
21-241: Matrix Algebra – Summer I, 2006

Homework 3 Solutions

Monday, June 5

2.3.2 We need to show the system




1 −2 −2 −3
−3 6 4 7
−2 3 6 6
0 4 −7 1


 is consistent. By Gaussian elimination,




1 −2 −2 −3
−3 6 4 7
−2 3 6 6
0 4 −7 1




R2+3R1−−−−−→
R3+2R1




1 −2 −2 −3
0 0 −2 −2
0 −1 2 0
0 4 −7 1




R2↔R3−−−−−→




1 −2 −2 −3
0 −1 2 0
0 0 −2 −2
0 4 −7 1




R4+4R2−−−−−→




1 −2 −2 −3
0 −1 2 0
0 0 −2 −2
0 0 1 1




R4+ 1
2
R3−−−−−→




1 −2 −2 −3
0 −1 2 0
0 0 −2 −2
0 0 0 0


 .

There is no pivot in the augmented column. So, the system is consistent.

2.3.4 (b) (2,−1)T and (1, 3)T are not multiples of each other, thus linearly independent. Therefore, they
span a 2-dimensional subspace of R2, which has to be R2 itself.

(d) Since (6,−9)T = −3
2(−4, 6)T , they are linearly dependent. Therefore, they span a 1-dimensional

subspace of R2, which is the entire line in the direction of (6,−9)T , not R2.

(f) Since (0, 0)T and (2,−2)T are both multiples of (1,−1)T , they span a 1-dimensional subspace of
R2, which is the entire line in the direction of (1,−1)T , not R2.

2.3.17 This statement is false. Here is a counter-example. Let

z = (1, 1, 0)T , u = (1, 0, 0)T , v = (0, 1, 0)T , w = (0, 0, 1)T .

Then z = u+v+ 0w, a linear combination of u,v,w. But w can’t be a linear combination of u,v, z,
because the third entry of w is 1, while those of u,v, z are all 0’s.

2.3.21 (c) There are at most 2 linearly independent vectors in 2-dimensional vector space. So any three
vectors in R2 have to be linearly dependent.

(e) Combine the three vectors as columns in a single matrix A, and reduce it in the echelon form,

A =




0 1 3
1 −1 −1
1 0 2


 R1↔R2−−−−−→




1 −1 −1
0 1 3
1 0 2


 R3−R1−−−−→




1 −1 −1
0 1 3
0 1 3


 R3−R2−−−−→




1 −1 −1
0 1 3
0 0 0




There is a free column, so the homogeneous system Ax = 0 has nontrivial solutions. This means
the three vectors are linearly dependent.

(g) It’s obvious that (4, 2, 0,−6)T = −2
3(−6,−3, 0, 9)T . So they are linearly dependent.

2.4.9 (a) It’s easy to see that (−6,−2, 2)T = −2(3, 1,−1)T . So, {(3, 1,−1)} is a basis for the span with
dimension 1.
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(c) Combine the four vectors as columns in a single matrix A, and reduce A in the echelon form,

A =




1 0 2 1
0 1 −1 −2
−1 1 −3 1
2 3 1 1




R3+R1−−−−−→
R4−2R1




1 0 2 1
0 1 −1 −2
0 1 −1 2
0 3 −3 −1




R3−R2−−−−−→
R4−3R2




1 0 2 1
0 1 −1 −2
0 0 0 4
0 0 0 5




R4− 5
4
R3−−−−−→




1 0 2 1
0 1 −1 −2
0 0 0 4
0 0 0 0




The first, second and fourth columns contain pivots. So {(1, 0,−1, 2)T , (0, 1, 1, 3)T , (1,−2, 1, 1)T }
is a basis of the span (namely ColA), with dimension 3.

Tuesday, June 6

2.5.5 (c) Apply Gauss-Jordan,



1 −1 0 −1
2 0 −4 −6
2 −1 −2 −4


 R2−2R1−−−−−→

R3−2R1




1 −1 0 −1
0 2 −4 −4
0 1 −2 −2


 R3− 1

2
R2−−−−−→




1 −1 0 −1
0 2 −4 −4
0 0 0 0




R2/2−−−→



1 −1 0 −1
0 1 −2 −2
0 0 0 0


 R1+R2−−−−→




1 0 −2 −3
0 1 −2 −2
0 0 0 0




Therefore, the general solution is

x =




x
y
z


 =




2z − 3
2z − 2

z


 =



−3
−2
0


 + z




2
2
1


 = x∗ + z,

where, x∗ = (−3,−2, 0)T is a particular solution, z = z(2, 2, 1)T is the general element of the
kernel.

(e) Apply Gauss-Jordan,



1 −2 −1
2 −4 −2
−3 6 3
−1 2 1




R2−2R1

R3+3R1−−−−−→
R4+R1




1 −2 −1
0 0 0
0 0 0
0 0 0




Therefore, the general solution is

x =
(

u
v

)
=

(
2v − 1

v

)
=

(−1
0

)
+ v

(
2
1

)
= x∗ + z,

where, x∗ = (−1, 0)T is a particular solution, z = v(2, 1)T is the general element of the kernel.
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2.5.22 Denote columns of the matrix by v1, · · · ,v5. Apply Gaussian,


−1 2 0 −3 5
2 −4 1 1 −4
−3 6 2 0 8


 R2+2R1−−−−−→

R3−3R1



−1 2 0 −3 5
0 0 1 −5 6
0 0 2 9 −7


 R3−2R2−−−−−→




-1 2 0 −3 5
0 0 1 −5 6
0 0 0 19 −19




Therefore, v1,v3,v4 form a basis for range of the matrix. Then

v1 = v1, v2 = −2v1, v3 = v3, v4 = v4, v5 = −2v1 + v3 − v4

2.5.26 Write v in linear combination form:

v =




a− 3b
a + 2c + 4d
b + 3c− d

c− d


 = a




1
1
0
0


 + b




−3
0
1
0


 + c




0
2
3
1


 + d




0
4
−1
−1




.= av1 + bv2 + cv3 + dv4.

Hence, the set of all vectors of the form of v is span {v1,v2,v3,v4}, thus a subspace of R4. Combine
these four vectors as columns in a single matrix A, and reduce A in the echelon form:




1 −3 0 0
1 0 2 4
0 1 3 −1
0 0 1 −1




R2−R1−−−−→




1 −3 0 0
0 3 2 4
0 1 3 −1
0 0 1 −1




R3− 1
3
R2−−−−−→




1 −3 0 0
0 3 2 4
0 0 7

3 −7
3

0 0 1 −1




R4− 3
7
R3−−−−−→




1 −3 0 0
0 3 2 4

0 0 7
3 −7

3

0 0 0 0




Since there are 3 pivot columns, the dimension of span {v1,v2,v3,v4} (namely Col A) is 3.

2.5.27 (c) Reduce the coefficient matrix in the echelon form:




1 −1 −2 4
2 1 0 −1
−2 0 2 −2


 R2−2R1−−−−−→

R3+2R1




1 −1 −2 4
0 3 4 −9
0 −2 −2 6


 R3+ 2

3
R2−−−−−→




1 −1 −2 4
0 3 4 −9

0 0 2
3 0




So x4 is free. By back substitution, we obtain the general solution in vector form:

x =




x1

x2

x3

x4


 =




2x4

3x4

0
x4


 = x4




2
3
0
1




Hence (2, 3, 0, 1)T is a basis for the solution space (namely the kernel).

2.5.38 Suppose x ∈ kerA, then Ax = 0. Therefore, BAx = B(Ax) = B0 = 0, implying x ∈ kerBA. Thus
we’ve proved that kerA ⊆ kerBA. Particularly, let B = A, we get ker A ⊆ kerA2.
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Wednesday, June 7

2.5.29 Let A = (v1 v2 v3), B = (w1 w2 w3). We are to characterize Col A and ColB. First consider the
system Ax = b, where the right hand side will remain unspecified for the moment. Apply Gaussian
to the augmented matrix:




1 −3 2 b1

2 1 0 b2

0 1 −4 b3

−1 −1 3 b4




R2−2R−1−−−−−−→
R4+R1




1 −3 2 b1

0 7 −4 b2 − 2b1

0 1 −4 b3

0 −4 5 b4 + b1




R2↔R3−−−−−→




1 −3 2 b1

0 1 −4 b3

0 7 −4 b2 − 2b1

0 −4 5 b4 + b1




R3−7R2−−−−−→
R4+4R2




1 −3 2 b1

0 1 −4 b3

0 0 24 b2 − 2b1 − 7b3

0 0 −11 b4 + b1 + 4b3




R4+ 11
24

R3−−−−−−→




1 −3 2 b1

0 1 −4 b3

0 0 24 b2 − 2b1 − 7b3

0 0 0 1
12b1 + 11

24b2 + 19
24b3 + b4




Hence, Col A = {(b1, b2, b3, b4)T | 1
12b1 + 11

24b2 + 19
24b3 + b4 = 0}, a three-dimensional subspace of R4.

Similarly,



3 2 0 b1

2 3 3 b2

−4 −7 −3 b3

2 4 1 b4




R1↔R4−−−−−→




2 4 1 b4

2 3 3 b2

−4 −7 −3 b3

3 2 0 b1




R2−R1

R3+2R1−−−−−→
R4− 3

2
R1




2 4 1 b4

0 −1 2 b2 − b4

0 1 −1 b3 + 2b4

0 −4 −3
2 b1 − 3

2b4




R3+R2−−−−−→
R4−4R2




2 4 1 b4

0 −1 2 b2 − b4

0 0 1 b2 + b3 + b4

0 0 −19
2 b1 − 4b2 + 5

2b4




R4+ 19
2

R3−−−−−−→




2 4 1 b4

0 −1 2 b2 − b4

0 0 1 b2 + b3 + b4

0 0 0 b1 + 11
2 b2 + 19

2 b3 + 12b4




So, ColB = {(b1, b2, b3, b4)T |b1 + 11
2 b2 + 19

2 b3 + 12b4 = 0}. Clearly, ColA = Col B, denoted by V .
Then {v1,v2,v3} and {w1,w2,w3} are two bases for V , which is a 3-dimensional subspace of R4.

3.1.1 It’s easy to verify that bilinearity and symmetry hold for all b. Then whether 〈v,w〉 defines an inner
product depends on whether positivity holds. When b > 1,

〈v,v〉 = v2
1 − 2v1v2 + bv2

2 = (v1 − v2)2 + (b− 1)v2
2 > 0.

The equality holds only when v1 − v2 = v2 = 0, or v1 = v2 = 0, namely v = 0. So positivity holds.
When b 6 1, let v = (1, 1)T 6= 0. Then 〈v,v〉 = 1− b 6 0, implying positivity doesn’t hold. Therefore,
〈v,w〉 defines an inner product if and only if b > 1.

3.1.2 (c) No. Let v = (1,−1)T 6= 0, but 〈v,v〉 = 0. So positivity doesn’t hold.

(e) No. Let u = (1, 0)T , v = w = (0, 1)T , then 〈u + v,w〉 =
√

2, 〈u,w〉 = 〈v,w〉 = 1. So
〈u + v,w〉 6= 〈u,w〉+ 〈v,w〉, bilinearity doesn’t hold.

(g) Yes. Bilinearity and symmetry are straightforward. To verify positivity, note that

〈v,v〉 = 4v2
1 − 4v1v2 + 4v2

2 = 4(v1 − 1
2
v2)2 + 3v2

2 > 0,

and equality holds only if v1 − 1
2v2 = v2 = 0, or v1 = v2 = 0. So v = 0, thus positivity holds.
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3.1.8 Using bilinearity we have

〈av + bw, cv + dw〉 = a〈v, cv + dw〉+ b〈w, cv + dw〉
= a(c〈v,v〉+ d〈v,w〉) + b(c〈w,v〉+ d〈w,w〉)
= ac〈v,v〉+ (ad + bc)〈v,w〉+ bd〈w,w〉
= ac‖v‖2 + (ad + bc)〈v,w〉+ bd‖w‖2

3.1.12 (a) We can apply problem 3.1.8 to ‖x + y‖2 and ‖x− y‖2, and get

‖x + y‖2 = 〈x + y,x + y〉 = ‖x‖2 + 2〈x,y〉+ ‖y‖2

‖x− y‖2 = 〈x− y,x− y〉 = ‖x‖2 − 2〈x,y〉+ ‖y‖2

Adding these two equations, we obtain the required equality

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

(b) Let x and y be two adjacent sides of a parallelogram. Then the two diagonals are x+y and x−y.
So this equality tells us that the sum of squares of lengths of diagonals of a parallelogram equals
the sum of squares of lengths of its four sides.

Thursday, June 8

3.2.5 〈v,w〉 = 19, ‖v‖ =
√

38, ‖w‖ =
√

10. Since 19 <
√

38
√

10, the Cauchy-Schwarz inequality is true.

3.2.6 Let u = (a, b)T , v = (cos θ, sin θ). Then u · v = a cos θ + b sin θ, ‖u‖ =
√

a2 + b2, ‖v‖ = 1. By
Cauchy-Schwarz inequality, (u · v)2 6 ‖u‖2‖v‖2, namely, (a cos θ + b sin θ)2 6 a2 + b2.

3.2.19 Suppose vector (x, y, z, w)T ∈ R4 is orthogonal to the vector (1, 2,−1, 3)T , then their dot product
has to be 0, namely,

x + 2y − z + 3w = 0.

Look at this equation as a homogeneous linear system, then all vectors orthogonal to (1, 2,−1, 3)T are
solutions to this system, and thus W is the kernel. We can write the general solution in vector form:




x
y
z
w


 =




−2y + z − 3w
y
z
w


 =




−2y
y
0
0


 +




z
0
z
0


 +




−3w
0
0
w


 = y




−2
1
0
0


 + z




1
0
1
0


 + w




−3
0
0
1


 .

Therefore, {(−2, 1, 0, 0)T , (1, 0, 1, 0)T , (−3, 0, 0, 1)T } is basis for W .
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3.2.39 By triangle inequality,
‖v‖ = ‖(v−w) + w‖ 6 ‖v−w‖+ ‖w‖,

or,
‖v‖ − ‖w‖ 6 ‖v−w‖.

Exchange v and w, we get
‖w‖ − ‖v‖ 6 ‖w− v‖ = ‖v−w‖.

Therefore,
| ‖v‖ − ‖w‖ | 6 ‖v−w‖.

This inequality says the length of a side of a triangle is at least equal to the difference of the lengths
of the other two sides.

3.3.9 Positivity and homogeneity are straightforward. Let’s verify the triangle inequality. Let x = (x1, y1)T ,
y = (x2, y2)T . Then

‖x + y‖ = |x1 + x2|+ 2|(x1 + x2)− (y1 + y2)| = |x1 + x2|+ 2|(x1 − y1) + (x2 − y2)|
6 (|x1|+ |x + 2|) + 2(|x1 − y1|+ |x2 − y2|) = (|x1|+ 2|x1 − y1|) + (|x2|+ |x2 − y2|)
= ‖x‖+ ‖y‖.

Thus we complete the proof.

Friday, June 9

3.4.1 First of all, (f) is not symmetric, thus not positive definite. We’ve learn that a symmetric 2×2 matrix(
a b
b c

)
is positive definite if and only if a > 0 and ac − b2 > 0. Therefore, both (b) and (d) are not

positive definite, too.

3.4.7 (a) First, since K and L are symmetric, (K +L)T = KT +LT = K +L. So K +L is also symmetric.
For all x 6= 0, xT (K + L)x = xT Kx + xT Lx > 0. Hence, K + L is positive definite.

(b) Let A = ( 1 2
2 1 ) and B =

(
1 −2
−2 1

)
. Both matrices are not positive definite. However, A+B = ( 2 0

0 2 )
is positive definite.

3.4.20 Since q(x) is a scalar, q(x) = q(x)T = (xT Ax)T = xT ATx. Therefore,

q(x) =
1
2
(xT Ax + xT ATx) = xT Kx,

where, K = 1
2(A + AT ). K is symmetric because KT = 1

2(A + AT )T = 1
2(AT + A) = K.

3.5.5 (c) x2 − 2xy − y2 = (x− y)2 − 2y2, not positive definite.

(d) x2 + 6xy = (x + 3y)2 − 9y2, not positive definite.
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3.5.19 (a)
(

3 −2
−2 2

)
R2+ 2

3
R1−−−−−→

(
3 −2
0 2

3

)
= U, D = diag(3, 2/3),

(
1 0
0 1

)
R2− 2

3
R1−−−−−→

(
1 0
−2

3 1

)
= L, S = diag(

√
3,
√

6/3).

Let M = LS =

( √
3 0

−2
3

√
3

√
6

3

)
, then the Cholesky factorization is

(
3 −2
−2 2

)
= MMT =

( √
3 0

−2
3

√
3

√
6

3

)(√
3 −2

3

√
3

0
√

6
3

)
.

(c)



1 1 1
1 2 −2
1 −2 14


 R2−R1−−−−→

R3−R1




1 1 1
0 1 −3
0 −3 13


 R3+3R2−−−−−→




1 1 1
0 1 −3
0 0 4


 = U, D = diag(1, 1, 4),




1 0 0
0 1 0
0 0 1


 R2+R1−−−−→

R3+R1




1 0 0
1 1 0
1 0 1


 R3−3R2−−−−−→




1 0 0
1 1 0
1 −3 1


 = L, S = diag(1, 1, 2).

Let M = LS =




1 0 0
1 1 0
1 −3 2


, then the Cholesky factorization is




1 1 1
1 2 −2
1 −2 14


 = MMT =




1 0 0
1 1 0
1 −3 2







1 1 1
0 1 −3
0 0 2


 .
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