5 Inner product

We will review the orthogonality. We will revisit this topic later.

Definition: Let u and v be vectors in R",
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then the inner product, also referred to as a dot product, of u and v is
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Theorem 5.1. Let u, v and w be vectors in R”, and let ¢ be a scala\r;”zl:(f__//

a u-v=v-u
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Definition: The length (or norm) of a v is the nonnegative scaler ||v|| defined by
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For any scalar c,
llev]] = [elllv]l.

6 Orthogonality
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Orthogonal vectors: Two vectors u and v in R™ are orthogonal to each other if u-v = 0
Zero vector is orthogonal to every vector in R”.

Theorem 6.1 (Pythagorean). Two vectors u and v in R™ are orthogonal to each other if and

only if [+ vII* =l + V2 wA V| = (ZWAT, w2 D || w |"5 <ut, WV’

-0
Theorem 6.2. if {q1,q2,...,qx} is a set of rthogonal vectors, then the set is linearly 7)
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Proof. Assume not. There is j < k such that: 4 4’}}\’/\47
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This implies that ||¢;|| = 0, which is a contradiction. /)
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If a vector z is orthogonal to every vector in a subspace W of R", then z is said to be ortogonal

to W. The set of all vectors that atre orthogonal to W is called the orthogonal cempenent of W vee 5.,&5?‘“
and is denoted by W=. W-\\AC"“U‘\“' [ - iu ALy L wLlV, YV IR} cw‘:hwﬂ‘ Y}
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1. A vector x is in W+ if and only if x is orthogonal to every vector in a s& that spans WW.

2. W+ is a subspace of R™.

Theorem: Let A be an m X n matrix. The orthogonal complement of the row space of A is
the null space of A, and the orthogonal complement of the column space of A is the null space
of AT

(RowA)t = Nul4 and (ColA)* = NulA”

Orthonormal Sets: A set {uj,---,u,} in R” is an orthonormal set if it is an orthogonal set
of unit vectors. If W is the subspace spanned by such/a set, then {ui,---,u,} in R" is an
orthonormal basis for W, since the set is automatically Jinearly independent.
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7 Orthogonal projection i@ wy =2 Loroll o
Definition: An orthogonal basis for a subspace| W of R" is a basis for W that is also an
orthogonal set. Lo ® hasis
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Theorem 7.1. Let {uy, - ,u,} be an orthogonal basis for a subspace W of R™. For each y in
W, the weights in the linear combination o e ) \}
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for all j =1,...,p. Moreover, if {uy,---,u,} is orthonormal, ¢; =y - u; for all j.
Now let assume {uy,--- ,u,} be an orthogonal basis for a subspace W of R". Given a nonzero

vector y in R™. One can decompose a vector y in R™ into the sum of two vectors
y=y+z (6)

where ¥ = ciuy + -+ + ¢puy, ¢; are defined in theorem |7.1} and z is 50172\Ve:ctor orthogonal to
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Remark 5. Let us show that z is orthogonal to . For any wu;, ﬁv‘:
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where we use the theorem [7.I]in the last step. w-2 2 Wt 9-1)
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Remark 6. if y € W, z =0. SERVIES A
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y is denoted by projyy and is called the orthogonal prOJectfon of onto W. .
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8 Orthogonal matrix
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Theorem 8.1. An m x n matrix U has orthonormal columns if and only if UTU = I.
4
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An|n x nf matrix U is orthogonal if its columns are orthonormal. An equivalent definition: if
UU =UU' =1, i.e., U;! = Ut then U is called an orthogonal matrix.
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Remark 7. The eigenvalues of an orthogonal matrix A. Suppose Ax = Az, and let us consider

the length of Az, ie,  y (¥, 5 8V wmoylee ol )
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This implies that A = €?, or, A has module 1 and lies on the unit circle.

worem 8.2. Let U be an m X n matrix with orthonormal columns, and let x and y be in
QR". Then L .
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(Ux)- (Uy)=xy A= e

3. (Ux)-(Uy)=0if and only if x -y = 0. L 0 2
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