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Abstract. In finite elasticity, the traditional local boundary-value problems are rarely appro-
priate. More often one has to consider non-local environmental loads. This paper gives a general
description of schemes for formulating such non-local problems. Interesting examples are cavity
problems, special cases of which are what I call basketball problems and tire problems. The actual
solution to these problems I leave to future work.
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1 Introduction

It is a cliché that “mathematical physics” is, in part, the study of “boundary-value” and “initial-
value problems”, and that such problems are “well-posed” if one can prove existence, uniqueness,
and stability of solutions. This is a narrow view even when the differential equations that govern
the given situation are linear; it is totally inadequate when these equations are non-linear, as will
be evident from the discussions of the problems in Section 5.

In Sections 2 and 3 I will give a brief description of the concepts of a continuous body and of a
load system acting on such a body. In Section 4, after defining what is meant by an elastic body,
I will describe the load operator of such a body. This operator associates with each placement of
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the body the load-system necessary to keep the body in this placement. After discussing zero-load
problems in Section 5, I present, in Section 6, a general framework for problems in elastostatics.
The new feature of this framework is that one prescribes, not boundary data, but an environmental
reaction operator which specifies how the environment would act on the body for every conceivable
placement. The problem then is to find the placements, if any, for which the load operator and the
environmental reaction operator have the same value.

Most of this paper cannot be understood by a reader who is not familiar with what I called, in
[CMI], the Stage 3 Infrastructure of mathematics. Unfortunately, many mathematicians, physicists,
and engineering scientist are sill stuck in Stage 2. In a nutshell, Stage 2 is based on the concepts
of variables, coordinates, parameters, and constants. Stage 3 is based on the concepts of sets, of
mappings with domain and codomain, and of mathematical structures. An idea of the difference
can be obtained by reading my book Finite-Dimensional Spaces, Algebra, Geometry, and Analysis,
Volume I [FDSI], especially the Introduction and Chapter 0. This book was published in 1987. A
corrected version is now available, free of charge, on my website. To this day, students are subject
to courses with titles such as Matrix Algebra, Vector Analysis, Tensor Analysis, and Multivariate
Calculus. In my opinion, such courses deserve to be put into the trash, or, at best, in a museum.

In particular, I use the notations (00.1), (03.20), (03.21) and f← on p.11 in Chapter 0 of [FDSI],
as well as some notations and definitions from Section 18 and 63 of [FDSI].

My own work since 1972 requires understanding of the Stage 3 infrastructure. The ideas pre-
sented in my work cannot be described by using only Stage 2 because this infrastructure is too
crude and imprecise.

Also, most of this paper cannot be understood by a reader who is not familiar with the notation
and terminology of the frame-free background of continuum mechanics presented in [BC], [FFE]
,and [FC]. especially Sections 1,2,3,4,5,8, and 9 of [BC].

I presented the basic ideas underlying this article at a meeting in Rio de Janeiro in 1978 [Rio].
The present paper differs from [Rio] in that it is more precise and elaborate, and hat it uses better
concepts and notations because it is is based on the recently developed background mentioned in
the previous paragraph. In addition, in Section 6, it includes a general theory of elastic bodies with
gas filled cavities. Special cases of it are what I call the basketball problem and the tire problem.
Finally, there were some serious errors in [Rio] that have been corrected here.
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2 Continuous bodies, placements

We use the definition of a continuous body-systems, placements, and frames of reference as presented
in detail in Sections 4 and 5 of [BC]. Here, it is sufficient to use only one designated frame-space.
a three-dimensional Euclidean space denoted by E . Its translation space is denoted by V. Also we
only consider the case when the body-system consist only of one connected set, called simply ”the
body”.

To give a precise definition of placements, one first has to introduce two sets:

(i) A set Fr consisting of connected fit regions in E that are candidates for regions occupied by the
B when placed in E . It serves well to take Fr to be the set of all fit regions in E ., as defined precisely
in [NV], i We also consider the set F̄r of all closures of such fit regions. The set Fr not only includes
all regions that an engineer can think of, but also some that only a mathematician can describe.

(ii) a set Tp of mappings which are candidates for changes of placements of the body in E .

We call the members of Tp transplacements. Tp is characterized by the following conditions:

(T1) Every λ ∈ Tp is an invertible mapping whose domain and codomain belong to Fr.

(T2) For every λ ∈ Tp, there is a C2- diffeomorphism 1 φ : E −→ E such that λ = φ
∣∣Rng λ
Domλ.

In view of (T2), each transplacement λ has a unique extension λ̄ whose domain and codomain
belong to F̄r.

The set Pl of all placements of B in E is characterized by the following conditions:

(B1) Every κ ∈ Pl is an invertible mapping with Domκ = B and Rng κ ∈ Fr.

(B2) For all κ, γ ∈ Pl we have κ ◦ γ← ∈ Tp.

(B3) For every κ ∈ Pl and λ ∈ Tp such that Rng κ = Domλ we have
λ ◦ κ ∈ Pl.

1In most contexts, C2 is good enough, but there may be situations where C2 should be replaced by Cn with n > 2.
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We denote by Ω the set of all parts of B as defined in Sect. 4 of [BC]. Thus, for every P ∈ Ω,
and every placement µ, the fit region occupied by P is

Pµ := µ>(P) . (2.1)

(See (5.7) in [BC].) The reduced boundary Rby(Pκ) consists of those points x ∈ Bdy at which an
exterior unit normal nx ∈ SphV can be defined. (See Section 6 of [NV].)

3 Load systems

For the rest of this paper, we assume that a continuous body B and a frame-space E with translation
space V, as described in the previous section, are given. Again, we denote by Ω the set of all parts
of B.

Definition 3.1. A load L : Ω −→ V is an additive mapping, as defined in Sect.3 of [BC], with
the following property: for every part P ∈ Ω and every κ ∈ Pl , there are continuous mappings
bκ : CloPκ −→ V and tκ : RbyPκ −→ V such that

L(P) =

∫
Pκ

bκdvol +

∫
CloPκ∩RbyPκtκdarea for all P∈Ω . (3.1)

The set of all loads will be denoted by Ld.

In this definition, it is not difficult to show that one can replace “every κ ∈ PlB ”
by “some κ ∈ Pl ” without changing the meaning. The condition (T2) in Section 3 is crucial
for proving this fact.

The first integral on the right side of (3.1) represents a body-load and the second a surface
load. By (3.1), these loads have continuous densities. A more general definition should include
concentrated loads. We do not include them here because they would make the analysis too
complicated.

The value of a load L on the entire body, i.e. L(B) is called the resultant of L.

the set of all loads with resultants zero is denoted by

Ld0 := {L ∈ Ld | L(B) = 0} . (3.2)
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4 Elastic Responses

We now assume that B is an elastic body, which means that it is a continuous body with additional
structure as defined in [FFE]. The constitutive equation can be expressed with intrinsic stresses,
Cauchy stresses, or Piola - Kirchhoff stresses. Here, it is useful to use a reference placement κ and,
for each X ∈ B, the Piola - Kirchhoff stress

T̂RX : LisV −→ LinV , (4.1)

We say that the placement κ is homogeneous if T̂RX does not depend on X, so we simply denote it
by T̂R. in this case.We say that κ is a natural placement if it is homogeneous and if T̂R(1V) = 0.

From now on, we assume that the reference placement κ is homogenous . The stress function
(4.1) is determined by the constitutive laws of elasticity.

We now consider the case when the material is hyper-elastic with a family (σµ ∈ C1(Lis(V),R) | µ ∈
Pl) of elastic energy functions. We also need the family of (ρµ ∈ C1(Lis(V,P×) | µ ∈ Pl) of
mass-density functions, which assigns to each placement µ the volume per unit mass at each
point in Bµ. We use the reference mass as defined in Sect.7 of [BC], so that ρκ = 1.

We note that, for each µ, the gradient of σµ is a mapping of the form ∇σµ : LisV −→ Lin(LinV)
because the formal codomain Lin(LinV,R) = Lin(LinV)∗) can be identified with Lin(LinV), because
(LinV)∗ can be identified with (LinV) since V is an inner-product space.

The Piola-Kirchhoff Stress function T̂R is then related to the elastic energy functions σµ by

T̂R(∇(χ)) = ρ(µ)(∇σµ(∇χ)) , (4.2)

where
χ := µ ◦ κ← . (4.3)

(In a more general theory of of thermomechanics. this relation is a consequence of the second law
of thermodynamics. Originally. a version was proved in [CN], equation (5.4). Other versions are
(82.11) in [NLFT] and (4.3) in [FFE].)

In order to keep B in a given placement µ, one must apply to it a certain load, the value at µ
of an elastic load operator El : Pl −→ Ld. This operator is determined by the stress operator
T̃κ : Pl −→ C1(CloBκ,LinV), defined by

T̃κ(µ) := T̂R(∇(χ)) (4.4)
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We then define the elastic body-force operator b̃κ : Pl −→ C1(CloBκV) by

b̃κ(µ) := −div (T̃κ(µ)) for all µ ∈ Pl , (4.5)

and the elastic surface-traction operator t̃κ : Pl −→ C0(RbyBκ,V) by

t̃κ(µ) := T̃κ(µ)
∣∣
Rby(Bκ)

nκ for all µ ∈ Pl , (4.6)

where nκ : RbyB −→ Usph (V) is the exterior unit normal function whose values are defined at the
end Section 2.

The elastic load operator El : Pl −→ Ld is then defined by

El(µ)(P) =

∫
Pκ

b̃κ(µ)dvol +

∫
CloPκ∩RbyPκ

t̃κ(µ)darea for all µ ∈ Pl , P ∈ Ω . (4.7)

Of course, the right side of (4.7), contrary to appearance, does not depend on the choice of the
reference placement κ. Also, we have El(µ)(B) = 0, i.e., the resultant of El(µ) is zero. Therefore,
the codomain of El can be replaced by Ld0.

Elastic properties are frame- indifferent. Here, however, we deal with the interplay between an
elastic body and its environment, which fails to be frame-indifferent because cannot be described
without using an external frame, represented here by E .

5 Zero-load problems

Let B be an elastic body with load operator El,, as described in the previous section. Given any
load L0 ∈ Ld0, one can consider the problem

? µ ∈ PL, El(µ) = L0 . (5.1)

Such a problem is called dead-loading problem. If El(µ) 6= L0, such problems are physically unre-
alistic because it is difficult, in the real world, to create an environment that exerts a load-system
on the body that does not vary with the placement.

If L0 = 0, then (5.1) becomes the zero-load problem

? µ ∈ Pl , El(µ) = 0 . (5.2)
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which has the following vivid physical interpretation: Take the body, in some given reference
placement κ, and then “let it go” so as to end up completely free of external forces. What placements
µ, if any, can it assume?

If µ ∈ Pl is a solution of (5.2), and γ a congruence from Bµ onto a subset of E , then α ◦ µ is
again a solution of (5.2). We say that two solutions of (5,2) that are related by such are congruence
equivalent solutions.

We assume now that B has natural placements κ ∈ Pl. It is evident that these are solutions to
the zero-load problem. Physical experience tells us, however, that they need not be the only such
solutions. For example, if κ is a natural placement and the region Bκ occupied by a body made of
rubber has the shape of a hemispherical shell, one can expect a solution µ to (5.2), not equivalent
to κ, that corresponds to an “eversion” of the shell (see Fig. 1).

κ µ µ′

Figure 1: eversion

If the shell is thin enough, one can experimentally produce a third solution µ′, corresponding
to eversion of only the middle of the shell, as shown in Figure 1. Actually, if the eversion or partial
eversion is produced by pushing down the middle while holding the rim along the circle, one can
produce additional solutions to (5.2). They correspond to the onset of “popping” into the everted
or partially everted placements and are physically unstable.

A more complicated situation can be expected when the region Bκ occupied by B in the natural
placement κ has the shape of a “rubber mat” with many hemispherical indentations (see Fig. 2).

Figure 2: rubber mat

One expects that there are many inequivalent solutions to (5.2), each corresponding to “ever-
sion” of a prescribed subset of the set of indentations. Thus, if there are n indentations, one expects
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at least 2n solutions. In addition, there are physically unstable solutions.

Remark In the examples above, the region Bκ occupied by the body in its natural placements
fails to be convex. I offer the following conjecture: If the stress function of an elastic body satisfies
conditions appropriate for materials such as rubber and if the body occupies a convex region in its
natural placements, then these natural placements are the only solutions to the zero-load problem.

If an elastic body has no natural placement, there are circumstances when one can expect that
the zero-load problem has no solutions at all. Consider, for example, two bodies B1 and B2 with
natural placements κ1 and κ2 as shown in Figure 3.

B1 B2

κ1 κ2

Figure 3:

Assume that the two bodies consist of the same material, and hence that T̂R1 = T̂R2 . One can
then “glue” B1 and B2 together as indicated in Figure 3 to obtain a single body B which has no
homogeneous placement However, B has no natural placements because, before gluing B1 and B2

together, one must bend their upper parts out of the way, so that every placement µ of B fails to
be homogeneous. Hence the problem (5.2) of has no solutions at all in this case,
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6 Environmental reactions

In general, if the elastic body B is placed the environment represented by the Euclidean space E ,
the environment will exert forces on B, and these forces will depend on the placement of B. These
forces are specified by the prescription of an environmental-reaction operator Er : PL −→ Ld,
whose value Er(µ) gives the load that the environment exerts on B when placed in µ.

Given a load L0 with zero resultant, the problem

? µ ∈ Pl, Er(µ) = El(µ) (6.1)

then has the following physical interpretation: Put the elastic body B ,with the elastic load operator
El, in an environment described by the environmental load operator Er and then“let it go”. What
placements µ, if any, can it assume.

Given any homogeneous reference placement κ, one can describe Er by an environmental
body-force operator b̄κ : Pl −→ C0(CloBκ,V) and an environmental surface-traction op-
erator t̄κ : Pl −→ C0(RbyBκ,V) such that

Er(µ)(P) =

∫
Pκ

b̃κ(µ)dvol +

∫
CloPκ∩RbyPκ

t̄κ(µ)darea for all P ∈ Ω . (6.2)

In view of (4.6), the problem (6.1) is then equivalent to

? µ ∈ Pl, b̄κ(µ) = b̃κ(µ) , t̄κ(µ) = t̃κ(µ) , (6.3)

In most physical situations, the environmental body-force operator is local in the sense that it
is determined by by a family (bµ ∈ C0(CloBµ,V) | µ ∈ Pl) such that∫

Pκ
b̄κdvol =

∫
Pµ

bµdvol for all µ ∈ Pl (6.4)

For each µ ∈ Pl, bµ ∈ C0(CloBµ,V) gives the environmental body force per unit volume when
B is placed in the space E by the placement µ. Using the Theorem on Transformation of Volume
Integrals, it follows from (6,3) that

b̄κ = |det(∇χ)|(bµ ◦ χ) , (6.5)

where the transplacement χ is defined by (4.3).
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Using (4.3) and (6.5), We see that the condition b̄κ(µ) = b̃κ(µ) of the problem (6.3) becomes

div (T̃κ(µ)) + b̄κ = 0 . (6.6)

Using (4.2) and (6.6), we obtain the classical differential equation of finite elasticity

div (T̂R(∇χ)) + b̄κ = 0, (6.7)

where b̄κ is given by (6.5). This is a differential equation for the trasplacement χ.

If the only environmental body force is gravitational or electrostatic with a potential φ ∈
C1(E ,V), and if the gravitational mass density or electric charge density ρµ : CloBµ −→ R is given,
then bµ has the form

bµ(x) := −ρµ(x)(∇φ)(x) for all x ∈ CloBµ . (6.8)

In some physical situations, the environmental surface-traction operator is local in the sense
that it is determined by by a family (tµ ∈ C0(RbyBµ,V) | µ ∈ Pl) such that∫

RbyPκ
t̄κdarea =

∫
RbyPµ

tµdarea for all µ ∈ Pl. (6.9)

For each µ ∈ Pl, tµ ∈ C0(RbyBµ,V) gives the environmental surface traction per unit area when
B is placed in the space E by the placement µ. Using the Theorem on Transformation of Surface
Integrals, it follows from (6.9) that

t̄κ = |det(∇χ)|(tµ ◦ χ)(∇χ)−> . (6.10)

If this is the case, the condition t̄κ(µ) = t̃κ(µ) of (6.3) becomes a boundary condition, which,
by (4.2) and (4.4), has the explicit form

T̂R(∇(χ)|RbyBκ)nκ = t̄κ , (6.11)

where t̄κ is given by (6.10).

In many, perhaps most, physical situations, the environmental surface-traction operator is not
local and hence does not give rise to a boundary condition in the conventional sense. An example
is the cavity problem. In this case, we assume that BdyBκ has two connected components Scκ
and Seκ . The first is the surface of a connected cavity surrounded by Bκ and the second the exterior
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boundary of Bκ. In view of the conditions (T2) and (B2) in Section 2, the assumption above on Bκ
remains valid if the reference placement κ is replaced by an arbitrary placement µ ∈ Pl.

Let µ ∈ Pl be given. Then Scµ is the boundary of a exactly one connected open region whose
volume we denote by v(µ). Thus we have defined a mapping v : Pl −→ P×.

We now assume that the cavity Scµ is filled by a compressible homogeneous gas. Assuming
that the temperature is constant, the pressure in the cavity depends only on its volume and this
dependence is described by a function π : P× −→ P×, usually antitone. Also, we assume that
the outside pressure on the exterior boundary Seµ has a fixed value p ∈ P×, independent of the
placement µ. For example, p may be the atmospheric pressure. Using (6.10), we find that the
environmental surface traction is given by

t̄κ|Seκ := p| det(∇χ)|(tµ ◦ χ)(∇χ)−> . (6.12)

and
t̄κ|Scκ := −π(v(µ)|det(∇χ)|(tµ ◦ χ)(∇χ)−> , (6.13)

where the transplacement χ is defined by (4.3).

Of particular practical interest is the case when Scκ and Seκ are concentric spheres, the first
one having the smaller radius and Bκ being the region between them. In this case, Bκ looks like a
basketball or a soccer-ball. We then call (6.1) the basketball problem.

Another case of practical interest is the one when both Scκ and Seκ are tori, i.,e.,surfaces of
revolution generated by revolving a circle in E about an axis in the same planes as the revolving
circle. We assume that this axis is the same for both tori and that the the first torus is included
in the open region bounded by the second torus. In this case , Bκ looks like a tire. We then call
(6.1) the tire problem.

7 Stability

There is a vast literature on elastic stability as described in Section 89 of [NLFT]. However, this
literature deals only with local boundary conditions. It is not difficult to generalize elastic stability
to the case when local boundary conditions are replaced by environmental operators as described
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in the previous section This is shown in Section 8 of [Rio]. We now assume that B is hyper-elastic.
Then the total elastic energy when B is in a given placement µ is given by

Σ(µ) =

∫
Bµ
σ(µ) . (7.1)

We also assume that the environmental-reaction operator discussed in Section 6 is conservative in
the sense that it can be derived from a potential energy Π : Pl −→ R. This is the case, for example,
when the environmental body force is purely gravitational or electrical, as described in the previous
section.

In this case, a solution µ of the problem (6.1) is locally stable if there is a neighborhood Λ of
µ ∈ Pl such that

Σ(µ)−Π(µ) ≤ Σ(λ)−Π(λ) for all λ ∈ Λ, (7.2)

i.e. that Σ−Π has a local minimum at µ.

8 Outlook

Here are some issues that may be considered in future research:

1) Internal constraints, incompressibility. This subject is treated in detail in Section 30
of [NLFT] .The simplest and most important of these is incompressibility. It should not be difficult
to modify the content of this paper when the elastic body B is incompressible.

2) External constraints. The most important of these is a Confinement, which is deter-
mined by prescribing an open connected subset C of E with a piecewise smooth boundary. We may
think of this boundary as consisting of a rigid flat or curved sheet. If C is a half-space, then its
boundary corresponds to a rigid plane sheet. The set Pl should then be reduced to

Plc := {µ ∈ Pl | Bµ ⊂ C)} , (8.1)

the set of admissible placements.

If µ ∈ Plc touches the sheet represented by BdyC, it may stick to it, glide freely, or glide with
friction. In the first case we get what is usually called a boundary condition of place. The other
two cases should be investigated. Some of that was done in Section 7 of [Rio].
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There is also the possibility that there are no stable solutions in which no µ ∈ Plc touches the
sheet represented by BdyC. (See, for example [FT] and MH].)

3) Solutions. This paper only describes schemes for posing problems, but not for actually
solving them. I believe that one can obtain more or less explicit solutions in some cases, for
example for the basketball problem and the tire problem, especially when the body in the reference
placement is isotropic.

4) Quasi-static motions. One may investigate motions of an elastic body that are so slow
that inertial effects can be neglected. These are time families (µt ∈ Pl | t ∈ [0, d]) of duration
d. The elastic Load operator Elt varies with t ∈ [0, d] but the environmental-reaction operator Er
remains constant.

The beginning of such an investigation is described in Section 8 of [Rio] .

5) Zero-load problems. Strictly speaking, one cannot make experiments on the surface
the earth that correspond to solutions to zero-load problems, because there is always the earth’s
gravitational force. One would have to make such experiments in the weightless environment of a
space station. However, if the material of the elastic body has small weight, the zero-load problems
may be a good approximation.

It may be useful to consider the case when the environmental reaction is reduced to a constant
weight per unit volume.

5) Thermal effects. Here, as in most treatments of elastostatics, thermal effects are neglected,
So the theory applies only to the case when changes are so slow that the temperature changes very
little. It would be interesting to find a generalization in which heat conduction is taken into account.

6) Surface tension. In this paper, we assume that there is no surface tension or, at least,
that it is negligible. It would be interesting to develop a conceptual scheme that includes the effect
of surface tension.

Acknowledgement I am grateful to Roger Fosdick and Eliot Fried for valuable sugges-
tions and proof reading.
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