
6 Subspace

A subspace of Rn
is any set H in Rn

that has three properties:

1. The zero vector is in H.

2. For each u and v in H, the sum u+ v is in H.

3. For each u in H and each scalar c, the vector cu is in H.

Remark 4. A subspace is closed under addition and scalar multiplication.

6.1 Column space

The column space of a matrix A is the set Col (A) of all linear combinations of the columns of

A. If A = [a1, a2, ..., an], then col(A) = span{a1, a2, ..., an}.

6.2 Null space

The null space of a matrix A is the set null(A) of all solutions of the homogeneous equation

Ax = 0.

6.3 Row space

The row space of a matrix A is the set row(A) of all linear combinations of the rows of A.

Theorem 6.1. If two matrices A and B are row equivalent, their row spaces are the same.

Proof. Row operations are indeed the linear combinations of rows. If B is obtained from A by

the EROs, the rows of B are the linear combinations of rows of A. As a result, the row space of

B is in the row space of A. The other way is the same.

What about the column space?

Remark 5. • The column space of an m⇥ n matrix is a subspace of Rm
.

• The null space of an m⇥ n matrix A is a subspace of Rn
.
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6.4 Basis

A basis for a subspace H of Rn
is a linearly independent set in H that spans H.

Theorem 6.2. The pivot columns of a matrix A form a basis for the column space of A.

Theorem 6.3. The nonzero rows of the ref(A) form a basis for row(A).

6.5 Dimension

The dimension of a nonzero subspace H, denoted by dim(H), is the number of vectors on any

basis for H. The dimension of the zero subspace {0} is defined as zero.

6.6 Rank

The rank of a matrix A, denoted by rank(A), is the dimension of the column space of A. In

addition, the dimension of the null space is called nullity. In addition, the row space dimension

is called the matrix’s row rank.

Remark 6. The EROs do not change the dimension of the column space; hence the EROs do

not change the rank of the matrix.

Theorem 6.4 (Rank theorem). If a matrix A has n columns, then rank(A)+dim(null(A)) = n.

Example 6.5. Find the rank, column space, and null space of the matrix.

Theorem 6.6. Some facts about the rank.

1. rank(AB)  min(rank(A), rank(B)).

2. rank(A+B)  rank(A) + rank(B).
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3. rank(AA
T
) = rank(A

T
A) = rank(A) = rank(A

T
).

Proof. I will only show the first statement and leave the other two as the homework questions.

Since the columns of AB are the linear combinations of columns of A by B, this implies that

dim(col(AB)  dim(col(A)). It follows that rank(AB)  rank(A).

Suppose x 2 null(B), this implies that Bx = 0, consequently, ABx = 0, or, x 2 null(AB). This

indeed shows that null(B) ⇢ null(AB), or dim(null(B))  dim(null(AB)). Since B and AB

have the same number of columns, it follows from the Rank theorem that rank(AB)  rank(B).
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6.6.1 Rank decomposition

Every rank r matrix A 2 Rm⇥n
matrix has a rank decomposition A = CR, where C 2 Rm⇥r

,

R 2 Rr⇥n
and columns of C form a basis for col(A). One can construct C by taking all linearly

independent columns of A. Because each column of A is the linear combination of columns of C

by weights from the corresponding columns of A, the R matrix can be constructed easily. One

way is to remove all zero rows from ref(A).

Theorem 6.7. For A 2 Rm⇥n
, we have rank(A) = rank(A

t
).

Proof. Suppose rank(A) = r and admits the rank-decomposition A = CR. We have A
t
= R

t
C

t
.

Since the columns of A
t
is the linear combination of columns of R

t
, this implies that col(A

t
) ⇢

col(R
t
), or rank(A

t
)  rank(R

t
)  r = rank(A). Consider A = (A

t
)
t
and complete the proof

by yourself.

Theorem 6.8. The row rank is equal to the column rank of a matrix.
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