Inner product $\mathbf{5}$

We will review the orthogonality. We will revisit this topic later. **Definition:** Let **u** and **v** be vectors in \mathbb{R}^n ,

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

then the inner product, also referred to as a dot product, of \mathbf{u} and \mathbf{v} is

$$\begin{bmatrix} u_1 \ u_2 \ \cdots \ u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

 $= u \cdot v = u^{t} V$ **Theorem 5.1.** Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then

- a. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- b. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- c. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$
- d. $\mathbf{u} \cdot \mathbf{u} > 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$

 $\int_{\mathbf{T}} \int_{\mathbf{T}} |\mathbf{v}| | d\mathbf{v} = |\mathbf{v}| + |\mathbf{v}|$ $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}, \text{ and } ||\mathbf{v}||^2 = \mathbf{v} \cdot \mathbf{v}} \quad ||\mathbf{v}|| \neq 0 \quad ||\mathbf{v}|| = 0 \quad ||\mathbf{v}||^2 = \mathbf{v} \cdot \mathbf{v}$ **Definition:** The length (or norm) of a \mathbf{v} is the nonnegative scaler $||\mathbf{v}||$ defined by

i. 11 u+v1] ≤ 11u1+11v1]

 $= ||U||^{2} + ||U||^{2}$

For any scalar c,

$$||c\mathbf{v}|| = |c|||\mathbf{v}||.$$

6 Orthogonality

Orthogonal vectors: Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal to each other if $\mathbf{u} \cdot \mathbf{v} = 0$. Zero vector is orthogonal to every vector in \mathbb{D}^n

Theorem 6.1 (Pythagorean). Two vectors **u** and **v** in \mathbb{R}^n are orthogonal to each other if and only if $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$. $(|\mathbf{u} + \mathbf{v}||^2 = |\mathbf{u}||^2 + ||\mathbf{v}||^2$. $(|\mathbf{u} + \mathbf{v}||^2 = |\mathbf{u}||^2 + ||\mathbf{v}||^2$. = cu, u2 +2(4,1) + 2U, V> orthog. **Theorem 6.2.** if $\{q_1, q_2, ..., q_k\}$ is a set of nonzero orthogonal vectors, then the set is linearly independent.

Proof. Assume not. There is $j \leq k$ such that:

$$q_j = c_0 q_0 + \dots + c_{j-1} q_{j-1} + c_{j+1} q_{j+1} + \dots + c_k q_k,$$

where ci not all zero. Now, test with 81

This implies that $||q_j|| = 0$, which is a contradiction. $\mathbb{R}HS = (\circ(\mathcal{C}_0, \mathcal{C}_1) + \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_1, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_1, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_1, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_1, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_1, \mathcal{$

If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be orthogonal to W. The set of all vectors that are orthogonal to W is called the orthogonal component of WM= { n EIB, NTN, ANEM} and is denoted by W^{\perp} . with emutically 1 omplement 1. V=O (u & V ave or thogonal)

- 1. A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.
- 2. W^{\perp} is a subspace of \mathbb{R}^n .

Theorem: Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^T :

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^T$

Orthonormal Sets: A set $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ in \mathbb{R}^n is an orthonormal set if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ in \mathbb{R}^n is an orthonormal basis for W, since the set is automatically knearly independent.

7 Orthogonal projection

Definition: An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an (basis orthogonal set.

(2) orthogonal **Theorem 7.1.** Let $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination $\left(\begin{pmatrix} q \\ r \end{pmatrix} \right)$

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p \quad (z) \quad \begin{bmatrix} \mathbf{u}_1 \dots \mathbf{u}_p \end{bmatrix} \begin{pmatrix} z \\ c_p \end{pmatrix}^z$$

are given by

$$c_j = rac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j},$$

for all j = 1, ..., p. Moreover, if $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ is orthonormal, $c_j = \mathbf{y} \cdot \mathbf{u}_j$ for all j.

Now let assume $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . Given a nonzero vector \mathbf{y} in \mathbb{R}^n . One can decompose a vector \mathbf{y} in \mathbb{R}^n into the sum of two vectors

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{6}$$

(orthogon al set

where $\hat{\mathbf{y}} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$, c_i are defined in theorem 7.1, and \mathbf{z} is some vector orthogonal to Ý.

4

Remark 5. Let us show that z is orthogonal to \hat{y} . For any u_i ,

$$c_{\mathcal{W}_{i}} \stackrel{\mathfrak{F}^{2}}{,} u_{i} \cdot z = y \cdot u_{i} - \sum_{i=1}^{p} c_{i} u_{i} \cdot u_{i} = 0,$$

em [7.1] in the last step.
$$\omega_{i} \cdot \mathfrak{F} \stackrel{(\mathsf{L})}{=} \omega_{i} \cdot (\mathfrak{F})$$

where we use the theorem 7.1 in the last step.

Remark 6. if $y \in W$, z = 0. $\hat{\mathbf{y}}$ is denoted by $\operatorname{proj}_W \mathbf{y}$ and is called the orthogonal projection of \mathbf{y} onto W.

$$= w_i \cdot y - C_i = 0$$

$$= w_i \cdot y - w_i \cdot y = 0$$

$$= 0 = 0 = 0$$

Z. V20, for allVEIN

Dimension of
$$W \& W^{\perp}$$
.
Jun $(w) = k$, $\dim(w^{\perp}) = n - k$
Let $\{b_{1}, b_{2}, \dots, b_{|k|}| b_{|k+1}, \dots, b_{|k|}\}$ be an orthogonal basis for $|k|^{k}$.
Let $\{b_{1}, b_{2}, \dots, b_{|k|}| b_{|k+1|}, \dots, b_{|k|}\}$ be an orthogonal basis for $|k|^{k}$.
Let $\{b_{1}, b_{2}, \dots, b_{|k|}| b_{|k+1|}, \dots, b_{|k|}\}$ be an orthogonal basis for $|k|^{k}$.
Let $\{b_{1}, b_{2}, \dots, b_{|k|}| b_{|k+1|}, \dots, b_{|k|}\}$ be an orthogonal basis for $|k|^{k}$.
Let $\{b_{1}, b_{2}, \dots, b_{|k|}| b_{|k+1|}, \dots, b_{|k|}\}$ be an orthogonal basis for $|k|^{k}$.
Let $\{b_{1}, b_{2}, \dots, b_{|k|}\}$ by $\{b_{1}, \dots, b_{|k|}\}$ be an orthogonal basis for $|k|^{k}$.
 $\forall k \in k$
 $\forall k \in k$
 $\forall k \in k$
 $\Rightarrow \{b_{|k+1|}, \dots, b_{|k|}\}$ forms a basis of W^{\perp}
 $\Rightarrow d_{|k|}(W^{\perp}) = h - k$.

Orthogonal matrix 8

ヒン **Theorem 8.1.** An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$.

An $n \times n$ matrix U is orthogonal if its columns are orthonormal. An equivalent definition: if $U^{t}U = UU^{t} = I$, i.e., $U^{-1} = U^{t}$, then U is called an orthogonal matrix. **Remark 7.** The eigenvalues of an orthogonal matrix A. Suppose $Ax = \lambda x$, and let us consider the length of λx , i.e., $\mathcal{M}^{-1} = \mathcal{M}^{-1}$

the length of λx_1 i.e., \mathcal{W}^7

$$\|\mathcal{M}\| = \bigcup_{x \in \mathcal{N}} \mathcal{H} = \lambda \bar{\lambda} x^* x = |\lambda|^2 x^* x = x^* A^* A x = x^* x.$$

This implies that $\lambda = e^{i\phi}$, or, λ has module 1 and lies on the unit circle.

Theorem 8.2. Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbb{R}^n . Then

heorem 6.2. Let \mathbf{U} be a matrix \mathbf{U} . Then 1. $||U\mathbf{x}||^2 = ||\mathbf{x}||^2$ $\langle \mathbf{U}^{\mathbf{X}}, \ \mathbf{U}^{\mathbf{X}} = \mathbf{x}^{\mathbf{b}} \mathbf{U}^{\mathbf{b}} \mathbf{U}^{\mathbf{X}}$ 2. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ $= \mathbf{x}^{\mathbf{b}} \mathbf{x} = ||\mathbf{x}||^{\mathbf{b}}$ $\lambda = \mathbf{r} \mathbf{e}^{\mathbf{b}^{\mathbf{b}}}$ 3. $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$. $\lambda \cdot \overline{\lambda} = \mathbf{r}^2 \mathbf{e}^{\mathbf{b}} = \mathbf{r}^2 \pm |\mathbf{\lambda}|^2$