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This section will discuss singular value decomposition (SVD) of a matrix A ∈ Rm×n. Geometric
understanding of SVD (in two-dimensional space): A maps a unit circle to an ellipse. Singular
values are the length of the principle semiaxes of the ellipse. the left singular vectors are unit
vectors oriented in the direction of the principle semiaxes.

1 Construction

The first singular value is defined as:

σ1 = sup
∥v∥=1

∥Av∥.

Remark 1. The first singular value is well defined, i.e., such a v1 ∈ Rn always exists. Non-
rigorous argument: the function : v → ∥Av∥ is continuous and with a compact domain.

Now one can find u1 ∈ Rm with ∥u1∥ = 1 such that Av1 = σ1u1.

One can follow the definition of the first singular value and define the second singular value as,

σ2 = sup
∥v∥=1,v⊥v1

∥Av∥.

The remark 1 implies that such a v2 always exists and let us denote it as v2. In addition, we
can find u2 ∈ Rm with ∥u2∥ = 1 such that Av2 = σ2u2.

Remark 2. σ2 ≤ σ1 because v2 is taken from a smaller subspace {v1}⊥ ⊂ Rn.

Theorem 1.1. u1 and u2 which are defined above are orthogonal.
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The theorem implies that u1 ⊥ u2. Repeat the process, one can find a unit vector v3 ∈ W2 =
{v1, v2}⊥ such that it admits

σ3 = sup
∥v∥=1,v∈V2

∥Av∥.

In addition, one can find a unit vector u3 such that Av3 = σ3u3. One can show that {u1, u2, u3}
are orthogonal.

Remark 3. Let us define Wp = {v1, v2, ..., vp}⊥. If supv∈Wp
∥Av∥ = 0, or, Avp+1 = 0, we can

make up+1 (nonzero if possible) to be any vector which is orthogonal to {u1, ..., up}. If up+1 has
to be zero, span{u1, ..., up} = Rm

Theorem 1.2. rank(A) equals to the number of nonzero singular values.

Proof. Let us assume {σ1, ..., σp} are all nonzero but σp+1 = 0. Let Vp = {u1, ..., up} be the
singular vector corresponding to σ1, ...σp. We claim that Vp ⊂ row(A). For vi ∈ Vp, we have,

Avi = σiui

⇒utiAviv
t
i = σiu

t
iuiv

t
i

⇒ 1

σi
utiA = vti .

This implies that vi ∈ row(A), the claim is proved. By theorem in the last section, null(A) =
row(A)⊥ ⊂ V ⊥

p . Now, for v ∈ V ⊥
p , we have Av = 0, otherwise contradicts with the definition

of Vp. As a result, V ⊥
p ⊂ null(A), i.e., V ⊥

p = null(A). By the rank theorem, dim(Vp) =
rank(A).
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Repeat the process for n times, we then can construct an orthonormal matrix V = [v1, ..., vn] ∈
Rn×n, another matrix with orthonormal columns U = [u1, ..., un] ∈ Rm×n up to some 0 columns,
and a diagonal matrix Σ ∈ Rn×n with diagonal entries being σ1, ..., σn. Recall the matrix
multiplication, we have,

AV = UΣ.

Full SVD: make U matrix orthonormal when m > n. One can append an additional m − n
orthonormal columns to fulfill this goal. Σ should change as well so that the product AV = UΣ
still holds. To do this, one can append m − n zero rows to the bottom of Σ. As a result, we
have AV = UΣ where V ∈ Rn×n, U ∈ Rm×m and Σ ∈ Rm×n. Since V is orthonormal, we have:

A = UΣV −1.
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2 Symmetric matrix

Let S be a real n× n matrix. S is symmetric if S = St.

Theorem 2.1. All eigenvalues of S are real.

Theorem 2.2. S has n linearly independent eigenvectors.

Theorem 2.3 (Spetral theorem). If S is real symmetric, then S = QDQt for Q orthogonal and
D diagonal.
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