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My research interests lie broadly in applied mathematics including fluid dynamics, systems
with memory, algorithms in machine learning, etc. My thesis advisor is Gautam Iyer and my
thesis project [1] concerns mixing. We quantify the interaction between diffusion and mixing
by studying the energy dissipation rate based on an assumption quantifying the mixing rate.
Besides the project on mixing, I collaborated with Jian-Guo Liu and Lei Li and studied the
Markov semigroups for two important algorithms from machine learning: stochastic gradient
descent (SGD) and online principal component analysis (PCA) [2]. The third project I have
worked on is time-fractional ODEs [3,4]. Together with Lei Li, Jian-Guo Liu and Xiaoqian
Xu, we study 1-D autonomous fractional ODEs Dγ

c u = f(u), 0 < γ < 1, where Dγ
c is the

generalized Caputo derivative proposed by Li and Liu [5] based on a convolution group.
In the following statement, I will talk about the above projects in detail with discussion

on the future plans at the end. In Section 1.1, I will introduce my work on mixing [1]. In
Section 1.2, I will talk about the project on Markov semigroups for SGD and online PCA [2].
In Section 1.3, the work on fractional ODEs [3, 4] would be explained.

1. Research Summary
1.1. Dissipation Enhancement by Mixing. In incompressible fluids, stirring induces
mixing by filamentation and facilitates the formation of small scales. Diffusion, on the other
hand, efficiently damps small scales. Our aim is to quantify the interaction between diffusion
and mixing by studying the energy dissipation rate based on an assumption quantifying the
mixing rate. We study the passive scalar model{

∂tθ + (u · ∇)θ − ν∆θ = 0 in Td, for t > 0 ,
θ(0) = θ0 for t = 0 ,

where u is incompressible, θ0 ∈ L2
0(Td). By saying passive scalar, we mean the tracer θ

provides no feedback to the advecting velocity field u. Since u is divergence free, we have
‖θ‖L2 6 e−νλ1t‖θ0‖L2 ,(1.1)

where λ1 > 0 is the smallest non-zero eigenvalue of −∆ on Td. In [6], Poon proved that ‖θ‖L2

satisfies a double exponential lower bound
‖θ(t)‖L2 > exp(−Cνγt)‖θ0‖L2(1.2)

for some constants C > 0 and γ > 1. In [1] (with G. Iyer), we quantify the decaying rate
of ‖θ‖L2 by using the notion of dissipation time in [7] (see also [8, 9]). The dissipation time is
defined as

τd := inf
{
t | ‖θ(t)‖L2

0
6
‖θ0‖L2

0

e
, for all θ0 ∈ L2

0

}
.

Then (1.1) and (1.2) imply that C|ln ν| 6 τd 6
1
λ1ν

. Constantin, Kiselev et. al. [10] proved
that the dissipation time τd = o(ν−1) if and only if u · ∇ has no H1 eigenfunctions other than
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constants. We call such incompressible flows relaxation enhancing flows. Since weakly mixing
flows are relaxation enhancing flows, the dissipation time for weakly mixing flows is at least
o(ν−1). In the particular case of shear flows a stronger estimate on the dissipation time can
be obtained using Theorem 1.1 in [11], which guarantees that

(1.3) τd 6 C
|ln ν|2

ν1/2 .

For us, we hope to generally obtain a rate of the dissipation time based on the "mixing rate"
of u. We quantify the mixing rate of u by imposing a rate at which these convergences occur.
Let X : Td → Td be the flow map of u defined by
(1.4) ∂tX = u(X(t), t) and X(0) = Id .
Recall, (strongly) mixing maps are those for which the correlation 〈f ◦X(t), g〉 decays to 0 as
t→∞ for all f, g ∈ L2

0. Here 〈·, ·〉 is used to denote the L2
0 inner-product. We say that the

vector field u is strongly 1, 1 mixing with rate function h if for all f ∈ Ḣ1, g ∈ Ḣ1 we have
|〈f ◦X(t), g〉| 6 h(t)‖f‖H1‖g‖H1 ,(1.5)

where h : [0,∞)→ [0,∞) is some continuous, decreasing function that vanishes at ∞ and Ḣ1

represents the homogeneous Sobolev space of order 1.
The rate of the dissipation time is given by the following theorem. Here for simplicity, only

strongly 1, 1 mixing case is discussed. Our method works for strongly α, β mixing with α > 0,
β > 0 as well.

Theorem 1.1. If u is strongly 1, 1 mixing with rate function h, then the dissipation time is
bounded by

(1.6) τd 6
C

νH1(ν) .

Here C is a universal constant, and H1 : (0,∞)→ (0,∞) is defined by

H1(µ) = sup
{
λ
∣∣∣ λ exp

(
4‖∇u‖L∞h−1( 1

2λ)
)

h−1( 1
2λ)

6
‖∇u‖2L∞

2µ
}
,(1.7)

where h−1 is the inverse function of h.

Based on Theorem 1.1, we can explicitly tell the rate of the dissipation time when the
mixing rate function h is explicit. We discuss two special cases below.

• If the mixing rate function h is a power law, i.e. h = c
tp , then

τd 6
C

ν|ln ν|p .

• If the mixing rate function h is exponential, i.e. h = c1 exp(−c2t), then

τd 6
C

νδ
, where δ

def= 4‖∇u‖L∞

c2 + 4‖∇u‖L∞
.

The above two cases were also recently studied by Coti Zelati, Delgadino and Elgindi [12].
Here the authors show that if the mixing rate is given by a power law, i.e. h = c

tp , then the
dissipation time is bounded by

(1.8) τd 6
C

ν2/2+p .
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Alternately, if the mixing rate is exponential, i.e. h = c1 exp(−c2t), then [12] shows that the
dissipation time is bounded by

(1.9) τd 6 C|ln ν|2 .

In both these cases, the bounds provided by [12] are stronger than those provided by our
theorem.

Recall that based on the work of Poon [6], the L2 norm of the solution satisfies a double
exponential lower bound (1.2). To the best of our knowledge, there are no incompressible
smooth divergence free vector fields for which the lower bound (1.2) is attained. Moreover,
recent work of Miles and Doering [13] suggests that the Batchelor length scale may limit the
long term effectiveness of mixing forcing only a single-exponential energy decay. However,
if we transform such problem from a continuous time setting into a discrete time setting,
then we can prove the lower bound (1.2) is sharp and can be attained by some exponentially
mixing map.

In the discrete time setting, we construct a so-called pulsed diffusion model, which is a
mixing dynamical system interposed with diffusion,

θn+1 = eν∆Uθn .(1.10)

Here U : L2(Td)→ L2(Td) is the Koopman operator associated with ϕ, which is defined by
Uf = f ◦ ϕ. And ϕ : Td → Td is a smooth volume preserving diffeomorphism. To connect
with the continuous case, here ϕ can be chosen as ϕ = X(1) where X is the flow map defined
in (1.4).

Similar to the continuous case, here we also study the dissipation time of the map ϕ which
is strongly 1, 1 mixing.

Theorem 1.2. If ϕ is strongly 1, 1 mixing with rate function h, then the dissipation time
satisfies the bound

τd 6
C

νH2(ν) .(1.11)

Here C is a universal constant which can be chosen to be 34, and H2 : (0,∞) → (0,∞) is
defined by

(1.12) H2(µ) def= sup
{
λ
∣∣∣ h( 1

2
√
λµ

)
6

1
2λ
}
.

As before, we compute the dissipation time τd in two useful cases.
• If the mixing rate function h is a power law, i.e. h = c

tp , then

(1.13) τd 6
C

ν2/(2+p) .

• If the mixing rate function h is exponential, i.e. h = c1 exp(−c2t), then

(1.14) τd 6 C|ln ν|2 .

In the discrete case, our results (1.13) , (1.14) are consistent with the results (1.8) , (1.9)
in [12]. We verify that toral automorphisms are nice candidates that satisfies strongly mixing
with exponential rate function h. Recall a toral automorphism is a map of the form

ϕ(x) = Ax (mod Zd) ,
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where A ∈ SLd(Z) is an integer valued d× d matrix with determinant 1. Maps of this form
are known as "cat maps", and one particular example is when d = 2 and

A =
(

2 1
1 1

)
.

We then explicitly calculate the dissipation time of pulsed diffusion driven by a toral automor-
phism, and find that

‖θn‖L2 6 exp(−Cνγt)‖θ0‖L2(1.15)

for some constants C > 0 and γ > 1. This matches with Poon’s lower bound (1.2). Together
with (1.2) and (1.15), we get the dissipation time τd for toral automorphism is of order |ln ν|.
For general exponentially mixing diffeomorphisms, however, it is not known whether the
dissipation time is still of order |ln ν|. According to our result in the discrete case (1.14), we
can only get the dissipation time τd is of order |ln ν|2. In the future, we hope to improve such
bound (1.14) when the map mixes exponentially, or find an exponentially mixing map which
gives a dissipation time of order |ln ν|2.

1.2. Markov Semigroups for SGD and Online PCA. Many nonconvex optimization
tasks involve finding desirable stationary points. The stochastic gradient decent algorithm
and its variants enjoy favorable computational and statistical efficiency and are hence popular
for these tasks. The optimization problem can be formulated as

min
x∈Rd

f(x) := Ef(x, ξ) ,(1.16)

where f(x, ξ) is the stochastic loss function and ξ is sampled from some distribution D. The
stochastic gradient descent (SGD) is then to consider

xn+1 = xn − η∇f(xn; ξn) ,(1.17)

where {ξn} are i.i.d. random variables sampled from the distribution D and independent of
{xn} and η is the learning rate. We expect that {xn} can lead to some approximation solution
to the optimization problem (1.16). It is straightforward to observe that the iteration {xn}
generated by (1.17) forms a discrete time, time-homogeneous Markov chain. Let Ex0 denote
the expectation under the distribution of this Markov chain starting from x0 and µn(·;x0) be
the law of xn. For a fixed test function ϕ ∈ L∞(Rd), we define

Un(x0) = Ex0ϕ(xn) =
∫
Rd
ϕ(y)µn(dy;x0) .(1.18)

Given the SGD (1.17), we find explicitly that

Un+1(x) = E(Un(x− η∇f(x; ξ))) =: SUn(x).(1.19)

Then, U0 = ϕ and {Sn}n≥0 forms a semigroup for the Markov chain. In [2], with J.-G. Liu
and L. Li, we study the properties of the discrete semigroup. Properties including regularity
preserving, L∞ contraction are discussed. This semigroup is the dual of the semigroup for
evolution of probability, while the latter is L1 contracting and positivity preserving. Based on
these properties of the semigroup, we show that the discrete semigroup can be approximated
by some continuous semigroup in the weak sense, namely we find a diffusion process which
solves an SDE and whose trajectory is close to the SGD trajectory in a weak sense.
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To be specific, for 0 6 n 6 bT/ηc, the dynamics of (1.17) can be approximated by the
following SDE with weak accuracy O(η2),

dXt = −∇(f(x) + 1
4η|∇f(x)|2) dt+

√
ηΣ dW ,(1.20)

where
Σ = Var(f(x, ξ)) .

For online PCA, we proceed in a similar way and obtain analogous results. This diffusion
approximation to SGD is also discussed in [14]. Our approach relies on semigroups. However,
this approximation in general is only valid for 0 6 n 6 bT/ηc but not for long time. The
difficulty is that the coefficients in (1.20) are unbounded and the behavior of the SDE is
indeed hard to investigate. In the future, we aim to overcome this difficulty.

1.3. Time-fractional 1-D Autonomous ODEs. Fractional calculus in continuous time
has been used widely in physics and engineering for memory effect, viscoelasticity, porous
media, etc [15–17]. Given a smooth function ϕ, letting n− 1 < γ < n, where n is an integer,
the Caputo derivative of order γ is defined as

Dγ
cϕ(t) = 1

Γ(n− γ)

∫ t

0

ϕ(n)(s)
(t− s)γ+1−n ds , t > 0 ,

which is the fractional integral of ϕ(n) with order n− γ. In [3, 4], we use a slightly modified
definition of the Caputo derivative in [5] to investigate the nonlinear fractional ODE
(1.21) Dγ

c u = f(u), u(0) = u0,

for γ ∈ (0, 1). Here f is locally Lipschitz with domain containing u0. It is well-known that the
solutions of 1-D autonomous ODEs with usual first order derivative are monotone, since the
solution curves never cross zeros of f and f(u) has a definite sign. One of our main results
is that if f ∈ C1 and f ′ is locally Lipschitz, the first order derivative of the solution to the
fractional ODE (1.21) does not change sign and therefore the solution is monotone.

Similar to PDEs, the comparison principles are also very important in the analysis of the
time-fractional PDEs. There are many versions of comparison principles proved in literature
using various definitions of Caputo Derivatives. In [3], with J.-G. Liu et. al, we assume
f(t, ·) to be non-decreasing. In [18, Lemma 2.6], f(t, ·) is assumed to be non-increasing,
In [19, Theorem 2.3], there is no restriction on the monotonicity of f(t, ·), but the function v is
assumed to be C1 so that the pointwise value of Dγ

c v can be defined. Inspired by the work [19],
we [4] establish a more generalized version of comparison principles with no monotonicity
assumption on function f(t, ·) and no C1 assumption on v.

Theorem 1.3. Suppose f(t, u) is continuous and locally Lipschitz in u. Let v(t) be a
continuous function. If Dγ

c v ≤ f(t, v) in the distributional sense, and Dγ
c u = f(t, u), with

v0 ≤ u0. Then, v ≤ u on the common interval. Similarly, if we have Dγ
c v ≥ f(t, v) as

distributions and v0 ≥ u0, then v ≥ u on the common interval.

Besides comparision principles, we also study the asymptotic behaviors for a class of
fractional ODEs (1.22).

Dγ
c u = Aup, u(0) = u0 > 0 .(1.22)

The reason for studying such a particular class of fractional ODEs is that typically a priori
estimates of certain energies of the solution to a fractional PDE have form Dγ

cE 6 AEp. By
the comparison principles mentioned above, the energy E may be controlled by the solution
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to fractional ODE (1.22). Hence studying the behavior of the solution to this fractional
ODE (1.22) is important for the analysis of fractional PDEs.

In [3], based on an Osgood type blow-up criteria, we find relatively sharp bounds of the
blow-up time Tb in the case A > 0, p > 1. These bounds indicate that as the memory effect
becomes stronger (γ → 0), if the initial value is big, the blow-up time Tb tends to zeros, while
if the initial value is small, the blow-up time Tb tends to infity. In the case A < 0, p < 1, we
show that the solution decays to zero more slowly compared with the usual derivative. Later
on, in [4], we give a complete description regarding the asymptotic behavior of the solution
curves to (1.22).

2. Future Work
In the future, I would like to continue working on problems about mixing and diffusion.

Also I will continue to investigate the machine learning algorithms from math point of view.
• Mixing. As mentioned at the end of Section 1.1, it is not known whether the bounds
we got so far are optimal. I will try to either improve the bounds or find some nice
mixing map to verify those bounds are optimal. Also, another interesting topic in this
area is to study the decay of H1 norm of the solution. In Section 1.1, we see that the
L2 norm of the solution decays at least exponentially fast, and can be tremendously
improved when the mixing map is sufficiently mixing. In such case, the behavior of
H1 norm of the solution is worth to study. And the long time behavior of the length
scale ‖θ‖2H1/‖θ‖2L2 also deserves to get explored.
• Machine learning algorithms. As I have already mentioned in Section 1.2, l hope to
study the long-time asymptotic behavior of the SGD. In the case that the stochastic
loss function f(·, ξ) is strongly convex, the dynamics of the SGD (1.17) is trapped and
we may approximate the dynamics for long time. The difficulty is that the coefficients
of the SDE (1.20) are unbounded and the behavior of the SDE is indeed hard to
investigate. To overcome this difficulty, with J.-G. Liu, L. Li et. al, we are currently
trying to use the formal asymptotic expansion to approximate the SGD for long time.

Besides what I mentioned above, I am glad to learn new tools and expand my research
areas. As already stated, I am interested broadly in applied mathematics, and happy to work
on any interesting problems arising in the interdisciplinary areas.
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