Orthogonality

Zecheng Zhang

January 25, 2023

1 Projection
W

Definition 1.1. A projector is a square matrix P which satisfies P? = P.

We want to study the behavior of a vector in the range space of P. It is an important topic in
approximation theory. If v € range(P), or v = Pu for some u, then the projection is its own
shadow, i.e., P(Pu) = Pu.

Definition 1.2. I — P is also a projector if P is a projector. I — P is called the complementary
projector of P.

One can verify this as follows. (I — P)2 =1 — 2P + P? = I — P. The next theorem tells us
that: onto which space does the I — P project? Or, what is the Ei?_%f; of the complementary

projector? \ | col (1- P) = Yawge (7— F)
Theorem 1.3. [eot ‘e \”"?' 0\“\2{ \L)VO\CCLOV/

range(I — P) = null(P).

Proof. Let v € null(P), it follows that (I — P)v = v, i.e., v € range(I — P). On the other side,
range(I — P) = {(I — P)v,Yv}. It follows that (I — P)v = v — Pv, but P(v — Pv) = 0 since P
is a projector. Hence range(l — P) C null(P). O

Remark 1. Let P = [ — (I — P), since (I — P) is also a projector, it follows from the last
theorem that range(P) = null(I — P).

Theorem 1.4. N ol (.I"F) 0 "‘\\(P) -0

range(P) Nnull(P) = 0. (1)

Proof. We first claim that null(I — P) N null(P) = 0. Assume not, i.e., let v # 0, Pv = 0
and (I — P)v = 0, but this implies that v = 0 which is the contradiction. Since null(I — P) =
range(P), we have range(P) intersects null(P) trivially. O

Remark 2. The Rank theorem shows that dim(null(P))+rank(P) = n, but since null(P) and
rank(P) intersect trivially, this implies that range(P) and null(P) separate R™. A projector
will separate R"™ into two spaces. Conversely, let S; and Sy be two subspaces of R™, where
S1 NSy =0 and S; +S2 = R". Can we find a projector P such that range(P) = S; and
range(I — P) = null(P) = S3? This is an important question, and one solution to this problem
is the orthogonal projection, which we will discuss later.
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2 Inner product

We will review the orthogonality. We will revisit this topic later.

Definition 2.1. Let u and v be vectors in R",

U U1
U2 V2

u=|.|,andv= (2)
Up, Un,

then the inner product, also referred to as a dot product, of u and v is

U1
V2
2N 2 = ug ug e uy) : = UV + UV + - - + UpUp (3)
Un,
Theorem 2.2. Let u, v and w be vectors in , and let ¢ be a scalar. Then
J| Y
a. u-v=0v-u > ( EIR
b. (u+v) - w=u-w+v-w Vi
Py k3
C. (C’LL)'U:C(U"U):U'(CU)) o &[R K\\]“l = \/\l“'vl +-.-.'\' VV\
d. u-u>0,and u-u =0 if and only if u =0 \\\1“1 = (w4 Nm\'{'~--+ \U"\

Definition 2.3. The length (or norm) of a v is the nonnegative scaler ||v|| defined by

HUH:W:\/U%"FU%-F'”-FU%, and || =v-o. (4)
For any scalar c,

[lev|| = [e[[v]]- ()

3 Orthogonality

Lw,vd) =0
Definition 3.1. Two vectors u and v in R™ are orthogonal to each other if u-v = 0. Zero vector

is orthogonal to every vector in R™. 20, w> = 9 fer ul U e .

Theorem 3.2 (Pythagorean). Two vectors u and v in R™ are orthogonal to each other if and
only if [[u+ v[|* = [[u][* + [|v[]*.

Theorem 3.3. If {q1,q2,...,qr} is a set of nonzero orthogonal vectors, then the set is linearly
independent.

Proof. Assume not. There is j < k such that:
q; = coqo + ... +¢j—1qj—1 + C¢j+1G+1 + ... + CrQ;,
where ¢; not all zero. Now,
g1 =0

This implies that ||¢;|| = 0, which is a contradiction. O
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