $\operatorname{null}(I-P)=$ range (P), we have range (P) intersects null (P) trivially.

Remark 2. The Rank theorem shows that $\operatorname{dim}(\operatorname{null}(P))+\operatorname{rank}(P)=n$, but since $\operatorname{null}(P)$ and $\operatorname{rank}(P)$ intersect trivially, this implies that range (P) and $\operatorname{null}(P)$ separate \mathbb{R}^{n}. A projector will separate \mathbb{R}^{n} into two spaces. Conversely, let S_{1} and S_{2} be two subspaces of \mathbb{R}^{n}, where $S_{1} \cap S_{2}=0$ and $S_{1}+S_{2}=\mathbb{R}^{n}$. Can we find a projector P such that $\operatorname{range}(P)=S_{1}$ and $\operatorname{range}(I-P)=\operatorname{null}(P)=S_{2}$? This is an important question, and one solution to this problem is the orthogonal projection, which we will discuss later.

Def 1.2. Verification

$$
\begin{aligned}
(I-P)^{2} & =I^{2}-I P-P I+\underbrace{P^{2}}_{P} \\
& =I-P
\end{aligned}
$$

Thunl. 3.

$$
\begin{aligned}
& \text { I. wull }(P) \leq \operatorname{range}(I-P), \\
& V \in \operatorname{unll}(P) . \quad P V=0 \\
& \underbrace{(I-P) V}_{\in \operatorname{range}(I-P)}=V-P V=V \in \operatorname{range}(I-P) \\
& \Rightarrow \operatorname{vull}(P) \leq \operatorname{range}(I-P) .
\end{aligned}
$$

II. $\operatorname{range}(I-P) \leq \operatorname{null}(P)$.

$$
\begin{aligned}
& \operatorname{range}(I-P)=\left\{(I-p) v, \forall v \in \mathbb{R}^{n}\right\} \\
& P(I-P) V=P V-p^{2} V=0 \\
& \Rightarrow \quad(I-p) V \in \operatorname{unll}(p) \Rightarrow \operatorname{vange}(I-p) \leq \text { unll }(P) .
\end{aligned}
$$

Thm 1.4.

$$
\text { unll }(I-p) \cap \text { unll }(p)=0
$$

Assume not. or $\exists V \neq 0, \quad P V=0 \&(I-P) V=0$

$$
\Rightarrow I V-P V=0 \Rightarrow V=0 \quad \text { contradiction. }
$$

Remark 2.
From Thy 1.4.

$$
\operatorname{vange}(p) \cap \text { null }(p)=0
$$

Rank theorem.

$$
\operatorname{dim}(\operatorname{rargec}(p))+\operatorname{sim}(\operatorname{un} \|(p))=n=\sin \text { of } \mathbb{R}^{n}
$$

$\Rightarrow \operatorname{range}(P)$ \& null (p) will separate \mathbb{R}^{n}.
$\Leftrightarrow \quad$ for $v \in \mathbb{R}^{n}$, there exist $x \in n a \|(p), \quad y \in \operatorname{range}(p)$

$$
\text { si. } V=x+y \text {. }
$$

Question,
suppose s_{1} \& s_{2} be two subspaces of \mathbb{R}^{h},
(1) $s_{1} \cap s_{2}=0$
(2) $s_{1}+s_{2}=\mathbb{R}^{n}$

Can we find a projector P, sit.

$$
\left\{\begin{array}{l}
\operatorname{range}(p)=S_{1} \tag{?}\\
\text { null }(p)=\operatorname{range}(I-p)=S_{2}
\end{array}\right.
$$

2 Inner product

We will review the orthogonality. We will revisit this topic later.
Definition 2.1. Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n},

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \tag{2}\\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \text {, and } \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

then the inner product, also referred to as a dot product, of u and v is

$$
\langle u, v\rangle=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \tag{3}\\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Theorem 2.2. Let \mathbf{u}, v and w be vectors in \mathbb{R}^{n}, and let c be a scalar. Then
a. $u \cdot v=v \cdot u$
b. $(u+v) \cdot w=u \cdot w+v \cdot w$

$$
\begin{aligned}
& v=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) \in \mathbb{R}^{4} \\
& \|v\|_{2}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}} \\
& \|v\|_{1}=\left|v_{1}\right|+\left|v_{2}\right|+\ldots+\left|v_{n}\right|
\end{aligned}
$$

c. $(c u) \cdot v=c(u \cdot v)=u \cdot(c v), \quad c \in \mathbb{R}$
d. $u \cdot u \geq 0$, and $u \cdot u=0$ if and only if $u=0$

Definition 2.3. The length (or norm) of a v is the nonnegative scaler $\|v\|$ defined by

$$
\begin{equation*}
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}, \text { and }\|v\|^{2}=v \cdot v . \tag{4}
\end{equation*}
$$

For any scalar c,

$$
\begin{equation*}
\|c v\|=|c|\|v\| . \tag{5}
\end{equation*}
$$

3 Orthogonality

$$
\langle u, v\rangle=0
$$

Definition 3.1. Two vectors u and v in \mathbb{R}^{n} are orthogonal to each other if $u \cdot v=0$. Zero vector is orthogonal to every vector in $\mathbb{R}^{n} .\langle v, u\rangle=0$, for $u l l u \in \mathbb{R}^{n}$.

Theorem 3.2 (Pythagorean). Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are orthogonal to each other if and only if $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$.

Theorem 3.3. If $\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ is a set of nonzero orthogonal vectors, then the set is linearly independent.

Proof. Assume not. There is $j \leq k$ such that:

$$
q_{j}=c_{0} q_{0}+\ldots+c_{j-1} q_{j-1}+c_{j+1} q_{j+1}+\ldots+c_{k} q_{k}
$$

where c_{i} not all zero. Now,

$$
q_{j} \cdot q_{j}=0 .
$$

This implies that $\left\|q_{j}\right\|=0$, which is a contradiction.

Thu 3.2.

$$
\begin{aligned}
\|u+v\|^{2}=\langle u+v, u+v\rangle & =\langle u, v\rangle+2\langle u, v\rangle+\langle v, v\rangle \\
& =\langle u, u\rangle+\left\langle v_{1} v\right\rangle \\
& =\|u\|^{2}+\|v\|^{2}
\end{aligned}
$$

Ref Orthogonal set.

$$
\begin{aligned}
& \left\{q_{1} q_{2} \ldots q_{k}\right\}, q_{i} \in \mathbb{R}^{n} \\
& \left\langle q_{i}, q_{j}\right\rangle=\left\{\begin{array}{cc}
0, & i \neq j \\
\neq 0, & i=j
\end{array}\right.
\end{aligned}
$$

$\Rightarrow\left\{q_{1} \ldots q_{k}\right\}$ is an orthogonal set.

The 3.3.
pf: $\left\{q_{1} \ldots q_{k}\right\}$ is an orthogonal set.
Assume, $\left\{q_{1} \ldots q_{k}\right\}$ is not linearly indep.

There exists $j \leqslant k$. sit.

$$
\begin{align*}
q_{j} & =C_{0} q_{0}+\ldots C_{j-1} q_{j-1}+C_{j+1} q_{j+1}+\ldots C_{k} q_{k} . \tag{畀}\\
C_{i} \text { not all } & =\text { zero. }
\end{align*}
$$

Consider the inner product of $(*)$ with q_{i}.

$$
\begin{aligned}
& \Rightarrow \quad 0=C_{i}<\frac{q_{i} \varepsilon_{i}>}{\neq 0} \Rightarrow C_{i}=0 .
\end{aligned}
$$

Since i 2 can be any index which is not $\neq j$

$$
\Rightarrow \quad c_{1}=c_{2}=c_{3}=\ldots \quad c_{j-1}=c_{j+1}=\ldots c_{k}=0
$$

* linearly indep \Rightarrow orthogonality.

$$
\begin{aligned}
E y . & v_{1}=\binom{1}{0}, v_{2}=\binom{1}{1} \\
& \left.<v_{1}, v_{2}\right\rangle \neq 0
\end{aligned}
$$

Orthonormal set.
If $\left\{\begin{array}{llll}v_{1} & v_{2} \ldots & v_{R}\end{array}\right\}$ is an orthonormal set,
(1) $\left\{v_{1} \ldots v_{k}\right\}$ must be orthogonal.
(2) $\left\langle v_{i}, v_{i}\right\rangle=\left\|v_{i}\right\|^{2}=1$.

