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0. Introduction

The term “principle of material frame-indifference” was introduced in 1965
by C. Truesdell and me in our contribution [NLFT] to the Encyclopedia of
Physics. Earlier, I had used the term “principle of objectivity”, and some people
use this term to this day. I meant “objectivity” to express independence of the
“observer”, but Truesdell disliked the term as being too easily misinterpreted.
In fact, I now believe that the principle has nothing to do with “observer”, who
is defined in the dictionary to be a person. What matters is the use of frames
of reference as a means to make precise the concept of location, as explained in
Sect.4 of [N2] of [FC]. **

Here is a full statement of the principle of material frame-indifference,
as it applies to any physical system:

The constitutive laws governing the internal interactions between
the parts of the system should not depend on whatever external frame
of reference is used to describe them.

The principle applies only to external frames of reference, not to frames that
are constructed from the system itself. It is important to note that the principle
applies only to internal interactions, not to actions of the environment on the
system and its parts, because usually the frame of reference employed is actively
connected with the environment. For example, if one considers the motion of a
fluid in a container, one usually uses the frame of reference determined by the
container, which certainly affects the fluid. Inertia should always be considered
as an action of the environment on the given system and its parts, and hence its
description does depend on the frame of reference used.

Remark: It has been pointed out by Ingo Müller *** that some of the equations
of the thermo-mechanics of rarified gases derived from statistical mechanics do
not satisfy the principle of frame-indifference. These formulas involve inertial

* This paper is based, in part, on lectures that I gave on June 29, 2005 at
the meeting in Reggio-Calabria in honor of the 65th birthday of Gianpietro Del
Piero and on July 6, 2005, at the University of Messina.
** I regret that I ever used the term “principle of objectivity” and thereby

misled a lot of people. I came to a complete understanding of the principle of
frame-indifference only in the past 15 years or so.
*** in a lecture at the meeting in Reggio-Calabria mentioned above.
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effects not captured by the standard formula, in which all the inertial forces
are propertional to the mass density. This failure of frame-indifference is not
surprising because inertial actions are external actions and not internal inter-
actions. Since the mean free path between collisions of molecules in rarified
gases can be very large, it is doubtful that interactions such as forces and heat-
transfer can be described as pure surface interactions as in standard continuum
thermo-mechanics. (For a rigorous explanation, see [N6].) Therefore, formu-
las that formally look like internal constitutive equations may actually have a
non-standand conceptual interpretation.

First, in Sect.1 below, I will describe the conventional formulation of the con-
stitutive equation of elasticity and the effect of the principle of frame-indifference
on it. I believe that this description is more transparent than the one given in
[NLFT] and the standard textbooks because it makes explicit use of different
frame-spaces.

As I pointed out at the end of Sect.4 in [N2], it should be possible to
make the principle of material frame-indifference vacuously satisfied by using an
intrinsic mathematical frame-work that does not use an external frame-space at
all when describing the internal interactions of a physical system. In Sects.2 and
3 below I will do just that for the classical theory of elasticity by specializing
the treatment given in Sects.7, 9, and 10 of [N7]. In Sect.4 I will do the same
for hyperelasticity, i.e., elasticity based on a strain-energy function. (See Sect.82
of [NLFT].) In Sect.5 I will comment on possible restrictions on the intrinsic
response functions defined in Sects.2 and 4.

As I pointed out in [N0] of [FC], I believe that [NLFT] is now in many
respects obsolete and should be updated. In the third paper [N3] of [FC]
I present some guidelines for such an update. The present paper could serve
as a blueprint for updating Chapter D of [NLFT] and also for the beginning
chapters of future textbooks on elasticity.

In the remainder of this paper, we assume that a continuous body-system
B as described in Sect.3 of [N3] is given. The tangent space of B at a material
point X ∈ B is denoted by TX and is called the body element of B at X. We
say that the body system consists of a simple material if the constitutive laws
for every material point X involve only the body element TX . A precise way of
formulating such laws is to put them in the form of a mathematical structure
involving TX . Most of the time we single out a particular material point X and
simply write T instead of TX . We emphasize that T is a linear space but not
an inner-product space.

We use the mathematical infrastructure, notation, and terminology of
[FDS]. In particular, we use “lineon” as a contraction of “linear transformation
from a linear space to itself”. *)

*) In [NLFT] the term “tensor” is used instead of “lineon”. I pointed out in
[N8] that “tensor” has a much more general meaning and lineon is just a special
case.
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1. Conventional Elasticity

The conventional formulation of the theory of elasticity involves a frame
space F (usually just called “space”), a reference placement κ of B whose frame-
space is F , and, for each material point X, a response function g : L −→ SymV,
where L is a suitable open subset of the linear group LisV of all automorphisms
of the translation space V of F , i.e. all invertible lineons on V. It is assumed
that 1V , the identity mapping of V and the unity of the group LisV, belong to
L. The value

T := g(F) (1.1)

is the Cauchy-stress at the present when F := ∇
κ(X)χt is the gradient at κ(X) of

the transplacement χt from the reference placement κ to the present placement

µt := χt ◦ κ . (1.2)

The dependence of g on the material point X and the dependence of F and T
on time need not be made explicit. (See Sect.43 of [NLFT].)

Now consider two frames of reference with corresponding frame-spaces F
and F ′ and denote their translation spaces by V and V ′, respectively. If x is
the location of a material point at a given time t in the frame-space F , then
the location of the same material point at the same time t in the frame-space
F ′ will be given by x′ = αt(x) where αt : F −→ F ′ is an isometry and hence
a Euclidean isomorphism (see Sect.45 of [FDS]). The mapping t 7→ αt describes
the motion of the frame F relative to the frame F ′. The present placement
relative to F ′ corresponding to the placement µt relative to F is given by

µ′t = αt ◦ µt . (1.3)

The gradient At := ∇αt ∈ Lis (V,V ′) (see Sect.33 of [FDS]) is an inner-product
preserving linear isomorphism from V onto V ′. A vector u and a lineon L relative
to the frame-space F at time t will appear as

u′ = Atu and L′ = AtLAt
−1 , (1.4)

respectively, relative to the frame-space F ′. In particular, the present Cauchy-
stress T′ relative to F ′ is related to the present Cauchy-stress T relative to F
by

T′ = AtTA−1
t , where At = ∇αt . (1.5)

To say that descriptions in two frame spaces F and F ′ describe the
same physical process means that these descriptions must be isomorphic, i.e.,
the description in the frame F can be transported to the description in the
frame F ′ by a fixed Euclidean isomorphism β : F −→ F ′. Its gradient
B := ∇β ∈ Lis (V,V ′) is an inner-product preserving linear isomorphism from
V to V ′.
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Now let the same elastic response at a material point desribed by (1.1) in
the frame F be described by the response function g′ : T ′ −→ SymV ′ in the
frame F ′. The requirement that this response function is obtained from the
original one by the Euclidean isomorphism β has the following consequences:

(a) The reference placement κ′ used for g′ must be given by

κ′ = β ◦ κ . (1.6)

(b) The domain L′ of response function g′ must be related to the domain
of the response function g by

L′ = {BLB−1 | L ∈ L} ⊂ LisV ′ (1.7)

and we must have

g′(BLB−1) = Bg(L)B−1 for all L ∈ L . (1.8)

Now, in the frame F ′, the transplacement χ′t from the reference placement
κ′ to the present placement µ′t is characterized by

µ′t = χ′t ◦ κ′ . (1.9)

Using (1.3), (1.2), and (1.6), it follows from (1.9) that αt ◦ µt = αt ◦ χt ◦ κ =
χ′t ◦β ◦κ and hence that αt ◦χt = χ′t ◦β. Taking the gradient at κ(X), we obtain

AtF = F′B , (1.10)

where F′ is the gradient at κ′(X) = β(κ(X)) of the transplacement χ′t.
For the frame F ′, the stress relation (1.1) becomes

T′ := g′(F′) . (1.11)

Using (1.5),(1.1) and (1.10), it follows from (1.11) that

Atg(F)A−1
t = g′(AtFB−1) . (1.12)

Using (1.8) with L := B−1AtF, we obtain

g′(AtFB−1) = Bg(B−1AtF)B−1

and hence, by (1.12),

Qg(F)Q> = g(QF) , where Q := B−1At . (1.13)

We note that Q is an inner-product automorphism of V, in other words, a
member of the orthogonal group OrthV, so that Q−1 = Q>. The dependence
of F and Q on time need not be made explicit here. Now, (1.13) must hold for
arbitrary motions and hence for all F ∈ L. Also, the frame F ′ can be chosen in
an arbitrary manner and hence (1.13) must also hold for all Q ∈ OrthV. Thus,
the relation (1.13) coincides with (43.2) in [NLFT] and is the basis for all the
reduced constitutive equations stated in Sect.43 of [NLFT].
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2. Frame-free Elasticity

To describe the structure of an elastic element, we need a little bit of linear
algebra that is not presented in most textbooks. (However, a detailed treatment
is given in Chapter 2 of [FDS].)

Let a finite-dimensional linear space T be given. The dual T ∗ := Lin (T , RI )
of T consists of all linear forms on T . The dual T ∗∗ of the dual T ∗ can be
identified with the original space T as follows: When an element t ∈ T is
regarded as an element of T ∗∗, its action on T ∗ is given by

tλλλ := λλλt for all λλλ ∈ T ∗ . (2.1)

We express this identification by T ∗∗ ∼= T .
Let V also be finite-dimensional linear space and let L ∈ Lin (T ,V) be a

linear mapping from T to V. Then the transpose L> ∈ Lin (V∗, T ∗) is defined
by

(L>λλλ)t := λλλ(Lt) for all t ∈ T , λλλ ∈ V∗ . (2.2)

Let G ∈ Lin (T , T ∗) be given. Then, since T ∗∗ ∼= T , we can identify
Lin (T ∗∗, T ∗) ∼= Lin (T , T ∗), so that G and its transpose G> belong to the
same space. We say that G is symmetric if G> = G. The set

Sym (T , T ∗) := {G ∈ Lin (T , T ∗) | G> = G } (2.3)

is a subspace of Lin (T , T ∗).
We say that G ∈ Sym (T , T ∗) is positive if

(Gt)t ≥ 0 for all t ∈ T (2.4)

and we say that it is strictly positive if, in addition, (Gt)t is zero only when t
is zero. The set of all positive elements of Sym (T , T ∗) is denoted by Pos(T , T ∗)
and the set of all strictly positive elements by Pos+(T , T ∗). Both Pos(T , T ∗) and
Pos+(T , T ∗) are linear cones, i.e. they are stable under addition and scalar mul-
tiplication with strictly positive real numbers*. All the elements of Pos+(T , T ∗)
are invertible and hence linear isomorphisms, i.e., we have

Pos+(T , T ∗) ⊂ Lis (T , T ∗) . (2.5)

An inner-product space is a finite-dimensional linear space V with an
additional structural element given by singling out a particular member
ip ∈ Pos(T , T ∗). Since ip ∈ Lis (V,V∗), it then can be and is used to identify
V∗ ∼= V, which justifies the standard notation v ·w := ip(v)w for all v,w ∈ V.

As explained in Sects. 3 and 4 of [N3], a configuration of the given body-
system B is a metric d : B × B −→ PI that is isometric to a fit region** in a

* A detailed analysis of such linear cones is given in [NS].
** The definition and a detailed analysis of the concept of a fit region is given

in [NV].
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Euclidean space. Such a configuration induces an element G ∈ Pos+(T , T ∗) for
the body element T . We call G the configuration of the element induced by the
configuration d of the whole system.

The structure of an elastic material element is described by the following
ingredients:

1) A body element T ,
2) A convex open subset G of Pos+(T , T ∗), whose members are called the
configurations of the element.
3) A mapping h : G −→ Sym (T ∗, T ), called the
intrinsic stress-response function of the element. Its value

S = h(G) (2.6)

is the intrinsic stress determined by the configuration G.

A deformation of the elastic element is simply a change of configurations,
and a deformation process is a one-paramter family of configurations as described
in Sect.4 of [N3].

As I pointed out in Sect.6 of [N3], a frame of reference is usually employed
to describe the external actions of the environment on the body-system. Thus,
we now assume, as in Sect.1, that a frame space F with translation space V and
a reference placement κ of B in F are given. We denote the present placement
by µt and the transplacement from the reference placement κ to the present
placement by χt, so that (1.2) holds. Taking the gradient of (1.2) at the given
material point X ∈ B we obtain

M = FK , where K := ∇
X

κ, M := ∇
X

µt , and F := ∇
κ(X)χt . (2.7)

We call K ∈ Lis (T ,V) the reference placement of the body element T ,
M ∈ Lis (T ,V) the present placement of this body element, and F ∈ Lis (V)
the transplacement of this body element from K to M. The dependence of M
and F on time need not be made explicit.

As explained in Sect.4 of [N3], the configuration

GR := K>K ∈ Pos+(T , T ∗) (2.8)

of the element T is induced by the reference placement K and will be called the
reference configuration. The present configuration

G := M>M = K>F>FK ∈ Pos+(T , T ∗) (2.9)

of the element T is induced by the present placement M. The requirement that
GR and G belong to the prescribed subset G of Pos+(T , T ∗) is equivalent to the
conditions

F ∈ L := { F ∈ LisV | K>F>FK ∈ G} and 1V ∈ L . (2.10)
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Now, by (6.4) of [N3], the present Cauchy-stress T is related to the present
intrinsic stress S by

S = M−1TM>−1
. (2.11)

Therefore, since S = h(G) is the intrinsic stress determined by the present
configuration G, it follows from (2.11), (2.9) and (2.7) that the Cauchy stress
determined by F is given by

T = g(F) := FKh(K>F>FK)K>F> . (2.12)

The domain L of the response function g defined by (2.12) is given by (2.10).
Given F ∈ L it easily follows from (2.12) that g does indeed satisfy the condition
(1.13) for all Q ∈ OrthV.

We note that the intrinsic response function h is related to the response
function t for the second Piola-Kirchhoff tensor (see (43.10)2 in [NLFT])as fol-
lows:

T̃ = t(C) =
√

(detC)Kh(K>CK)K> when C := F>F. (2.13)

We emphasize again that the body-element T is just a three-dimensional
linear space and not an inner product space. Let a configuration G of T be given.
It is a member of the linear cone Pos+(T , T ∗). Since an inner product is just a
member of this cone that has been singled out, we can deal with G as if it were
an inner product and apply the the concepts, notations, and theory of inner-
product spaces, but they must be used only relative to the given configuration.
For example, a basis b := (b1,b2,b3) of T is G-orthonormal if

(Gbi)bj = δi,j :=
{

0 if i 6= j
1 if i = j

for all i, j ∈ {1, 2, 3} . (2.14)

A basis that is G-orthonormal necessarily fails to be G′- orthonormal when G′

is a configuration different from G.
The orthogonal group of the configuration G is defined by

Orth (G) := {A ∈ Lis T | A>GA = G}. (2.15)

Orth (G) is not only a subgroup of the linear group Lis T , but even of the
unimodular group

Unim T := {A ∈ Lis T | |detA| = 1}. (2.16)

Unim T includes infinitely many orthogonal groups as subgroups, namely one
for each configuration G.

Let S be the intrinsic stress determined by the configuration G as in (2.6).
The spectral theory as treated, for example, in Chapter 8 of [FDS] can be applied
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to S relative to G with the following result: There is a G-orthonormal basis
b := (b1,b2,b3) of T and a list (σ1, σ2, σ3) of real numbers such that

(SG)bi = σibi for all i ∈ {1.2.3} . (2.17)

The terms in (σ1, σ2, σ3) are called the principal stresses of S relative to G.
If we introduce a frame-space F as before and consider the Cauchy-stress

T related to S by (2.11), it follows from (2.17), using (2.9), that

Tvi = σivi , where vi := Mbi for all i ∈ {1.2.3} . (2.18)

Hence the principal stresses characterized by (2.17) coincide with the ones in
conventional elasticity. (See Sect.48 of [NLFT].)

3. Material Isomorphisms, Material Symmetry

Isomorphisms between elastic material elements are defined in accordance
with the general notion of isomorphism for arbitrary mathematical structures.
To be specific, let (T1,G1,h1) and (T2,G2,h2) be the ingredients that define two
elastic material elements as described by 1), 2), and 3) in the previous section.
A linear isomorphism A ∈ Lis (T1, T2) is a material isomorphism if

G1 = {A>GA | G ∈ G2 } (3.1)

and
Ah1(A

>GA)A> = h2(G) for all G ∈ G2 . (3.2)

We say that an elastic body system B is materially uniform if, for any two
material points X, Y ∈ B, the corresponding elastic elements (TX ,GX ,hX) and
(TY ,GY ,hY ) are materially isomorphic. We say that the body system B is
homogeneous if there is a placement κ of B in a frame-space F with translation
space V such that, for any two material points X, Y ∈ B,

AXY := (∇
Y
κ)−1∇

X
κ ∈ Lis (TX , TY ) (3.2)

is a material isomorphism.
A body system can be materially uniform without being homogeneous, and

the deviation from homogeneity is related to what are often called ”continuous
distributions of dislocations”. (See also the Remark at the end of Sect.9 in [N7].)

Now let an elastic material element (T ,G,h) be given as described in the
previous section. An automorphism of this element, i.e., an isomorphism from
the element to itself, is called a symmetry of the element. We assume that all
symmetries are unimodular because a change of volume cannot reasonably leave
material properties unchanged. They form the symmetry group

G := {A ∈ Unim T | Ah(A>GA)A> = h(G) for all G ∈ G} . (3.3)
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Of course, it must be assumed that, for each A ∈ G, we must have A>GA ∈ G
whenever G ∈ G.

The symmetry group of a configuration G ∈ G is defined by

GG := G ∩ Orth (G) (3.4)

It is easily seen that

Ah(G)G = h(G)GA for all A ∈ GG . (3.5)

We say that a given configuration G ∈ G is isotropic if GG := Orth (G) ,
i.e., if Orth (G) ⊂ G . We denote the set of all isotropic configurations by

ItrG := {G ∈ G | Orth (G) ⊂ G} . (3.6)

If G ∈ G is isotropic, it follows from (3.5) that h(G)G commutes with all
A ∈ Orth (G) and hence is proportional to the identity 1T of T . Therefore,
there is a function π̂ : ItrG −→ RI such that

h(G)G = −π̂(G)1T for all G ∈ ItrG. (3.7)

It easily follows from (3.3), (3.6) and (3.7) that

π̂(A>GA) = π̂(G) for all G ∈ ItrG ,A ∈ G . (3.8)

We need the following

Proposition. Let G,G′ ∈ Pos+(T , T ∗) be given. Then

(G′ = A>GA for some A ∈ Unim T ) ⇐⇒ det(G−1G′) = 1 . (3.9)

The proof of this proposition is essentially the same as that of Prop.19.1 in
[N7].

Using this Proposition and (3.8), we see that(
det(G−1G′) = 1 =⇒ π̂(G′) = π̂(G)

)
for all G,G′ ∈ ItrG . (3.10)

We now choose a reference configuration GR ∈ G and define the function
ρ̂ : G −→ PI × by

ρ̂(G) =
√

det(G−1GR) for all G ∈ G. (3.11)

If the units for mass and volume are chosen such that the mass density (mass
per unit volume) in the reference configuration is 1, then the value ρ̂(G) is the
mass-density determined by the configuration G. Here, mass can be taken
as a proxy for volume in the reference-configuration, and hence need not be
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connected with inertial or gravitational mass, which should not enter internal
constitutive laws. It is easily seen from (3.11) that

det(G−1G′) = 1 ⇐⇒ ρ̂(G′) = ρ̂(G) for all G,G′ ∈ G . (3.12)

Therefore, by (3.10), the value π̂(G) depends only on ρ̂(G). Hence there is a
function

π̄ : P −→ RI , where P := ρ̂>(ItrG) , (3.13)

such that π̂(G) = π̄(ρ̂(G)) for all G ∈ ItrG. Hence (3.7) yields

h(G) = −π̄(ρ̂(G))G−1 for all G ∈ ItrG . (3.14)

The function π̄ is called the pressure function for the set ItrG of all
isotropic configurations of the elastic material element.

We now assume, as at the end of Sect.2, that a frame space F with transla-
tion space V and a reference placement κ of B in F are given and we use again
the notation (2.7). It easily follows from (2.8) and (2.9) that

det((GR)−1G) = det(FF>) = |detF |2

and hence, by (3.11), ρ̂(G) = |detF |−1. Therefore, the value ρ̄(F) of the
function ρ̄ : L −→ PI × defined by

ρ̄(F) := |detF |−1 for all F ∈ L (3.15)

gives the mass-density of the body element when its configuration is determined
by F according to (2.9). Using (2.12), (3.14), and (2.9), we easily conclude that

T = g(F) = −π̄(ρ̄(F)1V (3.16)

when the configuration determined by F is isotropic. This formula (3.16) is
consistent with conventional formulas such as (50.2)1 in [NLFT].

We say that the element is fluid if its symmetry group is the full unimodular
group, i.e., if

G = Unim T . (3.17)

The element is fluid if and only if all of its configurations are isotropic, i.e., we
have ItrG = G. Hence, for a fluid element, the relation (3.14) is valid for all
configurations G ∈ G and (3.16) is valid for all F ∈ L. In this case, the pressure
function π̄ alone is enough to describe the elastic response.

We say that the element is solid if

G ⊂ Orth (G) for some G ∈ G . (3.18)

If that is the case then the configurations G for which (3.18) holds are said to
be undistorted.

10



We say that the element is isotropic if it has isotropic configurations, i.e.,
if

Orth (G) ⊂ G for some G ∈ G . (3.19)

Assume now on that the element is an isotropic solid element, which
means, by (3.18) and (3.19), that its undistorted configurations G are charac-
terized by the property that

Orth (G) = G . (3.20)

In fact, for isotropic solids, the set of undistorted configurations coincides with
the set ItrG of isotropic configurations. Moreover, if GR is an undistorted
reference configuration, we have

Orth (GR) = G = Orth (G) for all G ∈ ItrG . (3.21)

It easily follows from (3.21) that all undistorted configurations are proportional
to GR, i.e., that

ItrG ⊂ { cGR | c ∈ PI ×} . (3.22)

4. Frame-free Hyperelasticity

The structure of a hyperelastic material element is obtained from that
of an elastic material element defined in Sect.2 by adding two more ingredients
and a basic axiom. The ingredients are:

4) A reference configuration GR ∈ G.
5) A function σ̂ : G −→ PI , of class C1, called the intrinsic energy-
response function.

Its value
σ = σ̂(G) (4.1)

is the strain-energy per unit mass determined by the configuration G.
As in the previous section, mass can be taken as a proxy for volume in the

reference configuration.
To formulate the basic axiom of hyperelasticity, we need the following result

from linear algebra, which is not in most textbooks:
Every member M̄ of (Sym (T , T ∗))∗ := Lin (Sym (T , T ∗), RI ) has exactly

one representation by a member M of Sym (T ∗, T ) such that

M̄(L) = tr (ML) for all L ∈ Sym (T , T ∗) . (4.2)

(This result is a consequence of the Representation Theorem for Linear
Forms on a Space of Linear Mappigs in Sect 26 of FDS.)

We use (4.2) to identify (Sym (T , T ∗))∗ ∼= Sym (T ∗, T ) by omitting, on the
right side of (4.2), the bar atop M.
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To formulate the basic axiom, we also make use of the mass-density function
ρ̂ defined by (3.11).

Basic Axiom: The intrinsic stress-response function is related to the intrinsic
energy response function by

h(G) = 2ρ̂(G)∇Gσ̂ for all G ∈ G . (4.3)

Note that (4.3) makes sense only because of the identification mediated
by (4.2) when the bar over M is omitted because the right side belongs to
(Sym (T , T ∗))∗ while the left side belongs to Sym (T ∗, T ).

We now assume that a frame-vector-space V is given as in previous sections.
We choose a reference placement K ∈ Lis (T ,V) of the element in such a way
that

GR := K>K , (4.4)

the configuration induced by K, is the reference configuration given as ingredient
in 4). Every other placement of the element in the space V then has the form
FK ∈ Lis (T ,V) where F ∈ LisV is a transplacement of the element. The
configuration G induced by the placement FK is

G = (FK)>(FK) = K>CK, where C := F>F . (4.5))

Recall that C is called the right Cauchy-Green tensor in [NLFT].

We now put
Ḡ := {C ∈ Pos+V | K>CK ∈ G} (4.6)

and define σ̄ : Ḡ −→ PI × by

σ̄(C) := σ̂(K>CK) for all C ∈ Ḡ . (4.7)

It easily follows from (4.7) that

∇C σ̄ = K(∇K>CKσ̂)K> for all C ∈ Ḡ . (4.8)

In analogy to (4.7) define ρ̄ : Ḡ −→ PI × by

ρ̄(C) := ρ̂(K>CK) for all C ∈ Ḡ . (4.9)

Now put
L := {F ∈ LisV | F>F ∈ Ḡ} . (4.10)

In view of (2.12) we have

g(F) := (FK)h(K>CK)(FK)> , where C := F>F, for all F ∈ L . (4.11)
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Therefore, by (4.3), (4.7), (4.8), and (4.9), we conclude that

g(F) := ρ(C)F(∇C σ)F>, where C := F>F, for all F ∈ L . (4.12)

This relation is identical to (84.12) in [NLFT] and hence shows that the basic
axiom is consistent with the classical frame-dependent theory of hyperelasticity.

Remark: The relation (4.12) is a reduced version of the stress relation (82.9)
in [NLFT]. In the context of thermodynamics, the latter can be derived from
the second law of thermodynamics by a procedure described in [CN] (see (5.4)
in [CN]). A frame-free version of this procedure should yield the relation (4.3)
of the Basic Axiom directly.

The symmetry group of the strain-energy is defined by

Gσ := {A ∈ Unim T | σ̂(A>GA) = σ̂(G) for all G ∈ G} . (4.13)

Theorem. We have Gσ ⊂ G, i.e., every strain-energy symmetry is also a
symmetry of the elastic element. If the element is solid and if the reference
confiuration is undistorted we actually have Gσ = G.

Proof: Let A ∈ Gσ be given so that

σ̂(A>GA) = σ̂(G) for all G ∈ G . (4.14)

Taking the gradient with respect to G and using the identification (4.2), we find

tr ((∇Gσ̂)L) = tr ((∇A>GAσ̂)A>LA) =

tr (A(∇A>GAσ̂)A>L) for all L ∈ Sym (T , T ∗) , (4.15)

and hence
A(∇A>GÂσ)A> = ∇Gσ . (4.16)

Noting, in view of (3.11), that

ρ̂(A>GA) = ρ̂(G) for all G ∈ G , (4.17)

it follows from (4.16) and the basic axiom (4.3) that Ah(A>GA)A> = h(G)
for all G ∈ G and hence, in view of (3.3), that A ∈ G. Since A ∈ Gσ was
arbitrary, the inclusion Gσ ⊂ G is proved.

Actually, the proof above shows that A ∈ G if and only if the gradient of
(4.14) with respect to G is zero. That is the case if and only if the difference
σ̂(A>GA) − σ̂(G) does not depend on G. This means that we have A ∈ G if
and only if

σ̂(A>GA)− σ̂(G) = σ̂(A>GRA)− σ̂(GR) for all G ∈ G . (4.18)
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Now, if the element is solid and the reference configuration undistorted, it follows
from (3.16) with G := GR that A ∈ Orth (GR). Therefore, we have A>GRA =
GR and the right side of (4.18) is zero. Since A ∈ G was arbitrary we conclude
from (4.18) and (4.14) that, in this case, Gσ = G.

The Theorem just proved is the frame-free version of a result presented in
Sect.58 of [NLFT].

5. Restrictions upon the Response Functions.
The most common restrictions on the intrinsic response functions concern

smoothness. If the energy response function σ̂ is of class C1 then the stress
response function h is continuous; if σ̂ is of class C2, then h is of class C1. The
latter assumption is sufficient for most purposes.

The linear cone Pos+(T , T ∗) and the space Sym (T , T ∗) have natural (par-
tial) orders, denoted by ≺ and defined by

G1 ≺ G2 ⇐⇒ G2−G1 ∈ Pos+(T , T ∗) for all G1,G2 ∈ Pos+(T , T ∗) (5.1)

and

S1 ≺ S2 ⇐⇒ S2 − S1 ∈ Pos+(T ∗, T ) for all S1,S2 ∈ Sym (T ∗, T ) . (5.2)

(These definitions are special cases of (2.8) in [NS].)

Note: Given G ∈ Pos+(T , T ∗) and c ∈ PI × we have G ≺ cG ⇐⇒ c > 1.

We postulate the following
Axiom. The stress-response function h is strictly isotone in the sense that

G1 ≺ G2 =⇒ h(G1) ≺ h(G2) for all G1,G2 ∈ G . (5.3)

Intuitively, the axiom states that in order to expand the elastic element in all
directions, one must increase the stresses in all directions.

Proposition. For isotropic materials, the pressure function π̄ characterized by
(3.13) and (3.14) is stricty antitone in the sense that

ρ1 < ρ2 =⇒ π̄(ρ1) > π̄(ρ2) for all ρ1, ρ2 ∈ P . (5.4)

Proof: Let ρ1 ∈ P be given. By (3.13), we may choose G1 ∈ ItrG such that
ρ1 = ρ̂(G1). Let c ∈ PI × be given and put G2 := cG1 ∈ G. Since Orth (G2) =
Orth (G1) ⊂ G we also have G2 ∈ ItrG. An easy calculation using (3.11) shows
that

ρ̂(G2) = c−
3
2 ρ̂(G1) = c−

3
2 ρ1 . (5.5)

Now let ρ2 ∈ P be given. By (5.5) we then have

ρ̂(G2) = ρ2 ⇐⇒ c :=
(ρ1

ρ2

) 2
3 . (5.6)
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We assume now that (5.6) holds and use (3.14) with the result

h(G2) = −π̄(ρ2)G2
−1 = −π̄(ρ2)(cG1)−1 =

π̄(ρ2)
π̄(ρ1)

c−1h(G1) . (5.7)

Using (5.6) we see that

G1 ≺ G2 ⇐⇒ c > 1 ⇐⇒ ρ1 > ρ2 , (5.8)

and using (5.7) we see that

h(G1) ≺ h(G2) ⇐⇒ π̄(ρ2)
π̄(ρ1)

> c . (5.9)

Combining (5.8) and (5.9), we infer from the strict isotonicity of h that
ρ1 > ρ2 =⇒ π̄(ρ2) > π̄(ρ1).

The antitonicity of π̄ implies that there is at most one ρ ∈ P such that
π̄(ρ) = 0. In view of (3.20) we conclude that, for isotropic solids, there is at
most one undistorted configuration GN such that h(GN ) = 0. If such GN

exists, it is called a natural configuration.

A response restriction that one might explore is the assumption that the
energy-response function σ̂ is convex. It is not hard to prove that this is the
case if and only if the stress-response function h satisfies

tr
(
(ρ1h(G2)− ρ2h(G1))(G2 −G1)

)
≥ 0 for all G1,G2 ∈ G (5.10)

when ρ1 := ρ̂(G1) , ρ2 := ρ̂(G2).

A large number of possible restrictions on the response functions have been
considered in the conventional literature on elasticity. The following names
appear in Sects. 51, 52, and 86 of [NLFT]: P-C inequality, T-E inequalities, IFS
condition, E-T inequalities, O-F inequalities, B-E inequalities, E-inequalities,
GCN condition, and C-N condition. In the later literature, conditions such as
rank-one convexity, quasi-convexity, and poly-convexity have been extensively
explored.

All these restrictions should be frame-indifferent in order to be relevant.
I am not sure whether this has been proved in all cases. If they are frame-
indifferent, it must be possible to give them a frame-free formulation. I hope
that someone will start the task of doing so in the future.

5. Phase Transitions.
The domain G of the intrinsic response function h in Sect.2 (or of the

intrinsic strain energy function σ̂ in Sect.4) must be restricted in such a way that
the configurations in G are compatible with only a single phase of the material
element in question. If the material element undergoes a phase transition, the
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configurations of the new phase belong to a subset G′ of Pos+(T , T ∗) that is
disjoint from G. The intrinsic response function h′ for the new phase need not
have the same material symmetry as h. For example, the material can be fluid
in one phase and solid in the other. If a configuration belongs to a point on the
boundary of both G and G′, one can expect that the element can describe two
coexistent phases.

Phase transitions are related to questions of stability, and these are related
to the restrictions mentioned in the previous section. I hope that someone will
develop a frame-free conceptual analysis of such phase transitions. This analysis
cannot be complete unless the entire matter is treated in the context of thermo-
mechanics.

Acknowledgement: I am grateful to Roger Fosdick for helpful suggestions and
proofreading.
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