6 Subspace

A subspace of \mathbb{R}^{n} is any set H in \mathbb{R}^{n} that has three properties:

1. The zero vector is in H.
2. For each \mathbf{u} and \mathbf{v} in H, the $\operatorname{sum} \mathbf{u}+\mathbf{v}$ is in H.
3. For each \mathbf{u} in H and each scalar c, the vector $c \mathbf{u}$ is in H.

Remark 4. A subspace is closed under addition and scalar multiplication.

6.1 Column space

The column space of a matrix A is the set $\operatorname{Col}(A)$ of all linear combinations of the columns of A. If $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, then $\operatorname{col}(A)=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

6.2 Null space

The null space of a matrix A is the set $\operatorname{null}(A)$ of all solutions of the homogeneous equation $A \mathrm{x}=\mathbf{0}$.
L all possible linear combinations of cols of A.

$$
\begin{aligned}
& \operatorname{col}(A)=\left\{A x, \forall x \in \mathbb{R}^{n}\right\} \\
& * \quad T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { linear, } \quad T(x)=A x, \forall x \in \mathbb{R}^{n}, \quad \operatorname{range}(T)=\left\{\begin{array}{l}
T(x), \\
x \in \mathbb{R}^{n}
\end{array}\right\}
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{col}(A)=\operatorname{range}(A)
$$

6.3 Row space

The row space of a matrix A is the set $\operatorname{row}(A)$ of all linear combinations of the rows of A.
Theorem 6.1. If two matrices A and B are row equivalent, their row spaces are the same.
Proof. Row operations are indeed the linear combinations of rows. If B is obtained from A by the EROs, the rows of B are the linear combinations of rows of A. As a result, the row space of B is in the row space of A. The other way is the same.

What about the column space?
Remark 5. - The column space of an $m \times n$ matrix is a subspace of \mathbb{R}^{m}.

- The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}.

6.4 Basis

$$
\text { for any } v \in H, \forall C_{1} C_{L} \ldots C_{p}
$$

A basis for a subspace H of \mathbb{R}^{n} is a linearly independent set in H that spans H.

$$
\begin{array}{cc}
\ldots & \left.b_{p}\right\} \\
\text { of } H .
\end{array}
$$

Theorem 6.2. The pivot columns of a matrix A form a basis for the column space of A.
Theorem 6.3. The nonzero rows of the $\operatorname{ref}(A)$ form a basis for $\operatorname{row}(A)$. $\psi *$. basis is the pivot cols of A but not

6.5 Dimension

the pinot col of $\operatorname{ref}(A)$.
The dimension of a nonzero subspace H, denoted by $\operatorname{dim}(H)$, is the number of vectors on any basis for H. The dimension of the zero subspace $\{\mathbf{0}\}$ is defined as zero.

6.6 Rank

$$
\operatorname{rank}(A)=\operatorname{dim}(\operatorname{col}(A))=\operatorname{col} \operatorname{rank}(A)
$$

The rank of a matrix A, denoted by $\operatorname{rank}(A)$, is the dimension of the column space of A. In addition, the dimension of the null space is called nullity. In addition, the row space dimension is called the matrix's row rank. Vow rank $(A)=\operatorname{fim}(\operatorname{row}(A))$
Remark 6. The EROs do not change the dimension of the column space; hence the EROs do not change the rank of the matrix.
Theorem $6.4($ Rank theorem $)$. If a matrix A has n columns, then $\operatorname{rank}(A)+\operatorname{dim}(n u l l(A))=n$.

Example 6.5. Find the rank, column space, and null space of the matrix.
Theorem 6.6. Some facts about the rank.

1. $\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$.
2. $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$.
3. $\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.

Proof. I will only show the first statement and leave the other two as the homework questions. Since the columns of $A B$ are the linear combinations of columns of A by B, this implies that $\operatorname{dim}(\operatorname{col}(A B) \leq \operatorname{dim}(\operatorname{col}(A))$. It follows that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
Suppose $x \in \operatorname{null}(B)$, this implies that $B x=0$, consequently, $A B x=0$, or, $x \in \operatorname{null}(A B)$. This indeed shows that $\operatorname{null}(B) \subset \operatorname{null}(A B)$, or $\operatorname{dim}(\operatorname{null}(B)) \leq \operatorname{dim}(\operatorname{null}(A B))$. Since B and $A B$ have the same number of columns, it follows from the Rank theorem that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.

$$
\text { pf of } \operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))
$$

$$
\text { I. } \quad \operatorname{rank}(A B) \leqslant \operatorname{rank}(A)
$$

The cols of $A B=$ linear combination of $\operatorname{cols} A$ with B.

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{col}(A B) \\
& \Rightarrow \quad \operatorname{col}(A) \\
& \Rightarrow \quad \operatorname{tim}(\operatorname{col}(A B)) \leq \operatorname{sim}(\operatorname{col}(A)) \\
& \operatorname{rank}(A B) \leq \operatorname{rank}(A) \\
& \text { II. } \quad \operatorname{rank}(A B) \leq \operatorname{rank}(B)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad x \in \operatorname{unll}(A B) \Rightarrow \operatorname{null}(B) \leq \operatorname{uall}(A B) \\
& \Rightarrow \quad \operatorname{dim}(\operatorname{unll}(B)) \leq \operatorname{dim}(\operatorname{unll}(A B)),
\end{aligned}
$$

\# cols of $B=\#$ cols of $A B$, by the Rank Theorem \Rightarrow ?

$$
\operatorname{rank}(A B) \leqslant \operatorname{rank}(B)
$$

6.6.1 Rank decomposition $[$ factorization].

Every rank r matrix $A \in \mathbb{R}^{m \times n}$ matrix has a rank decomposition $A=C R$, where $C \in \mathbb{R}^{m \times r}$, $R \in \mathbb{R}^{r \times n}$ and columns of C form a basis for $\operatorname{col}(A)$. One can construct C by taking all linearly independent columns of A. Because each column of A is the linear combination of columns of C by weights from the corresponding columns of A, the R matrix can be constructed easily. One way is to remove all zero rows from $\operatorname{ref}(A)$.

$$
\begin{aligned}
& A \in \mathbb{R}^{m \cdot n}, \quad \operatorname{rank}(A)=r \\
& A=c R, \\
& c \in \mathbb{R}^{m \times r} \text {, } \\
& \text { (2) } \operatorname{col}(C)=\operatorname{col}(A) \text {. } \\
& \text { (3) } \quad R \in \mathbb{R}^{r \cdot n} \\
& \text { perform EROS to reduce } A \text { to its } \operatorname{vef}(A) \text {. } \\
& \begin{array}{l}
\operatorname{ref}(A)=\left(\begin{array}{cccc}
\square & 0 & -2 & 0 \\
0 & \square & 1 & 0 \\
0 & 0 & 0 & \square \\
0 & 0 & 0 & 0
\end{array}\right) \\
\text { By tum } 6.2 \text {, buses of } \operatorname{col}(A) \\
C=\left(\begin{array}{ccc}
1 & 3 & 4 \\
2 & 7 & 9 \\
1 & 5 & 1 \\
1 & 2 & 8
\end{array}\right)
\end{array} \\
& A=\left(\begin{array}{llll}
1 & 3 & 1 & 4 \\
2 & 7 & 3 & 9 \\
1 & 5 & 3 & 1 \\
1 & 2 & 0 & 8
\end{array}\right) \\
& R .=\text { hon-2ero rows of hel (A). } \\
& =\left(\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text {, }
\end{aligned}
$$

Theorem 6.7. For $A \in \mathbb{R}^{m \times n}$, we have $\operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right) . \quad A=C R$
Proof. Suppose $\operatorname{rank}(A)=r$ and admits the rank-decomposition $A=C R$. We have $A^{t}=R^{t} C^{t}$. Since the columns of A^{t} is the linear combination of columns of R^{t}, this implies that $\operatorname{col}\left(A^{t}\right) \subset$ $\operatorname{col}\left(R^{t}\right)$, or $\operatorname{rank}\left(A^{t}\right) \leq \operatorname{rank}\left(R^{t}\right) \leq r=\operatorname{rank}(A)$. Consider $A=\left(A^{t}\right)^{t}$ and complete the proof by yourself.

Theorem 6.8. The row rank is equal to the column rank of a matrix.

The 6.7.
pf $\operatorname{rank}(A)=r, A^{\in \notin \mathbb{R}^{\text {min }} \text { admits one Rank decomposition. }}$

$$
\begin{aligned}
& A=C R . \\
& A^{t}=R^{t} C^{t}, \quad \text { cols of } A^{t}=\text { linear combination of }
\end{aligned}
$$ cols of R^{t} using C^{t}.

$$
\begin{aligned}
& \Rightarrow \operatorname{col}\left(A^{t}\right) \subseteq \operatorname{col}\left(R^{t}\right) . \\
& \Rightarrow \operatorname{rank}\left(A^{t}\right) \leq \operatorname{rank}\left(R^{t}\right) \leq r=\operatorname{rank}(A) \\
& \Rightarrow R \in \mathbb{R}^{r \cdot n} \Rightarrow R^{t} \in \mathbb{R}^{n \cdot r},
\end{aligned} \quad R \text { hus } r \text { cols. } \quad \begin{aligned}
\Rightarrow \operatorname{rank}(R) \leq r
\end{aligned}
$$

Consider $A=\left(A^{t}\right)^{t}, \Rightarrow \operatorname{rank}(A) \leq \operatorname{rank}\left(A^{t}\right)$

$$
\Rightarrow \quad \operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right) \text {. }
$$

Tum 6.8. $\quad \operatorname{row} \operatorname{rank}(A)=\operatorname{col} \operatorname{rank}(A)$.

$$
\begin{aligned}
\operatorname{col} \operatorname{rank}(A)=\operatorname{rank}(A) \stackrel{\text { The }}{\underset{6.7}{=}} \operatorname{rank}\left(A^{+}\right) & =\operatorname{col} \operatorname{rank}\left(A^{+}\right) \\
& =\operatorname{row} \operatorname{rank}(A)
\end{aligned}
$$

