21-241: Matrix Algebra - Summer I, 2006 Practice Exam 1

1. If $A=\left(\begin{array}{cc}1 & -2 \\ -2 & 5\end{array}\right)$ and $A B=\left(\begin{array}{ccc}-1 & 2 & -1 \\ 6 & -9 & 3\end{array}\right)$, determine the first and second columns of B. Solution. Since A has size 2×2 and $A B$ has size $2 \times 3, B$ has size 2×3. Suppose $B=\left(\begin{array}{lll}a & c & * \\ b & d & *\end{array}\right)$. By the rule of matrix multiplication,

$$
A B=\left(\begin{array}{ccc}
a-2 b & c-2 d & * \\
-2 a+5 b & -2 c+5 d & *
\end{array}\right) .
$$

Therefore, we have the following linear system:

$$
\begin{aligned}
a-2 b & =-1 \\
-2 a+5 b & =6 \\
c-2 d & =2 \\
-2 c+5 d & =-9
\end{aligned}
$$

Solving the system, we get $a=7, b=4, c=-8, d=-5$. So the first and second columns of B are $\binom{7}{4}$ and $\binom{-8}{-5}$.
2. Two matrices A and B are said to be similar, denoted $A \sim B$, if there exists an invertible matrix P such that $B=P^{-1} A P$. Prove:
(a) $A \sim A$.
(b) If $A \sim B$, then $B \sim A$.
(c) If $A \sim B$ and $B \sim C$, then $A \sim C$.

Proof. (a) Taking P as the identity matrix I, we have $A=I^{-1} A I$. So $A \sim A$.
(b) Since $A \sim B$, there exists an invertible matrix P such that $B=P^{-1} A P$. Notice that $Q=P^{-1}$ is also invertible, and $A=Q^{-1} B Q$. So $B \sim A$.
(c) Since $A \sim B$ and $B \sim C$, there exist invertible matrices P and Q such that $B=P^{-1} A P$, $C=Q^{-1} B Q$. Notice that $P Q$ is also invertible, and $C=Q^{-1} B Q=Q^{-1} P^{-1} A P Q=(P Q)^{-1} A(P Q)$. So $A \sim C$.
3. (a) Explain why the inverse of a permutation matrix equals its transpose: $P^{-1}=P^{T}$.
(b) If $A^{-1}=A^{T}$, is A necessarily a permutation matrix? Give a proof or a counterexample to support your conclusion.
Solution. (a) A permutation matrix is the product of a sequence of interchange elementary matrices. Suppose $P=E_{1} E_{2} \cdots E_{n}$, each E_{i} interchanges some two rows of the identity matrix. It's obvious that E_{i} is symmetric, so $E_{i}^{T}=E_{i}$. Also, we have $E_{i}^{2}=I$ because applying the same interchange trice returns to the identity. Therefore,

$$
\begin{aligned}
P P^{T} & =\left(E_{1} E_{2} \cdots E_{n}\right)\left(E_{1} E_{2} \cdots E_{n}\right)^{T}=\left(E_{1} E_{2} \cdots E_{n}\right)\left(E_{n}^{T} E_{n-1}^{T} \cdots E_{1}^{T}\right) \\
& =\left(E_{1} E_{2} \cdots E_{n}\right)\left(E_{n} E_{n-1} \cdots E_{1}\right)=E_{1} \cdots E_{n-1} E_{n}^{2} E_{n-1} \cdots E_{1} \\
& =E_{1} \cdots E_{n-1} E_{n-1} \cdots E_{1}=\cdots=I,
\end{aligned}
$$

which implies $P^{-1}=P^{T}$.
(b) No. Let $A=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$. Then $A^{-1}=A^{T}=A$. But A is not a permutation matrix, because it can't be obtained by interchanging rows of the identity matrix. (If we look at -1 as a 1×1 matrix, it's just an even simpler counterexample.)
4. Suppose A, B, and X are $n \times n$ matrices with A, X, and $A-A X$ invertible, and suppose

$$
\begin{equation*}
(A-A X)^{-1}=X^{-1} B \tag{1}
\end{equation*}
$$

(a) Is B invertible? Explain why.
(b) Solve (1) for X. If you need to invert a matrix, explain why that matrix is invertible.

Solution. (a) Yes. From (1) we get $B=X(A-A X)^{-1}$, the product of two invertible matrices X and $(A-A X)^{-1}$. So B is invertible.
(b) Since $(A-A X)^{-1}, X^{-1}$ and B are invertible, from (1) we have

$$
A-A X=\left((A-A X)^{-1}\right)^{-1}=\left(X^{-1} B\right)^{-1}=B^{-1} X
$$

or,

$$
\begin{equation*}
A=\left(A+B^{-1}\right) X \tag{2}
\end{equation*}
$$

Since X is invertible, $A+B^{-1}=A X^{-1}$, which is the product of two invertible matrices A and X^{-1}. Therefore, $A+B^{-1}$ is invertible, and thus, from (2), we have $X=\left(A+B^{-1}\right)^{-1} A$.
5. Find the determinant of the following Vandermonde matrix:

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
a & b & c & d \\
a^{2} & b^{2} & c^{2} & d^{2} \\
a^{3} & b^{3} & c^{3} & d^{3}
\end{array}\right)
$$

Solution. We reduce A^{T} to an upper triangular matrix by elementary row operations.

$$
\begin{aligned}
& A^{T}=\left(\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
1 & b & b^{2} & b^{3} \\
1 & c & c^{2} & c^{3} \\
1 & d & d^{2} & d^{3}
\end{array}\right) \xrightarrow[R_{4}-R_{1}]{\substack{R_{2}-R_{1} \\
R_{3}-R_{1}}}\left(\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
0 & b-a & b^{2}-a^{2} & b^{3}-a^{3} \\
0 & c-a & c^{2}-a^{2} & c^{3}-a^{3} \\
0 & d-a & d^{2}-a^{2} & d^{3}-a^{3}
\end{array}\right) \\
& \xrightarrow[R_{4} /(d-a)]{\substack{R_{2} /(b-a)}}\left(\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
0 & 1 & b+a & b^{2}+b a+a^{2} \\
0 & 1 & c+a & c^{2}+c a+a^{2} \\
0 & 1 & d+a & d^{2}+d a+a^{2}
\end{array}\right) \xrightarrow[R_{4}-R_{2}]{R_{3}-R_{2}}\left(\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
0 & 1 & b+a & b^{2}+b a+a^{2} \\
0 & 0 & c-b & c^{2}-b^{2}+c a-b a \\
0 & 0 & d-b & d^{2}-b^{2}+d a-b a
\end{array}\right) \\
& \xrightarrow[R_{4} /(d-b)]{R_{3} /(c-b)}\left(\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
0 & 1 & b+a & b^{2}+b a+a^{2} \\
0 & 0 & 1 & c+b+a \\
0 & 0 & 1 & d+b+a
\end{array}\right) \xrightarrow{R_{4}-R_{3}}\left(\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
0 & 1 & b+a & b^{2}+b a+a^{2} \\
0 & 0 & 1 & c+b+a \\
0 & 0 & 0 & d-c
\end{array}\right)
\end{aligned}
$$

Therefore, $\operatorname{det} A=\operatorname{det} A^{T}=(b-a)(c-a)(d-a)(c-b)(d-b)(d-c)$.
6. When does the follow system have (i) a unique solution? (ii) no solution? (iii) infinitely many solutions?

$$
\begin{aligned}
x+3 y-2 z & =2 \\
y+z & =-5 \\
x+2 y-3 z & =a \\
-2 x-8 y+4 z & =b
\end{aligned}
$$

Solution. We reduce the augmented matrix to echelon form.

$$
\begin{aligned}
&\left(\begin{array}{ccc|c}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
1 & 2 & -3 & a \\
-2 & -8 & 4 & b
\end{array}\right) \xrightarrow[R_{4}+2 R_{1}]{R_{3}-R_{1}}\left(\begin{array}{ccc|c}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
0 & -1 & -1 & a-2 \\
0 & -2 & 0 & b+4
\end{array}\right) \xrightarrow[R_{4}+2 R_{2}]{R_{3}+R_{2}}\left(\begin{array}{ccc|c}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
0 & 0 & 0 & a-7 \\
0 & 0 & 2 & b-6
\end{array}\right) \\
& \xrightarrow{R_{3} \leftrightarrow R_{4}}\left(\begin{array}{ccc|c}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
0 & 0 & 2 & b-6 \\
0 & 0 & 0 & a-7
\end{array}\right)
\end{aligned}
$$

Now we see each column contains a pivot, so the system can't have infinitely many solutions. When $a-7=0$, or $a=7$, the system is consistent and has a unique solution. When $a \neq 7$, the system is inconsistent and has no solution.
7. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$, show that $K=A A^{T}$ is well-defined, symmetric matrix. Find the $L D L^{T}$ factorization of K.
Solution. A has size 2×3, and A^{T} has size 3×2. So $K=A A^{T}$ is well-defined. K is symmetric because $K^{T}=\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}=K$. Symmetry can also be seen by direct computation:

$$
K=A A^{T}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)=\left(\begin{array}{ll}
14 & 32 \\
32 & 77
\end{array}\right)
$$

To find the $L D L^{T}$ factorization, we apply Gaussian method to K :

$$
\begin{array}{lll}
\left(\begin{array}{ll}
14 & 32 \\
32 & 77
\end{array}\right) & \xrightarrow{R_{2}-(16 / 7) R_{1}} & \left(\begin{array}{cc}
14 & 32 \\
0 & 27 / 7
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \longrightarrow & \left(\begin{array}{cc}
1 & 0 \\
16 / 7 & 1
\end{array}\right)=U
\end{array}
$$

and $D=\left(\begin{array}{cc}14 & 0 \\ 0 & 27 / 7\end{array}\right)$, the diagonal part of U. Thus the $L D L^{T}$ factorization of K is

$$
\left(\begin{array}{ll}
14 & 32 \\
32 & 77
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
16 / 7 & 1
\end{array}\right)\left(\begin{array}{cc}
14 & 0 \\
0 & 27 / 7
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
16 / 7 & 1
\end{array}\right)^{T}
$$

8. Use the Gauss-Jordan method to find the inverse of the following complex matrix:

$$
\left(\begin{array}{ccc}
0 & 1 & -\mathrm{i} \\
\mathrm{i} & 0 & -1 \\
-1 & \mathrm{i} & 1
\end{array}\right)
$$

SOLUTION.

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
0 & 1 & -\mathrm{i} & 1 & 0 & 0 \\
\mathrm{i} & 0 & -1 & 0 & 1 & 0 \\
-1 & \mathrm{i} & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{ccc|ccc}
-1 & \mathrm{i} & 1 & 0 & 0 & 1 \\
\mathrm{i} & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & -\mathrm{i} & 1 & 0 & 0
\end{array}\right) \xrightarrow{R_{1} \times(-1)}\left(\begin{array}{ccc|ccc}
1 & -\mathrm{i} & -1 & 0 & 0 & -1 \\
\mathrm{i} & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & -\mathrm{i} & 1 & 0 & 0
\end{array}\right) \\
& \xrightarrow{R_{2}-\mathrm{i} R_{1}}\left(\begin{array}{ccc|ccc}
1 & -\mathrm{i} & -1 & 0 & 0 & -1 \\
0 & -1 & \mathrm{i}-1 & 0 & 1 & \mathrm{i} \\
0 & 1 & -\mathrm{i} & 1 & 0 & 0
\end{array}\right) \xrightarrow{R_{2} \times(-1)}\left(\begin{array}{ccc|ccc}
1 & -\mathrm{i} & -1 & 0 & 0 & -1 \\
0 & 1 & 1-\mathrm{i} & 0 & -1 & -\mathrm{i} \\
0 & 1 & -\mathrm{i} & 1 & 0 & 0
\end{array}\right) \\
& \xrightarrow[R_{3}-R_{2}]{R_{1}+\mathrm{i} R_{2}}\left(\begin{array}{ccc|ccc}
1 & 0 & \mathrm{i} & 0 & -\mathrm{i} & 0 \\
0 & 1 & 1-\mathrm{i} & 0 & -1 & -\mathrm{i} \\
0 & 0 & -1 & 1 & 1 & \mathrm{i}
\end{array}\right) \xrightarrow{R_{3} \times(-1)}\left(\begin{array}{ccc|ccc}
1 & 0 & \mathrm{i} & 0 & -\mathrm{i} & 0 \\
0 & 1 & 1-\mathrm{i} & 0 & -1 & -\mathrm{i} \\
0 & 0 & 1 & -1 & -1 & -\mathrm{i}
\end{array}\right) \\
& \xrightarrow[R_{2}-(1-\mathrm{i}) R_{3}]{R_{1}-\mathrm{i} R_{3}}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & \mathrm{i} & 0 & -1 \\
0 & 1 & 0 & 1-\mathrm{i} & -\mathrm{i} & 1 \\
0 & 0 & 1 & -1 & -1 & -\mathrm{i}
\end{array}\right)
\end{aligned}
$$

So,

$$
\left(\begin{array}{ccc}
0 & 1 & -\mathrm{i} \\
\mathrm{i} & 0 & -1 \\
-1 & \mathrm{i} & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
\mathrm{i} & 0 & -1 \\
1-\mathrm{i} & -\mathrm{i} & 1 \\
-1 & -1 & -\mathrm{i}
\end{array}\right)
$$

