Problem Sheet 2

Xi Geng

February 15, 2014

Problem 1. Let V be an n-dimensional real vector space.
(1) Show that $v_{1}, \cdots, v_{k} \in V$ are linearly independent if and only if

$$
v_{1} \wedge \cdots \wedge v_{k} \neq 0
$$

(2) Let $\left\{v_{1}, \cdots, v_{k}\right\}$ be k linearly independent vectors in V, and $w \in \Lambda^{r}(V)$ $(1 \leqslant r \leqslant n)$. Show that there exists $\psi_{1}, \cdots, \psi_{k} \in \Lambda^{r-1}(V)$ such that

$$
w=v_{1} \wedge \psi_{1}+\cdots+v_{k} \wedge \psi_{k}
$$

if and only if

$$
v_{1} \wedge \cdots \wedge v_{k} \wedge w=0
$$

(3) Write down the change of basis formula for $\Lambda^{r}(V)$.
(4) Let $0 \leqslant r \leqslant n$. For $\alpha \in \Lambda^{r}(V)$, define a linear map

$$
A_{\alpha}: \Lambda^{n-r}(V) \rightarrow \Lambda^{n}(V)
$$

by $A_{\alpha}(\beta)=\alpha \wedge \beta$. Show that the map $\alpha \mapsto A_{\alpha}$ is a linear isomorphism from $\Lambda^{r}(V)$ to $\operatorname{End}\left(\Lambda^{n-r}(V), \Lambda^{n}(V)\right)$, where $\operatorname{End}\left(\Lambda^{n-r}(V), \Lambda^{n}(V)\right)$ denotes the space of linear maps from $\Lambda^{n-r}(V)$ to $\Lambda^{n}(V)$.

Problem 2. (1) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $F(x, y, z)=(x y, y z, z x)$. Calculate $F^{*}(x d y \wedge d z)$ and $F^{*}(x d y+y d z)$.
(2) Let M be an n-dimensional manifold, and let $\omega_{1}, \cdots, \omega_{k}$ be k one forms which are pointwisely linearly independent $(k \leqslant n)$. Let $\theta_{1}, \cdots, \theta_{k}$ be k one forms such that

$$
\sum_{i=1}^{k} \theta_{i} \wedge \omega_{i}=0
$$

Show that there exists $A_{i j} \in C^{\infty}(M)$ with $A_{i j}=A_{j i}$ such that

$$
\theta_{i}=\sum_{j=1}^{k} A_{i j} \omega_{j}, \forall i=1, \cdots, k
$$

This is called Cartan's Lemma.
(3) Let ω be an r-form on a manifold M, and X_{1}, \cdots, X_{r+1} be $r+1$ smooth vector fields. Show that

$$
\begin{aligned}
d \omega\left(X_{1}, \cdots, X_{r+1}\right)= & \sum_{i=1}^{r+1}(-1)^{i+1} X_{i}\left(\left\langle X_{1} \wedge \cdots \wedge \widehat{X_{i}} \wedge \cdots \wedge X_{r+1}, \omega\right\rangle\right) \\
& +\sum_{1 \leqslant i<j \leqslant r+1}(-1)^{i+j}\left\langle\left[X_{i}, X_{j}\right] \wedge X_{1} \wedge \cdots\right. \\
& \left.\wedge \widehat{X}_{i} \wedge \cdots \wedge \widehat{X_{j}} \wedge \cdots \wedge X_{r+1}, \omega\right\rangle
\end{aligned}
$$

Here $\widehat{\cdot}$ means removing the term, and the evaluation on the L.H.S. and $\langle\cdot, \cdot\rangle$ are defined pointwisely, where $\langle\cdot, \cdot\rangle$ is the pairing defined in the notes (see (2.13) in Section 2.2).

Problem 3. (1) Show that every smooth vector field on a compact manifold is complete.
(2) Find the smooth vector fields X, Y, Z on \mathbb{R}^{2} given by the following three one-parameter groups of diffeomorphisms.
(i) $\varphi_{t}\left(x^{1}, x^{2}\right)=\left(x^{1}+t, x^{2}\right)$.
(ii) $\varphi_{t}\left(x^{1}, x^{2}\right)=\left(x^{1}, x^{2}+t\right)$.
(iii) $\varphi_{t}\left(x^{1}, x^{2}\right)=\left(x^{1} \cos t+x^{2} \sin t,-x^{1} \sin t+x^{2} \cos t\right)$.

Show that the Lie bracket of any pair of X, Y, Z is a linear combination of X, Y, Z with constant coefficients.
(3) For an $n \times n$ matrix C, define the exponential of C by

$$
\exp C=\sum_{i=0}^{\infty} \frac{C^{n}}{n!}
$$

Show that this is well-defined. Given an $n \times n$ matrix A, consider the smooth vector field X on \mathbb{R}^{n} defined by

$$
X=\sum_{i, j=1}^{n} A_{j}^{i} x^{j} \frac{\partial}{\partial x^{i}}
$$

Integrate this vector field to a one-parameter group of diffeomorphisms on \mathbb{R}^{n}.
(4) Let g be the symmetric (0,2)-type tensor on \mathbb{R}^{2} given by

$$
g=d x \otimes d x+d y \otimes d y
$$

A smooth vector field X on \mathbb{R}^{2} is called a Killing vector field if

$$
L_{X} g=0
$$

Characterize all Killing vector fields on \mathbb{R}^{2}. Moreover, for each Killing vector field X, integrate X to a one-parameter group of diffeomorphisms.

Problem 4. (1) Let (M, φ) be an immersion in \mathbb{R}^{n+1}, where M is an n dimensional manifold. Show that M is orientable if and only if there exists a smooth map

$$
N: M \rightarrow \mathbb{R}^{n+1}
$$

such that $N(p)$ is orthogonal to $(d \varphi)_{p}\left(T_{p} M\right)$, where we identify $T_{\varphi(p)} \mathbb{R}^{n+1} \cong$ \mathbb{R}^{n+1}.
(2) Let $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a C^{∞} map and $c \in \mathbb{R}$. Assume that for any $a \in F^{-1}(c),(d F)_{a}$ is surjective. Show that $F^{-1}(c)$ is orientable (for the manifold structure of $F^{-1}(c)$ see Theorem 1.8 in the notes).
(3) Show that the product of two orientable manifolds is orientable.
(4) Show that the n-sphere S^{n} is orientable, and the n-dimensional real projective space $\mathbb{R} P^{n}$ is orientable if and only if n is odd. Is $S^{2} \times \mathbb{R} P^{2}$ orientable? How about $\mathbb{R} P^{2} \times \mathbb{R} P^{2}$?
(5) Let M be the set of straight lines in \mathbb{R}^{2}. Let U_{0} be the set of non-vertical lines, and for each $l \in U_{0}$, the equation of l is given uniquely by

$$
y=a x+b
$$

Define $\varphi_{0}: \quad U_{0} \rightarrow \mathbb{R}^{2}$ by $\varphi_{0}(l)=(a, b)$. Similarly, let U_{1} be the set of nonhorizontal lines and define $\varphi_{1}: U_{1} \rightarrow \mathbb{R}^{2}$ be $\varphi_{1}(l)=(c, d)$ where l is uniquely given by

$$
x=c y+d .
$$

Show that $\left\{\left(U_{0}, \varphi_{0}\right),\left(U_{1}, \varphi_{1}\right)\right\}$ defines an atlas on M which makes M a two dimensional manifold. Is M orientable?

Problem 5. Consider the embedding $i: S^{n} \rightarrow \mathbb{R}^{n+1}$. Define an n-form ω on \mathbb{R}^{n+1} by

$$
\omega=\sum_{i=0}^{n+1}(-1)^{i} x_{i} d x^{0} \wedge \cdots \wedge \widehat{d x^{i}} \wedge \cdots \wedge d x^{n}
$$

Show that the pull back $i^{*} \omega$ is nonvanishing on S^{n} and hence defines an orientation on S^{n}. Under this orientation, compute $\int_{S^{n}} i^{*} \omega$.

