21-241: Matrix Algebra — Summer I, 2006
Homework 3 Solutions

Monday, June 5
1 -2 -2|-=-3

2.3.2 We need to show the system :g g g g is consistent. By Gaussian elimination,
0 4 -—-7|1
1 -2 =213 1 -2 -2 -3 1 -2 —-2|-3
-3 6 4 7 Ro+3Ry 0O 0 —-2|-2 Ro«>Rj 0o -1 2 0
-2 3 6| 6 R3+2R; 0 -1 210 0 0 —-2|-2
0 4 =71 0 4 -—-7|1 0 4 -—-7|1
1 -2 —-2|-3 1 -2 —-2]-3
Ra+4Ro 0o -1 2 0 R4+%R3 0o -1 2 0
e Ty
0 0 —-2|-2 0 0 —-2|-2
0 0 1 1 0O 0 01O
There is no pivot in the augmented column. So, the system is consistent. O

2.3.4 (b) (2,—1)T and (1,3)” are not multiples of each other, thus linearly independent. Therefore, they
span a 2-dimensional subspace of R?, which has to be R? itself.

(d) Since (6, —9)T = —%(—4, 6)7, they are linearly dependent. Therefore, they span a 1-dimensional
subspace of R?, which is the entire line in the direction of (6, —9)7, not R2.

(f) Since (0,0)” and (2, —2)7 are both multiples of (1, —1)7, they span a 1-dimensional subspace of
R?, which is the entire line in the direction of (1, —1)T, not R2. O

2.3.17 This statement is false. Here is a counter-example. Let
z=(1,1,007, u=(1,007, v=(0,1,07, w=(0,01)7T.

Then z = u+ v + 0w, a linear combination of u, v, w. But w can’t be a linear combination of u, v, z,
because the third entry of w is 1, while those of u, v,z are all 0’s. O

2.3.21 (c) There are at most 2 linearly independent vectors in 2-dimensional vector space. So any three
vectors in R? have to be linearly dependent.

(e) Combine the three vectors as columns in a single matrix A, and reduce it in the echelon form,

0 1 3 1 -1 -1 1 -1 -1 1 -1 -1
A=|1 -1 —1| Bz (g 1 3| BB g 1 g | Bzl (g 1 3
1 0 2 1 0 2 0 1 3 0 0 0

There is a free column, so the homogeneous system Ax = 0 has nontrivial solutions. This means
the three vectors are linearly dependent.

(g) It’s obvious that (4,2,0,—-6)7 = —%(—67 —3,0,9)T. So they are linearly dependent. O

2.4.9 (a) It’s easy to see that (—6,—2,2)T = —2(3,1,-1)T. So, {(3,1,—1)} is a basis for the span with
dimension 1.
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(c) Combine the four vectors as columns in a single matrix A, and reduce A in the echelon form,

1 0 2 1 1 0 2 1 1 0 2 1

0 1 —1 -2 R3+R1 0 1 —1 -2 R3s—R2 0 1 —1 —2
A = _—

-1 1 -3 1 R4—2R; |0 1 -1 2 Ry—3R; [0 O O 4

2 3 1 1 0 3 -3 -1 00 O 9

0 2 1
Ri-3Rs [ 0 -1 -2

0 0 0 [4]
0

0 0 0

The first, second and fourth columns contain pivots. So {(1,0,—1,2)7,(0,1,1,3)7, (1, 2,1, )T}
is a basis of the span (namely Col A), with dimension 3. O

Tuesday, June 6

2.5.5 (¢) Apply Gauss-Jordan,

1 -1 0 |-1 1 -1 0 |-1\ . .. 1 -1 0 |-1
9 0 —4|-6 | B2E g o _gl-a | 220 2 —4]-4
9 —1 —9|—4 ) ®2R g 1 _9|_9 0 0 010

Ry/2
—

1 -1 0 |-1
0 1 —2|—2 |21 9
0 0 010 0

oHo
|
N\
|
N

Therefore, the general solution is

T 2z —3 -3 2
x=|yl|l=12z2-2|=|-2|+2|2] =x"+2z,
z z 0 1

where, x* = (—3,-2,0)7 is a particular solution, z = 2(2,2,1)7 is the general element of the
kernel.

(e) Apply Gauss-Jordan,

L2 -1\ oo 2] -1
2 —4| -2 R343R, 0 010
_—

-3 6 3 R4+R1 0 0 0
-1 2 1 0 0 0

Therefore, the general solution is

(- () (@)

where, x* = (—=1,0)7 is a particular solution, z = v(2,1)” is the general element of the kernel. ]
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2.5.22 Denote columns of the matrix by vi,--- ,vs. Apply Gaussian,
-1 2 0 -3 5 -1 20 -3 5 1] 2 0 -3 5
2 —4 1 1 -4 | PR g 01 5 6 | B2 0 0 [1] -5 6
3 6 2 0 8 )P o 02 9 -7 0 0 0 19

Therefore, vq, vs, v4 form a basis for range of the matrix. Then

Vi = Vi, vy = —2vy, V3 = V3, V4 = Vy, Vs = —2V] + V3 —Vy

2.5.26 Write v in linear combination form:

a—3b 1 -3 0 0

a+2c+4d 1 0 ) 4 _

b+3c—d %0 +b 1 tc 3 +d 1 =avy + bvy + cvs + dvy.
c—d 0 0 1 -1

Hence, the set of all vectors of the form of v is span {vy, v, v3,v4}, thus a subspace of R*. Combine
these four vectors as columns in a single matrix A, and reduce A in the echelon form:

1 =30 0 1 =30 0 1 -3 0 0 1] =3 0 o0
1 0 2 4| re-m |0 3 2 4| R-3re [0 3 2 4 | Ri-2Rs | O 2 4
= = - 7 7 - 7 7
0 1 3 —1 0 1 3 —1 0 0 I I 0 0 -1
0 0 1 -1 0 0 1 -1 00 1 - o 0 o o
Since there are 3 pivot columns, the dimension of span {vi,va,vs,v4} (namely Col A) is 3. O
2.5.27 (c¢) Reduce the coefficient matrix in the echelon form:
1 -1 -2 4 Lo—1 =2 4\ . o, -1 -2 4
— F 42
2 1 0 -—1|&28 (o 3 4 —of 20 4 -9
—2 0 2 -2) WM g 2 —2 ¢ 0 0 0

So x4 is free. By back substitution, we obtain the general solution in vector form:

x1 2z4 2
= 2| |3ra ]| . 3
“las] 0] o
Ty T4 1
Hence (2,3,0,1)7 is a basis for the solution space (namely the kernel). O

2.5.38 Suppose x € ker A, then Ax = 0. Therefore, BAx = B(Ax) = B0 = 0, implying x € ker BA. Thus
we've proved that ker A C ker BA. Particularly, let B = A, we get ker A C ker A2. O
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Wednesday, June 7

2.5.29 Let A = (v v v3), B = (w; wy w3). We are to characterize Col A and Col B. First consider the
system Ax = b, where the right hand side will remain unspecified for the moment. Apply Gaussian
to the augmented matrix:

1 -3 2 |bh 1 -3 2 b1 1 -3 2 by
2 1 0 |bo Ry—2R—1 0 7 —4]|by—2b Ry R3 0 1 -4 b3
0 1 —4 bg R4+R1 0 1 —4 bg 0 7 —4 bg — 2b1
-1 -1 3 |by 0 -4 5 by + b1 0 -4 5 by + b1
1 -3 2 by 1 -3 2 b1
Rs—TRs 0 1 -4 b3 Ry+3LRs 0 1 —4 b3
R4+4R2 0 0 24 b2 — 251 — 7b3 0 0 24 b2 — 2b1 — 7b3
0 0 —11| by+ by +4bs 0 0 0 |q5b1 4 g5b2+ 51b3 + by

Hence, Col A = {(by, ba, b3, bs)T |1—12b1 + 57111)2 + %bg + by = 0}, a three-dimensional subspace of R*.

Similarly,
3 2 0 |b 2 4 1 |b RyR 2 4 1 by
—i1
2 3 3 | b Ryi< Ry 2 3 3 | by R3+2R; 0o -1 2 by — by
—_— —_—
-4 =7 —=3|b3 -4 -7 —=3|b3 Ri—3R, 0 1 —1]0b3+2by
2 4 1 |b 3.2 0 |k 0 —4 —3|b—3b
2 4 1 by 2 4 1 by
R3+R2 0 -1 2 b2 - b4 R4+%R3 0 -1 2 b2 - b4
—_— _
R4—4R> 0 O 1 bo + bg + by 0O 0 1 by + bg + by
0 0 =1 b —4dbo+3by 0 0 0br+3Hbo+ bs+ 1284

So, Col B = {(by,ba,b3,bs)" |by + %bz + %bg + 12b4 = 0}. Clearly, Col A = Col B, denoted by V.
Then {v1,vs,v3} and {w1, wa, w3} are two bases for V, which is a 3-dimensional subspace of R*. [

3.1.1 It’s easy to verify that bilinearity and symmetry hold for all b. Then whether (v, w) defines an inner
product depends on whether positivity holds. When b > 1,

(v,v) = v} — 20109 + bvd = (v1 —v2)® + (b—1)v3 > 0.

The equality holds only when vy — vo = vo = 0, or v1 = v9 = 0, namely v = 0. So positivity holds.
When b < 1, let v = (1,1)7 # 0. Then (v,v) = 1—b < 0, implying positivity doesn’t hold. Therefore,
(v,w) defines an inner product if and only if b > 1. O

3.1.2 (c) No. Let v = (1,-1)T # 0, but (v,v) = 0. So positivity doesn’t hold.

(e) No. Let u = (1,007, v = w = (0,1)T, then (u + v,w) = v2, (u,w) = (v,w) = 1. So
(u+v,w) # (u,w) + (v,w), bilinearity doesn’t hold.

(g) Yes. Bilinearity and symmetry are straightforward. To verify positivity, note that

1
(v,v) = 4v? — dvjvy + 403 = 4(vy — 51)2)2 + 302 >0,

and equality holds only if v; — %1)2 =wv9 =0, or v1 = vy = 0. So v = 0, thus positivity holds. [
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3.1.8 Using bilinearity we have

(av + bw,cv + dw) = a(v,cv + dw) + b{w, cv + dw)
=a(c(v,v) +d(v,w)) + b(c(w, v) + d(w, w))
= ac(v,v) + (ad + be)(v,w) + bd(w, w)
= ac||v||* + (ad + be) (v, w) + bd|w]|?

3.1.12 (a) We can apply problem 3.1.8 to ||x + y||? and ||x — y||?, and get

Ix+yl? = x+y,x+y) = [x]*+2(x,y) + [ly]?
Ix—y|?=(x-y,x—y) = [x]|* - 2(x,y) + |ly?

Adding these two equations, we obtain the required equality
I + y[I* + 1% = yII* = 2(Ix[1* + [y *)-

(b) Let x and y be two adjacent sides of a parallelogram. Then the two diagonals are x+y and x —y.
So this equality tells us that the sum of squares of lengths of diagonals of a parallelogram equals
the sum of squares of lengths of its four sides. O

Thursday, June 8
3.2.5 (v,w) =19, ||v|]| = V38, ||w|| = V10. Since 19 < v/38 /10, the Cauchy-Schwarz inequality is true.]

3.2.6 Let u = (a,b)”, v = (cosf,sinf). Then u-v = acosf + bsind, |ul| = Va2 +0b2, ||v|] = 1. By
Cauchy-Schwarz inequality, (u - v)? < |Jul|?|v||?, namely, (acos® + bsin6)? < a® + b°. O

3.2.19 Suppose vector (z,y, z,w)T € R* is orthogonal to the vector (1,2, —1,3)7, then their dot product
has to be 0, namely,
r+2y—z+3w=0.

Look at this equation as a homogeneous linear system, then all vectors orthogonal to (1,2, —1,3)7 are
solutions to this system, and thus W is the kernel. We can write the general solution in vector form:

T —2y+z—3w —2y z —3w —2 1 -3

Y Y _ Y 0 0 - 1 0 0

2| = 2 =l o [Tz o |TY o 71|70

w w 0 0 w 0 0 1
Therefore, {(—2,1,0,0)7,(1,0,1,0)T,(-3,0,0,1)T} is basis for W. O
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3.2.39 By triangle inequality,

VIl = I(v = w) +wl < |lv—wl+[w],
or,
VIl = [lwl < [lv —w].
Exchange v and w, we get
[wi = lIvll < lw = vl = [|v—wl].
Therefore,
HIvIE= Wl < v = wll.

This inequality says the length of a side of a triangle is at least equal to the difference of the lengths
of the other two sides. O

3.3.9 Positivity and homogeneity are straightforward. Let’s verify the triangle inequality. Let x = (z1,41)7

y = (22,y2)". Then

)

%+l =21 + 22| + 2|(z1 + 22) — (Y1 + y2)| = |21 + 22| + 2|(21 — 91) + (22 — 12)]
< (el + |2 4 2) + 2(l21 — vl + w2 = y2l) = (Jza] + 2fer — 91 ]) + (Jw2] + 22 — y2])
= [Ix[[ + [lyll

Thus we complete the proof. O

Friday, June 9

3.4.1 First of all, (f) is not symmetric, thus not positive definite. We’ve learn that a symmetric 2 x 2 matrix
(¢%) is positive definite if and only if a > 0 and ac — b* > 0. Therefore, both (b) and (d) are not
positive definite, too. O

3.4.7 (a) First, since K and L are symmetric, (K + L)T = KT+ LT = K+ L. So K + L is also symmetric.
For all x # 0, x' (K + L)x = x" Kx + x" Lx > 0. Hence, K + L is positive definite.

(b) Let A= (}%)and B = (2, 7?). Both matrices are not positive definite. However, A+ B = (29)
is positive definite. O

3.4.20 Since ¢(x) is a scalar, q(x) = ¢(x)T = (x" Ax)T = xT ATx. Therefore,
1
q(x) = i(xTAx +xTATx) = xTKx,

where, K = $(A+ AT). K is symmetric because KT = (4 4+ AT)T = (AT + 4) = K. O

3.5.5 (c) 22 —2xy —y? = (z — y)? — 2y%, not positive definite.
(d) 2%+ 62y = (z + 3y)? — 9y?, not positive definite. O
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3.5.19 (a)
— Ro+2R —
3 —2) fersh (3 22 =0, D = diag(3,2/3),
-2 2 0 2
1 Ra—2R1 [ 1
<0 (1))&« ) (1)>:L, S = diag(v/3,V6/3).
—3
30
Let M = LS = (_\2[\/5 \/g>, then the Cholesky factorization is
3 3
- 30 3 23
<_32 22> :MMT=< \2[\/5 \/€> <\0f %ff)
-3 3 3
(c)
1 1 1 1 1 1 11 1
1 o2 o) BBl 1 3| BB (o 1 3| =U, D=diag,1,4),
1 -2 14) "% \o -3 13 00 4
100 100 1 0 0
0 1 of 2 (11 of B3 (1 1 o] =1, S = diag(1,1,2).
00 1) Bt \1 01 1 -3 1
1 0 0
Let M=LS=|1 1 0], then the Cholesky factorization is
1 -3 2
1 1 1 1 0 0\ /11 1
1 2 =2|=MMT={|1 1 of|l0o 1 -3
1 -2 14 1 -3 2/ \0 0 2



