Problem Sheet 2

Xi Geng

February 15, 2014

Problem 1. Let V be an n-dimensional real vector space.

(1) Show that $v_1, \dots, v_k \in V$ are linearly independent if and only if

$$v_1 \wedge \cdots \wedge v_k \neq 0.$$

(2) Let $\{v_1, \dots, v_k\}$ be k linearly independent vectors in V, and $w \in \Lambda^r(V)$ $(1 \leq r \leq n)$. Show that there exists $\psi_1, \dots, \psi_k \in \Lambda^{r-1}(V)$ such that

$$w = v_1 \wedge \psi_1 + \dots + v_k \wedge \psi_k$$

if and only if

$$v_1 \wedge \cdots \wedge v_k \wedge w = 0.$$

(3) Write down the change of basis formula for $\Lambda^r(V)$.

(4) Let $0 \leq r \leq n$. For $\alpha \in \Lambda^r(V)$, define a linear map

$$A_{\alpha}: \Lambda^{n-r}(V) \to \Lambda^n(V)$$

by $A_{\alpha}(\beta) = \alpha \wedge \beta$. Show that the map $\alpha \mapsto A_{\alpha}$ is a linear isomorphism from $\Lambda^{r}(V)$ to $\operatorname{End}(\Lambda^{n-r}(V), \Lambda^{n}(V))$, where $\operatorname{End}(\Lambda^{n-r}(V), \Lambda^{n}(V))$ denotes the space of linear maps from $\Lambda^{n-r}(V)$ to $\Lambda^{n}(V)$.

Problem 2. (1) Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ be given by F(x, y, z) = (xy, yz, zx). Calculate $F^*(xdy \wedge dz)$ and $F^*(xdy + ydz)$.

(2) Let M be an *n*-dimensional manifold, and let $\omega_1, \dots, \omega_k$ be k one forms which are pointwisely linearly independent $(k \leq n)$. Let $\theta_1, \dots, \theta_k$ be k one forms such that

$$\sum_{i=1}^{k} \theta_i \wedge \omega_i = 0.$$

Show that there exists $A_{ij} \in C^{\infty}(M)$ with $A_{ij} = A_{ji}$ such that

$$\theta_i = \sum_{j=1}^k A_{ij}\omega_j, \ \forall i = 1, \cdots, k.$$

This is called *Cartan's Lemma*.

(3) Let ω be an r-form on a manifold M, and X_1, \dots, X_{r+1} be r+1 smooth vector fields. Show that

$$d\omega(X_1, \cdots, X_{r+1}) = \sum_{i=1}^{r+1} (-1)^{i+1} X_i(\langle X_1 \wedge \cdots \wedge \widehat{X_i} \wedge \cdots \wedge X_{r+1}, \omega \rangle) + \sum_{1 \leq i < j \leq r+1} (-1)^{i+j} \langle [X_i, X_j] \wedge X_1 \wedge \cdots \rangle \\\wedge \widehat{X_i} \wedge \cdots \wedge \widehat{X_j} \wedge \cdots \wedge X_{r+1}, \omega \rangle,$$

Here $\hat{\cdot}$ means removing the term, and the evaluation on the L.H.S. and $\langle \cdot, \cdot \rangle$ are defined pointwisely, where $\langle \cdot, \cdot \rangle$ is the pairing defined in the notes (see (2.13) in Section 2.2).

Problem 3. (1) Show that every smooth vector field on a compact manifold is complete.

(2) Find the smooth vector fields X, Y, Z on \mathbb{R}^2 given by the following three one-parameter groups of diffeomorphisms.

Show that the Lie bracket of any pair of X, Y, Z is a linear combination of X, Y, Z with constant coefficients.

(3) For an $n \times n$ matrix C, define the exponential of C by

$$\exp C = \sum_{i=0}^{\infty} \frac{C^n}{n!}.$$

Show that this is well-defined. Given an $n \times n$ matrix A, consider the smooth vector field X on \mathbb{R}^n defined by

$$X = \sum_{i,j=1}^{n} A_j^i x^j \frac{\partial}{\partial x^i}.$$

Integrate this vector field to a one-parameter group of diffeomorphisms on \mathbb{R}^n .

(4) Let g be the symmetric (0, 2)-type tensor on \mathbb{R}^2 given by

$$g = dx \otimes dx + dy \otimes dy.$$

A smooth vector field X on \mathbb{R}^2 is called a *Killing vector field* if

$$L_X g = 0.$$

Characterize all Killing vector fields on \mathbb{R}^2 . Moreover, for each Killing vector field X, integrate X to a one-parameter group of diffeomorphisms.

Problem 4. (1) Let (M, φ) be an immersion in \mathbb{R}^{n+1} , where M is an *n*-dimensional manifold. Show that M is orientable if and only if there exists a smooth map

$$N: M \to \mathbb{R}^{n+1}$$

such that N(p) is orthogonal to $(d\varphi)_p(T_pM)$, where we identify $T_{\varphi(p)}\mathbb{R}^{n+1} \cong \mathbb{R}^{n+1}$.

(2) Let $F : \mathbb{R}^{n+1} \to \mathbb{R}$ be a C^{∞} map and $c \in \mathbb{R}$. Assume that for any $a \in F^{-1}(c), (dF)_a$ is surjective. Show that $F^{-1}(c)$ is orientable (for the manifold structure of $F^{-1}(c)$ see Theorem 1.8 in the notes).

(3) Show that the product of two orientable manifolds is orientable.

(4) Show that the *n*-sphere S^n is orientable, and the *n*-dimensional real projective space $\mathbb{R}P^n$ is orientable if and only if *n* is odd. Is $S^2 \times \mathbb{R}P^2$ orientable? How about $\mathbb{R}P^2 \times \mathbb{R}P^2$?

(5) Let M be the set of straight lines in \mathbb{R}^2 . Let U_0 be the set of non-vertical lines, and for each $l \in U_0$, the equation of l is given uniquely by

y = ax + b.

Define $\varphi_0 : U_0 \to \mathbb{R}^2$ by $\varphi_0(l) = (a, b)$. Similarly, let U_1 be the set of nonhorizontal lines and define $\varphi_1 : U_1 \to \mathbb{R}^2$ be $\varphi_1(l) = (c, d)$ where l is uniquely given by

$$x = cy + d.$$

Show that $\{(U_0, \varphi_0), (U_1, \varphi_1)\}$ defines an atlas on M which makes M a two dimensional manifold. Is M orientable?

Problem 5. Consider the embedding $i: S^n \to \mathbb{R}^{n+1}$. Define an *n*-form ω on \mathbb{R}^{n+1} by

$$\omega = \sum_{i=0}^{n+1} (-1)^i x_i dx^0 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n.$$

Show that the pull back $i^*\omega$ is nonvanishing on S^n and hence defines an orientation on S^n . Under this orientation, compute $\int_{S^n} i^*\omega$.