Problem Sheet 1

Xi Geng

February 5, 2014

Problem 1. (1) Consider \mathbb{R} as an additive group, and \mathbb{Z} to be the subgroup of integers. Let $M=\mathbb{R} / \mathbb{Z}$ be the quotient group, and

$$
\begin{aligned}
p: \mathbb{R} & \rightarrow \mathbb{R} / \mathbb{Z} \\
x & \mapsto x+\mathbb{Z}=\{x+z: z \in \mathbb{Z}\}
\end{aligned}
$$

be the quotient homomorphism. Set $U_{1}=p(0,1)$ and $U_{2}=p\left(-\frac{1}{2}, \frac{1}{2}\right)$, where $(0,1),\left(-\frac{1}{2}, \frac{1}{2}\right)$ are the open intervals in \mathbb{R}. By definition it is obvious that p is injective when restricted to $(0,1)$ or $\left(-\frac{1}{2}, \frac{1}{2}\right)$. Let

$$
\varphi_{1}=p^{-1}: U_{1} \rightarrow(0,1), \varphi_{2}=p^{-1}: U_{2} \rightarrow\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

Show that $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right)\right\}$ defines an atlas on M, which makes M into a one dimensional manifold. Moreover, show that p is a local diffeomorphism and M is diffeomorphic to S^{1}.
(2) Let M be the extended complex plane $M=\mathbb{C} \cup\{\infty\}$ (one can just think of " ∞ " as some abstract element not in \mathbb{C}). Let $U_{1}=\mathbb{C}$ with

$$
\varphi_{1}: U_{1} \rightarrow \mathbb{C} \cong \mathbb{R}^{2}, \varphi_{1}(z)=z
$$

and $U_{2}=\mathbb{C} \backslash\{0\} \cup\{\infty\}$ with

$$
\varphi_{2}: U_{2} \rightarrow \mathbb{C} \cong \mathbb{R}^{2}
$$

defined by

$$
\varphi_{2}(z)= \begin{cases}z^{-1}, & z \neq \infty \\ 0, & z=\infty\end{cases}
$$

Show that $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right)\right\}$ defines an atlas on M, which makes M into a two dimensional manifold. Moreover, show that M is diffeomorphic to S^{2}. M is usually called the Riemann Sphere.
(3) Let $S^{n} \subset \mathbb{R}^{n+1}$ be the n-sphere, and let $U_{1}=S^{n} \backslash\{(0, \cdots, 0,1)\}$ and $U_{2}=S^{n} \backslash\{(0, \cdots, 0,-1)\}$. For $x=\left(x^{0}, \cdots, x^{n}\right) \in U_{1}$, define $\varphi_{1}(x)$ to be the point in \mathbb{R}^{n} such that the straight line in \mathbb{R}^{n+1} joining $(0, \cdots, 0,1)$ to x meets the plane $x^{n}=-1$ at the point $\left(\varphi_{1}(x),-1\right) \in \mathbb{R}^{n+1}$. Similarly, for $x \in U_{2}$, define $\varphi_{2}(x)$ to be the point in \mathbb{R}^{n} such that the straight line in \mathbb{R}^{n+1} joining
$(0, \cdots, 0,-1)$ to x meets the plane $x^{n}=1$ at the point $\left(\varphi_{2}(x), 1\right) \in \mathbb{R}^{n+1}$. Show that for $i=1,2, \varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is a bijection, and $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right)\right\}$ defines an atlas on S^{n} which is compatible with the one introduced in notes. Such construction is called the stereographic projection.

Problem 2. (1) Show that the notion of open sets introduced in the notes defines a topology on the manifold, and it is independent of the choice of atlases in the differential structure.
(2) Under the manifold topology, for any open set U of M and $p \in U$, show that there exists some open set V such that \bar{V} is compact and

$$
p \in V \subset \bar{V} \subset U
$$

Problem 3. (1) Let

$$
f(t)= \begin{cases}\mathrm{e}^{-\frac{1}{t}}, & t>0 \\ 0, & t \leqslant 0\end{cases}
$$

Show that $f \in C^{\infty}\left(\mathbb{R}^{1}\right)$. Let

$$
g(t)=\frac{f(t)}{f(t)+f(1-t)}
$$

sketch the graph of g.
(2) Construct $h \in C^{\infty}\left(\mathbb{R}^{1}\right)$, such that

$$
h(t)= \begin{cases}1, & |t| \leqslant 1 \\ 0, & |t| \geqslant 2\end{cases}
$$

Starting from this, construct a function $k\left(x^{1}, \cdots, x^{n}\right) \in C^{\infty}\left(\mathbb{R}^{n}\right)$, such that k is identically 1 in a ball of radius r and identically 0 outside the ball of radius $2 r$ with the same center, where $r>0$.
(3) Let M be a manifold, and U, V be open sets of M such that \bar{U} is compact and

$$
U \subset \bar{U} \subset V
$$

prove that there exists $f \in C^{\infty}(M)$, such that

$$
f(p)= \begin{cases}1, & p \in \bar{U} \\ 0, & p \notin V\end{cases}
$$

This f is called a bump function.
Problem 4. (1) Let $f: S^{n} \rightarrow \mathbb{R} P^{n}$ be the map which associates to each unit vector in \mathbb{R}^{n+1} the one dimensional vector space it spans. Show that f is a smooth surjective map, and it is a local diffeomorphism. Moreover, show that $\mathbb{R} P^{n}$ is Hausdorff.
(2) Let $A: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ be an invertible linear transformation. Show that A maps the set $\mathbb{R} P^{n}$ bijectively to itself. Show further that this defines a diffeomorphism F from $\mathbb{R} P^{n}$ to itself.

Problem 5. Let M be a manifold and let $p \in M$. Let Γ_{p} be the space of smooth curves γ through p, that is, $\gamma:(-\delta, \delta) \rightarrow M$ with $\gamma(0)=p$, for some $\delta>0$.
(1) For each $\gamma \in \Gamma_{p}$, define a functional on the space \mathcal{F}_{p} of C^{∞} germs at p by

$$
\ll \gamma,[f] \gg=\left.\frac{d}{d t}\right|_{t=0} f \circ \gamma(t),[f] \in \mathcal{F}_{p}
$$

Show that $\ll \gamma, \cdot \gg$ is well-defined and linear.
(2) Show that

$$
\mathcal{H}_{p}=\left\{[f] \in \mathcal{F}_{p}: \ll \gamma,[f] \gg=0 \text { for all } \gamma \in \Gamma_{p}\right\}
$$

where \mathcal{H}_{p} is the linear subspace of \mathcal{F}_{p} introduced in the notes. It follows that each $\gamma \in \Gamma_{p}$ defines a linear functional $\ll \gamma, \cdot \gg$ on the cotangent space $T_{p}^{*} M=$ $\mathcal{F}_{p} / \mathcal{H}_{p}$ by

$$
\ll \gamma,(d f)_{p} \gg=\ll \gamma,[f] \gg
$$

where $[f]$ is any representative in $(d f)_{p}$.
(3) Introduce an equivalence relation " \sim " on Γ_{p} by

$$
\gamma \sim \gamma^{\prime} \Longleftrightarrow \ll \gamma,(d f)_{p} \gg=\ll \gamma^{\prime},(d f)_{p} \gg, \forall(d f)_{p} \in T_{p}^{*} M
$$

Define a mapping $\Phi: \Gamma_{p} / \sim \rightarrow T_{p} M=\left(T_{p}^{*} M\right)^{*}$ by

$$
\left\langle\Phi([\gamma]),(d f)_{p}\right\rangle=\ll \gamma,(d f)_{p} \gg,(d f)_{p} \in T_{p}^{*} M
$$

where Γ_{p} / \sim is the space of \sim-equivalence classes and γ is any representative in $[\gamma]$. Show that Φ is well-defined, and it is a bijection. This shows that each $[\gamma]$ is canonically identified with a tangent vector representating the "direction" of $[\gamma]$. In the case when M is a submanifold of $\mathbb{R}^{N}, \gamma \sim \gamma^{\prime}$ is equivalent to saying that γ and γ^{\prime} are tangent to each other at p (or have the same tangent vector at p in the classical sense).

Problem 6. (1) Show that the manifold topology of the tangent bundle $T M$ induced by the differential structure constructed in the notes, is Hausdorff and has a second countable base of open sets.
(2) Consider the n-sphere $S^{n} \subset \mathbb{R}^{n+1}$. For any $x \in S^{n}$, show that $T_{x} S^{n}$ is naturally isomorphic to the vector space

$$
\left\{y \in \mathbb{R}^{n+1}: y \cdot x=0\right\}
$$

where "." is the inner product in \mathbb{R}^{n+1}. If n is an odd number, construct a non-vanishing smooth vector field on S^{n}.

