Orthogonality

Zecheng Zhang

January 25, 2023

1 Projection

Definition 1.1. A projector is a square matrix P which satisfies $P^2 = P$.

We want to study the behavior of a vector in the range space of P. It is an important topic in approximation theory. If $v \in range(P)$, or v = Pu for some u, then the projection is its own shadow, i.e., P(Pu) = Pu.

Definition 1.2. I - P is also a projector if P is a projector. I - P is called the complementary projector of P.

One can verify this as follows. $(I - P)^2 = I - 2P + P^2 = I - P$. The next theorem tells us that: onto which space does the I - P project? Or, what is the range of the complementary projector?

Theorem 1.3. Let P be any projector;

$$range(I - P) = null(P).$$

Proof. Let $v \in null(P)$, it follows that (I - P)v = v, i.e., $v \in range(I - P)$. On the other side, $range(I - P) = \{(I - P)v, \forall v\}$. It follows that (I - P)v = v - Pv, but P(v - Pv) = 0 since P is a projector. Hence $range(I - P) \subset null(P)$.

Remark 1. Let P = I - (I - P), since (I - P) is also a projector, it follows from the last theorem that range(P) = null(I - P).

Theorem 1.4.

 $\operatorname{cond}(\operatorname{IP}) \cap \operatorname{ull}(P) = 0. \tag{1}$

Proof. We first claim that $null(I - P) \cap null(P) = 0$. Assume not, i.e., let $v \neq 0$, Pv = 0 and (I - P)v = 0, but this implies that v = 0 which is the contradiction. Since null(I - P) = range(P), we have range(P) intersects null(P) trivially.

Remark 2. The Rank theorem shows that dim(null(P)) + rank(P) = n, but since null(P) and rank(P) intersect trivially, this implies that range(P) and null(P) separate \mathbb{R}^n . A projector will separate \mathbb{R}^n into two spaces. Conversely, let S_1 and S_2 be two subspaces of \mathbb{R}^n , where $S_1 \cap S_2 = 0$ and $S_1 + S_2 = \mathbb{R}^n$. Can we find a projector P such that $range(P) = S_1$ and $range(I - P) = null(P) = S_2$? This is an important question, and one solution to this problem is the orthogonal projection, which we will discuss later.

Def 1.2. Vevification

$$(I - P)^2 = I^2 - IP - PI + P^2$$

 $= I - P$

Thunks.
I. will
$$(P) \leq r \text{ angle } (I - P)$$
,
 $V \in u \sim II (P)$. $PV = 0$
 $(I - P) V = V - PV = V \in V \text{ ongle } (I - P)$
 $e \text{ range } (I - P)$
 $i = v \text{ angle } (I - P)$.
I. range $(I - P) \leq v \text{ mill } (P)$.
 $V \text{ orge } (I - P) \leq v \text{ for } V$, $\forall V \in IP^{h}$
 $P (I - P) V = PV - P^{2}V = 0$
 $i = v \text{ angle } (I - P) \vee (P) = V \text{ for } V = V$

Thm [.4].

$$null(I-P) \cap null(P) = D$$

Assume not. or $\exists V \neq 0$, $PV=0 \& (I-P) V = D$
 $\exists IV - PV = D \Rightarrow V = D$ contradiction.

Demark 2.

Rank theorem.

$$\dim (varge (p)) + \dim (unll (p)) = N = \dim g \mathbb{R}^n$$

$$\Rightarrow range (P) & null (P) u! II separate IR.$$

$$(=) \quad for \quad v \in IR^{h}, \quad there exist \quad x \in null (P), \quad y \in range (P)$$

$$s.t. \quad v = \quad x + y.$$

Question,
suppose
$$s_1 & s_2$$
 be two subspaces of lk^h ,
 $O = s_1 \cap s_2 = 0$
 $(2) = s_1 + s_2 = lk^h)$
(an we find a projector P, sit.
 $strange(p) = s_1$
 $s_1 \cap p = s_2$

$\mathbf{2}$ Inner product

We will review the orthogonality. We will revisit this topic later.

Definition 2.1. Let **u** and **v** be vectors in \mathbb{R}^n ,

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
(2)

then the inner product, also referred to as a dot product, of u and v is

Theorem 2.2. Let \mathbf{u}, v and w be vectors in \mathbb{R}^n , and let c be a scalar. Then $V = \begin{pmatrix} V_1 \\ \vdots \\ V_h \end{pmatrix} \in I_R^{N}$

- a. $u \cdot v = v \cdot u$
- b. $(u+v) \cdot w = u \cdot w + v \cdot w$
- c. $(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$, c. c. [R
- d. $u \cdot u \ge 0$, and $u \cdot u = 0$ if and only if u = 0

Definition 2.3. The length (or norm) of a v is the nonnegative scaler ||v|| defined by

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}, \text{ and } ||v||^2 = v \cdot v.$$
 (4)

For any scalar c,

$$||cv|| = |c|||v||.$$
(5)

 $((V))_{1} = \sqrt{V_{1}^{2} + V_{2}^{2} + ... + V_{y}^{2}}$

11v11, = (v1+1v2) + ... + 1Vn

Orthogonality 3

Definition 3.1. Two vectors u and v in \mathbb{R}^n are orthogonal to each other if $u \cdot v = 0$. Zero vector is orthogonal to every vector in \mathbb{R}^n . $\angle v_1$ us $= v_1$, for all $u \in \mathbb{R}^{h}$.

Theorem 3.2 (Pythagorean). Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal to each other if and only if $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$.

Theorem 3.3. If $\{q_1, q_2, ..., q_k\}$ is a set of nonzero orthogonal vectors, then the set is linearly independent.

Proof. Assume not. There is $j \leq k$ such that:

$$q_j = c_0 q_0 + \dots + c_{j-1} q_{j-1} + c_{j+1} q_{j+1} + \dots + c_k q_k,$$

where c_i not all zero. Now,

$$q_j \cdot q_j = 0.$$

This implies that $||q_j|| = 0$, which is a contradiction.

$$Thm 3.2.$$

$$\|[u+v]|^{2} = \langle u+v, u+v \rangle = 2u_{1}v \rangle + 2cu_{1}v \rangle + 2v_{1}v \rangle$$

$$= cu_{1}u_{2} + cv_{1}v \rangle$$

$$= \||u||^{2} + \||v||^{2}$$

$$\begin{aligned} &\text{Izef} \quad \text{orthogonal set.} \\ & \left\{ \begin{array}{l} 2_{1} & 8_{2} \\ & -2_{k} \end{array}\right\}, \quad \begin{array}{l} 2_{1} & \in \mathbb{I}^{k}, \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \\ & = \left\{ \begin{array}{l} 0, & 1 \\ & +j \\ & & \\ & & \\ \end{array} \right\}, \\ & \end{array} \\ & \begin{array}{l} \end{array} \\ & \left\{ \begin{array}{l} 3_{1} & -2_{k} \end{array}\right\} \\ & \quad \\ \end{array} \\ & \begin{array}{l} \text{orthogonal set.} \end{array} \end{aligned}$$

Thus 3.3.
pf:
$$\{8_1 \dots 8_k\}$$
 is an orthogonal set.
Assume, $\{8_1 \dots 8_k\}$ is not linearly indep.
There exists $j \le k$. sit.
 $\delta j = Co 8_0 + \dots C_{j+1} \delta_{j+1} + \dots C_k \delta_k$. (*)
 C_i not all = Zero.
Consider the inner product of (*) with δi .

$$\Rightarrow (\xi_{j}, \xi_{i} > \pm 0) = (\circ (\xi_{0}, \xi_{i} > + ... + \underbrace{c_{i} (\xi_{i}, \xi_{i} > + ... c_{k} \xi_{k}, \xi_{i} > f_{i})}_{\text{orthogonal set}}$$

$$\Rightarrow 0 = C_{i} < \underbrace{\xi_{i}, \xi_{i} > }_{\pm 0} \Rightarrow C_{i} = 0.$$

$$\Rightarrow 0$$
Since is can be any index which is not $\pm j$

$$\Rightarrow ... C_{i} = C_{2} = C_{3} = ... C_{i-1} = C_{j+1} = ... C_{k} = 0$$

$$\begin{cases} \text{Lineually indep } \neq \text{orthogonality.} \\ \text{Lineually indep } \neq \text{orthogonality.} \end{cases}$$

Orthonormal set.

.

If
$$\{V_1 \ V_2 \ ... \ V_R\}$$
 is an orthonormal set,
() $\{V_1 \ ... \ V_R\}$ must be orthogonal.
() $\{V_1 \ ... \ V_R\}$ must be $\{V_1 \ ... \ V_R\}$
() $\{V_1 \ ... \ V_R\}$ must $\{V_1 \ ... \ V_R\}$