21-241: Matrix Algebra — Summer I, 2006
Homework 4 Solutions

Wednesday, June 14

4.1.2 Since f is a sum of squares, f > 0. The equality holds if and only if both summands are zeros, i.e.,

3r—2y+1=0,
20 +y+2=0.
This system has a unique solution (z*,y*) = (—%, —%), which is the only minimizer of f. O

_ _1
4.2.3 (a) K = <11 41>, f= < 02), ¢ = —1. By Gaussian,

(1 —1 —;>RQ+31< 1 )
1 4

0 0 -
Therefore, K is positive definite, the quadratic function has a minimum. By back substitution,

DO = D[

the minimizer is (—%, —#)7, the minimum value is —%.
1 3 -1 .
(c) K = < 5 :2)) >,f: ( 1 ), ¢ = 0. By Gaussian,
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Therefore, K is indefinite, the quadratic function has no minimum.
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(e) K = % —% —% , f= <0>,c:—3. By Gaussian,

0 —5 1
1 L0 , 3 0
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Therefore, K is indefinite, the quadratic function has no minimum. ]

4.2.5 (b) p(x) = xTKx —2xTf+ ¢ = Sx% 4 4dx139 + x% — 8x1 — 2x9. By Gaussian,

K = —_—

2 1 0 |-%

Therefore, K is indefinite, ¢ has no minimum.
(c) p(x) =xTKx—2xTf+c =3z +222+ 3ZE§ — 22129 — 22023+ 22321 — 221 + 43 — 3. By Gaussian,

3 1 1|1\ i, (3 -1 1|1\ ..., 3] -1 1|1
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Therefore, K is positive definite, p has a minimum. By back substitution, the minimizer is

x _ (13 17 11\T S *) _ 83
x* = (55: 30> 1) - The minimum value p(x*) = 5. O
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4.2.7 (b) We only need to find out the minimum of the negative of the quadratic function. Let

p(x) = 22% — 6y +3y* — 4z + 3y = x' Kx — 2x" f+ ¢,

where K = <_23 _33>, f= < 23), ¢ = 0. By Gaussian,

2

<2 _3) - ( _3>
_—
-3 3 0o |32

Therefore, K is indefinite, p has no minimum. Thus —p has no maximum.

O]

4.2.9 When K is positive definite, p has a unique minimizer x* = K~'f, and p(x*) = —x*7 Kx* < 0. The
equality holds only if x* = 0. Therefore, f = Kx* = 0. Vice verse, when f = 0, p(x) = x Kx. It’s

obvious that the minimum value equal to zero.

Thursday, June 15

12
R m—

—1 |, indefinite.

1

—3 |, indefinite.
0

A
2
~
—
—t
—
O O =
[S—y
o o[- o[-
p—t

—1\ Re+ir 5 —1
3.5.2 (b) g 1) fetst, 121, positive definite.
-1 3 0 |5
2 1 -1 /=2 1 1 1 LI
Ro+5 R 3 1 R3+3R2 0 3 1 . .
— _— -5 5 | — 2 2 |, negative definite.
(1 -2 1 ; 0 -3 3 gative definit
R3—5sR 1 3
-1 1 =2/ == o \0 5 =3 o o |-
2 1 -2 0 2 1 =2 0 21 -2 0
1 1 =3 2| R—3rR [0 3 -2 2| Rypam, [0 & -2 2
(h) e ol I ,
-2 -3 10 -1 R3+R; 0 -2 8 —1)] Rs—4rR, |0 O O 7
o 2 -1 7 o 2 -1 7 00 7 -1
can’t be reduced to an upper triangular matrix, so it’s indefinite.
b
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3.5.8 The associated matrix of the quadratic formis | § 1 §
b
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1 2 Q a 1 2 Q 2c—ab 1 2 é
a i z Ro—5fa 0 1 _2 a? QCzab Rs—y—az o 0 1 _2 %TQ QCEab
é % i RB—%Rl 0 20—(1;4) _ % 0 0 1674a271111%a72402+4abc

O]
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Hence, when a? < 4 and a? + b? + ¢ — abc < 4, the quadratic form is positive definite. O

4.2.6 When n =4,

p(x) = 4(z3 + 23 + 22 4+ 23) — 2(w122 + woxs + 334) + (21 + 22 + 23+ 24) = x  Kx —2x f+ ¢,

4 -1 0 0 -1
-1 4 -1 0 -3 :
where K = 0 -1 4 -1 ,£=1 1|, ¢=0. Reduce the augmented matrix (K |f):
2
1
0 0 -1 4 -1
4 -1 0 0 f% 4 -1 0 0 —é
-1 4 -1 0 |-2 | R+jre [0 B -1 0 5
0 -1 4 -1 —% 0 -1 4 -1 3
0 0 -1 4|-3 0 0 -1 4]|-3
4 -1 0 0 ]-3 4 -1 0 o0 |-1
R3++E Ry 0 % -1 0 |=2 Rat 53 Rs 0 % -1 0 —2
0 0 % _1|_2 0 0 ® 1|2
0 0 -1 4|-1 0 0 0 29|_i
B T2 56 | 28

Now that K has all positive pivots, it’s positive definite, and p has a minimum. The minimizer can

be obtained by back substitution x* = (—%, —%, —%, —%)T. The minimum value equals p(x*) =

«Te __ 9
c—x"f= 55 - O

4.2.10 When A is positive semi-definite, ¢(x) = x” Ax > 0, and the zero vector is a minimizer. So the
minimum value of ¢(x) is 0.

When A is not positive semi-definite, there exists a vector y such that ¢(y) = y’ Ay < 0. Then
q(ty) = (yTAy) 2. Let t — oo, q(ty) — oo. So the minimum value of ¢ is —oo. O

Friday, June 16

5.1.1 (b) Orthonormal basis.
(d) Basis, not orthogonal.
(f) Orthonormal basis.

5.1.2 (a) Basis, not orthogonal. The first and the third vectors are not orthogonal.

(c) Not a basis. The three vectors are linearly dependent, since their sum is zero.

5.1.4 Since
(e1,€2) =1-04+2(0-1)+3(0-0) =0,
(e1,e3) =1-04+2(0-0)+3(0-1) =0,
(eg,e3) =0-0+2(1-0)+3(0-1) =0,
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they form an orthogonal basis with respect to the weighted inner product. An orthonormal basis is
obtained by normalization:

el T

u; = - (13030) )
le1]]

w = 2 = (0,1/v2,0)7,
le2]]

us = 2 = (0,0,1/v/3)7.
les]]

O]

5.1.6 Since ((1,2)7,(—1,1)T) = —a + 2b, any pair of (a,b) that satisfies —a + 2b = 0 makes the two vectors
an orthogonal basis in R2. The general form is (2b,b), where b is arbitrary. O

5.1.16 Since v, v are linearly independent, one of the two can’t be a multiple of the other. Therefore,
both vi + v and v; — vy are not the zero vector. Now that
(Vi + V2, Vi = v2) = (vi,v1) = (va,va) = [|[vi]|* = | va[* = 0,

we may conclude that vi + vy and vi — vy form an orthogonal basis. O



