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[0] Introduction.

In the 17th and 18th century, mathematics and physics were not the sepa-
rate specialties that they are today, and Natural Philosophy was the term used
for the endeavor to understand nature by using conceptual mathematical tools.
Perhaps the most important scientific work of that era is Newton’s Philosophiae
Naturalis Principia Mathematica, published in 1687. He invented differential cal-
culus, with new mathematical concepts, a new terminology, and new notations,
which made possible a concise formulation of the laws of particle mechanics now
named after him.*)

In the 1960’s, Clifford Truesdell tried, and to some extent succeeded, to
revive not only the term Natural Philosophy but also the spirit behind it. He
was the driving force behind the founding, in 1963, of the Society for Natural
Philosophy, which still exists today. (I was one of the founding members.) Much
of my own work has been in the spirit of Natural Philosophy. In recent years,
many of the mathematicians working in the field of continuum physics have
de-emphasized this spirit and have concentrated more and more on obtaining
existence theorems and other “results” rather than analyzing basic concepts. I
have been out of step with this trend, but I have not been completely idle. This
collection presents some of the ideas that I have developed in the past 10 years
or so.

In my doctoral thesis in 1954, I discussed a general principle which I called
“The Principle of Isotropy of Space”. My thesis advisor, Clifford Truesdell,
teased me by putting up his son, then about 10 years old, to ask me: “Mr.
Noll, please explain the Principle of Isotropy of Space to me.” It is only recently,
more than 40 years later, that I have found a good explanation, namely the one
presented in the first two papers [1] and [2] of this collection. (In 1958, I realized
that “Principle of Isotropy of Space” is misleading and renamed it the “Principle
of Objectivity”. Later, Clifford Truesdell and I decided that this term is also
unsatisfactory and we settled on “Principle of Material Frame-Indifference”. See
the exchange of letters reproduced on pp.28 -29 of [N6] and pp. XI and XII of
the third edition of [NLFT]).

The treatise entitled The Non-Linear Field Theories of Mechanics [NLFT]
by C. Truesdell and me appeared in 1965 as a part of the Encyclopeadia of
Physics. It has become a standard reference in its field. A second edition
appeared in 1992, which was translated into Chinese in 2000. A third edition
came out in 2004. All these editions are just reprints of the first edition, except
for some minor corrections and new prefaces, one in the second edition by Clifford
Truesdell and me, and one in the third edition by Stuart Antman. The last
edition also contains an excerpt from [N6]. Already in the 1970s it had become

*) However, his terminology and notation are different from those that are
common now. He used “fluxion” instead of “derivative” and denoted it by
superimposed dots. (In his honor, I use a superscript thick dot instead of the
more common superscript prime.)
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clear to me that [NLFT] had some serious flaws. They were alluded to in the
preface of the second edition. Here is an excerpt from that preface:

“ Many of the concepts, terms, and notations we introduced have become
more or less standard, and thus communication among researchers in the field
has been eased. On the other hand, some ill-chosen terms are still current.
Examples are the use of ‘configuration’ and ‘deformation’ for what we should
have called, and now call, ‘placement’ and ‘transplacement’, respectively. (To
classify translations and rotations as deformations clashes too severely with the
dictionary meaning of the latter.) ...On p.12 of the Introduction (of the first
edition) we stated ‘... we have subordinated detail to importance and, above
all, clarity and finality’. We believe now that finality is much more elusive than
it seemed at the time. The General theory of material behavior presented in
Chapter C, although still useful, can no longer be regarded as the final word.
The Principle of Determinism for the Stress stated on p.56 has only limited
scope. It should be replaced by a more inclusive principle, using the concept of
state rather than a history of infinite duration, as a basic ingredient. In fact,
forcing the theory of materials of the rate type into the general framework of
the treatise as is done on p. 95 must now be regarded as artificial at best, and
unworkable in general. This difficulty was alluded to in footnote 1 on p.98 and
in the discussion of B. Bernstein’s concept of a material on p.405. This major
conceptual issue was first resolved in 1972 (in [N7]), and then only for simple
materials.”

I believe that [NLFT] is now in many respects obsolete and should be up-
dated. Such an update would be an enormous job. I am too old to get involved
in it and Clifford Truesdell is no longer with us. However, in the third paper [3]
of this collection I present some guidelines for such an update. A fundamental
ingredient should be the concept of a State-Space System, which is developed in
detail in [3].

In the forth paper [4] of this collection I use the ideas presented in [3]
and summarize some of the content of [N7] in order to introduce the concept
of a Simple Semi-Liquid, which can furnish a conceptual infrastructure for a
significant part of what is known as Rheology.

The last paper [5] of this collection is a sequel to [4] and deals with a special
case that may serve as a mathematical model for the flow of nematic liquid
crystals. I call it the theory of Nematic Semi-Liquids. Applying the results of
the general theory to this special case gives many interesting formulas, some
of which were first obtained by J.L.Ericksen in 1960 using an entirely different
context.

The papers [4] and [5] could serve as a basis for updating Chapter E of
[NLFT].

None of the papers in this collection have been published before, but pre-
liminary versions of [2] and [4] were written some time ago. In particular, an
earlier version of [2] was submitted to the Reviews of Modern Physics in 1995.
I thought that this paper should be of interest to an audience wider than just
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those interested only in the mathematics of continuum physics. A letter from
the editor of the Reviews, written in 1988, informed me that a 1961 paper by
Bernard Coleman and me had become a citation classic and that they would
welcome receiving other papers from me. However, my paper was rejected even
though the editor conceded that “the article is clearly written”. Here are some
quotes from the reviewer:

“I enjoyed reading this paper and very much would like to see it published.
I am afraid, however, that the Reviews of Modern Physics is not the appro-
priate place. I believe that the overwhelming majority of the readers of the
journal will consider the paper unreadable. Not because the material presented
is intrinsically difficult, but rather because the author’s individual form of the
‘Bourbakian’ style is far removed from anything that physicists are willing to
digest. .... Professor Noll is highly respected in the mathematical community
and has more than once proved himself to be ahead of his time. ...”

This experience and others like it led me to the conclusion that it would be
frustrating and unwise to submit any of my work to standard journals. In the
meantime, technology made it easier to do my own typesetting, and I decided
to bring out this collection by myself.

I have presented many of the ideas in this collection in a variety of lectures,
most of them given in Italy in the Fall of 2000 and in November 2002. The paper
[1] is based on a lecture I gave on October 30, 1997, at the Center for Philosophy
of Science of the University of Pittsburgh. A preliminary version of [N2] was
written in 1995. The paper [3] is based on lectures I gave in Turin, Italy, in
November 2002 and at the University of Illinois in March 2003. A preliminary
version of [N4] was written in 1996. The paper [5] was written in 2002.

Acknowledgements:

Much of the work leading to these papers was done while I was a visiting
professor in Italy, for a month each in Pisa in 1993 and 1996 and in Pavia in
2000. I am grateful for the help and encouragement from my friend Epifanio
Virga, now at the University of Pavia, and for the financial support from the
Italian Ministry of Education.

I am also grateful to Millard Beatty, Victor Mizel, Ian Murdoch, and my
wife Marilyn for proofreading help and valuable suggestions.
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[1] On the Illusion of Physical Space
.

1. Physical space and frames of reference.
My dictionary *) gives 19 definitions for “space”. We consider only

the first of these, vague and ambiguous as it may be:
“The unlimited and indefinitely three-dimensional expanse in which

all material objects are located and all events occur.” When talking about phys-
ical space, we mean space as implied by this definition.

Many people, scientists or not, use the words “space”, “space and
time”, “point in space”, “position”, “location”, “motion”, and “speed” as if
they have an unambiguous and obvious meaning regardless of context. Physi-
cists often do the same with related terms such as “velocity”, “acceleration”,
“momentum”, and “kinetic energy”. However, it takes very little reflection to
realize that it makes no sense to speak of location and hence of motion etc. ex-
cept relative to an explicitly or tacitly specified frame of reference . To this
day, physicists seem to be brainwashed by Newton’s idea of absolute space. He
distinguishes it from what he calls “relative space”, which is what I now call a
“frame of reference”. He states (in Philosophiae Naturalis Principia Mathemat-
ica, 1687):

“Absolute space, in its own nature, without relation to anything ex-
ternal, remains always similar and immovable.”(translation by Andrew Motte)

Newton then also distinguishes between absolute and relative positions
and absolute and relative motions.

Only about 20 years after publication of Newton’s treatise, George
Berkeley (in The Principles of Human Knowledge, 1710) already realized that
Newton’s idea of absolute space made no sense:

“But notwithstanding what has been said, it does not appear to me
that there can be any motion other than relative.”

Much later, Ernst Mach (in his Die Mechanik in Ihrer Entwicklung,
1883), came to the same conclusion:

“But if we take our stand in the basis of facts, we shall find that we
have knowledge only of relative spaces and motions. Relatively, ..., the motions
of the universe are the same whether we adopt the Ptolemaic or Copernican
mode of view. Both views are, indeed, equally correct; only the latter is more
simple and more practical. The universe is not twice given, with an earth at
rest and an earth in motion; but only once, with its relative motions alone
determinable.” (translation by E. J. McCormack)

In the late 1950s, I formulated what is now called the Principle of
Material Frame-Indifference. It essentially states that physical laws should not

*) The Random House College Dictionary
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depend on whatever frame of reference is used to describe them. This principle
is not a law of physics, it is merely a guide to prevent the nonsensical formulation
of alleged physical laws. Nevertheless, the consequences of this principle are not
entirely trivial. In 1996, in a preliminary version of the paper [N2] following
this one, I wrote:

“Most people, whether they are physicists or not, use the words ‘po-
sition’, ‘place’, and ‘motion’ as if they had a completely unambiguous meaning.
It should be obvious, however, that it makes no sense to speak of the position
or location of a material particle or point except relative to a frame of reference.
Similarly, motion means change of position with time and hence, like position,
makes no sense except relative to a frame of reference. Usually, it is tacitly
understood that the frame of reference to be used is the one that is determined
by the background. In our daily lives, the background is most often rigidly
attached to the earth (the road, the building we live or work in, the scenery,
etc.). Sometimes, for example when we are inside a railroad car, ship, airplane,
or spacecraft, the background is given by the interior walls of a conveyance that
is in motion relative to the frame of reference provided by the earth. When
our ancestors looked at the sky at night, they saw the background provided by
the fixed stars and used the frame of reference determined by it to describe the
motion of the planets (recall that ‘planet’ is the Greek word for wanderer).

We all know about the trouble that Galileo had when he asserted that
the earth moves around the sun rather than the sun around the earth, as church
dogma had it at that time. On the face of it, neither of these assertions makes
any sense because frames of reference are not specified. Both of these assertions
are in fact true if ‘move’ is understood relative to different but suitable frames
of reference. I cannot understand, therefore, what the fuss was all about.

When describing a physical process, there is sometimes no obvious
background that can be used to determine a frame of reference. Even if there is,
the frame obtained from it may not lead to the simplest description of the process
and a simpler description may be obtained by using a frame that seems, at first,
artificial. The true value of the Copernican frame, although quite artificial at
the time when it was proposed, is that it yields simpler motions for the planets
than the frame determined by the earth or the frame determined by the fixed
stars and the condition that the center of the earth be at rest. The choice of a
frame of reference is a matter of expediency, not of truth.

As stated above, a frame of reference should make it possible to speak
of locations. Mathematically, locations are points in a (genuine) Euclidean space
(as defined precisely in Chapter 4 of my book [FDS]) which we will then call
a frame-space. Such a frame-space can be constructed from a suitable rigid
material system (the most important example is the earth). ... Only when such
a frame-space is at hand does it make any sense to use geometric concepts such
as straight line, direction, angle, etc. and also to talk about vectors, namely as
members of the translation-space of the frame-space. Hence concepts such as
velocity, acceleration, and force also require the specification of a frame-space.

Some people confuse the concept of a frame of reference with that of a
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coordinate system. It makes no sense to talk about a coordinate system unless a
frame-space (or at least some kind of manifold) is given first. One can consider
many different coordinate systems on one and the same frame-space. Using
coordinate systems in conceptual considerations is an impediment to insight;
they have a legitimate place only in the context of very specific situations.”

The technical details of the construction of a frame-space from a rigid
material system are not entirely trivial and are given in the paper [N2] that
follows.

In 1997, the psychologist and neuro-scientist Steven Pinker, in his
book [P], has a section entitled Frames of Reference, in which he writes:

“Reference frames are inextricable from the very idea of location. How
do you answer the question ‘Where is it?’ By naming an object that the asker
already knows - the frame of reference - and describing how far and in what
direction the ‘it’ is, relative to the frame. A description in words like ‘next to
the fridge’, a street address, compass directions, latitude and longitude, Global
Positioning System satellite coordinates - they all indicate distance and direction
relative to a reference frame.”

2. The origin of the illusion.

It should be clear from the above that the existence of a physical
space, apart from any frame of reference, is an illusion. The mystery is that so
many intelligent people, Newton included, fell victim to this illusion. Immanuel
Kant (Critique of Pure Reason, 1781) was another such victim:

“Space is not an empirical concept that can be abstracted from exter-
nal experience. Space is a necessary a priori conception, which is at the basis
of all external visualizations. It is impossible to imagine that there is no space,
even though one can think of it as being devoid of any objects. Therefore, space
must be considered as condition for the possibility of real phenomena and not
dependent on these.” (my translation)

Despite the fact that I was aware of Mach’s ideas early in my career, I
was also a victim of the illusion of physical space until the early nineteen sixties.
In my doctoral thesis, in 1954, I proposed what I called “the principle of isotropy
of space”. Later I realized that there is no such thing as physical space and that
the “the principle of isotropy of space” should be replaced by what is now called
the principle of frame-indifference.

I submit that a solution of the mystery of the illusion of physical
space does not come from physics but from psychology and neural science, and
in particular from the way our brain processes visual information. A brilliant
analysis of this way is given in the Chapter entitled The Minds Eye in the Book
[P] by Steven Pinker. Here are some quotes:

“I think stereo vision is one of the glories of nature and a paradigm of
how other parts of the mind might work. Stereo vision is information processing
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that we experience as a particular flavor of consciousness, a connection between
mental computation and awareness that is so lawful that computer programmers
can manipulate it to enchant millions. It is a module in several senses: it works
without the rest of the mind (not needing recognizable objects), the rest of the
mind works without it (getting by, if it has to, with other depth analyzers), it
imposes particular demands on the wiring of the brain, and it depends on princi-
ples specific to its problem (the geometry of binocular parallax). Though stereo
vision develops in childhood and is sensitive to experience, it is not insightfully
described as learned or as a mixture of nature and nurture; the development
is part of an assembly schedule and the sensitivity to experience is a circum-
scribed intake of information by a structured system. The key to using visual
information is not to remold it but access it properly, and that calls for a useful
reference frame.”

Thus, it seems that the predisposition to fixate on a particular frame
of reference at any given situation is hardwired into our brain at birth, just
as is the ability to acquire language. Which particular frame we fixate on (or
which particular language we learn) depends on the environment. Usually, it
is the background that determines this fixation. When we talk about motion
we mean motion relative to the fixated frame, without being consciously aware
that we do so. Our brain chooses the fixation of the frame of reference in such
a way that it facilitates our ability to understand our environment with as little
mental computation as possible. Occasionally, we may fixate on a frame that is
less than appropriate. Most of us had an experience like the following:

(1) We lie flat on the grass looking up into the sky and see a few white
clouds. We also see the top of a lone tree. Suddenly, it appears that the tree is
slowly tipping over while in reality, relative to the earth, the clouds are slowly
moving. The fixation has shifted from the frame of reference determined by the
earth to a frame of reference determined by the clouds.

(2) We sit in a train at rest at a station and look at another train on
an adjacent track. Suddenly, our train seems to start slowly moving while in
reality, relative to the tracks, we are still at rest but the other train is moving.
The fixation has shifted from the frame of reference determined by the platform
of the station to the frame of reference determined by the other train.

A recent article entitled Weightlessness and the Human Body by
Ronald H. White (Scientific American, September 1998) describes how astro-
nauts sometimes become victims of fixation on an inappropriate frame:

(a) “When space travelers grasp the wall of their spacecraft and pull
and push their bodies back and forth, they say it feels as though they are sta-
tionary and the spacecraft is moving”.

(b) “Returning space travelers report experiencing a variety of illu-
sions - for example, during head motions it is their surroundings that seem to
be moving - and they wobble while trying to stand straight...”

Notice that in all of the examples given above, our brain does not
merely perceive the relative motion, but it makes a decision on what is fixed
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and what is in motion. The following example may indicate why this is useful:
Suppose we had to deal with four objects in relative motion to one another. It
would be more difficult for the brain to keep track of the resulting six relative
motions than to fixate on one object - the one most prominent - as a basis for a
frame of reference and just analyze the motions of the three remaining objects
relative to this frame.

The fixation on a frame is an involuntary unconscious process, and
hence we may fall victim to the illusion that the frame is independent of the
presence of any objects around us and hence becomes “physical space”. In a
way, we have been brain-washed by our own brains into the belief in a physical
space.

One must recognize, however, that Newton had also a physical reason
for introducing the idea of absolute space. He may have believed that he needed
it to account for the phenomenon of inertia. The law f = ma, which is known
to everybody as Newton’s law, involves the acceleration a. But acceleration
is meaningful only relative to a given frame of reference, and Newton’s law
cannot be valid if this frame of reference is arbitrary. Hence Newton may have
introduced his absolute space to be a frame of reference in which his law holds.
However, Newton’s law is then valid also in any frame that moves uniformly with
constant velocity relative to absolute space. Therefore, there are infinitely many
frames in which Newton’s law holds. We now call such frames inertial frames.
There is no way to single out one particular inertial frame, and hence absolute
space is not necessary to account for the phenomenon of inertia. As Ernst Mach
has pointed out, it cannot be a coincidence that the fixed stars appear indeed
fixed relative to inertial frames, and hence that it is reasonable to consider inertia
as a force exerted on local objects by the totality of the objects in the entire
universe. Thus, Newton’s law may best be interpreted as a consequence of the
basic axiom that the sum of the forces, including the inertial force, acting on a
particle should be zero and of the constitutive law of inertia, which states that
this inertial force should be given by −ma, where a is the acceleration relative
to an inertial frame.

3. Pre-classical spacetime.

Newton also discussed the idea of absolute time. It is important to
understand that there is no parallel between absolute time and absolute space.
In classical physics, absolute time is not problematical, and neither Berkeley nor
Mach had any quarrel with it.

So far, we have implicitly assumed that the underlying infrastructure
of classical physics is what V. Matsko and I called pre-classical spacetime in
the book [MN]. (Earlier, in 1967, I called it ”neo-classical space-time” in [N8]).
Pre-classical spacetime is a mathematical structure whose ingredients are the
following:

1) A set called the eventworld,
2) a relation on the eventwold called precedence,
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3) a function, called the timelapse function, which assigns to each
pair of events, with the first preceding the second, the time lapse between them,
and

4) a function, called the distance function, which assigns to each pair
of simultaneous events the distance between them. (A pair of events is called
simultaneous if each precedes the other or, equivalently, if the time lapse between
them is zero).

A precise mathematical description, including appropriate axioms, is
described in Chapter 4 of [MN]. The ingredients mentioned above all have an
operational meaning: time lapses correspond to measurements with a stopwatch;
distances correspond to measurements with a tape-measure, made at a particular
instant.

Simultaneity is an equivalence relation on the event world and the
corresponding equivalence classes are called instants. The set of all instants
is what one might call ”absolute time”. The distance function endows each
instant with the structure of a three-dimensional Euclidean space. Thus the
instants are really instantaneous spaces. However, there is no natural Euclidean
space that is independent of time. A worldline is a function that assigns to
each instant an event that belongs to this instant. The distance between two
worldlines at a given instant is simply the distance between the simultaneous
events that the two worldlines assign to this instant. If this distance does not
depend on the instant, we say that the two worldlines have constant distance.
A frame of reference can now be defined to be a partition of the eventworld into
worldlines, any two of which have constant distance. Such a frame of reference
then has the natural structure of a Euclidean space. A location in such a frame
is simply one of the worldlines the frame consists of. A detailed explanation of
the pre-classical spacetime structure can be found in [MN].

4. Relativistic spacetime.
Under everyday circumstances, measurements of time lapses and dis-

tances are not problematical. They become problematical, however, when it
matters that the transmission of information by light or other electromagnetic
means is not instantaneous. It should be clear by now that it makes no sense
to speak about the speed of light except relative to some frame of reference.
Light being a wave phenomenon, this speed should be interpreted as the speed
relative to the frame of reference defined by the medium that carries the wave,
as is the speed of sound or the speed of water-waves. The physicists of the
19th century knew this, of course, so they invented the “luminiferous ether” as
the carrier of light- and electromagnetic waves. The question that immediately
arises is this: How does the earth and other astronomical objects move relative
to the luminiferous ether. We all have heard of the expensive experiments of
Michaelson and Morley that were designed to find out. In the end, it was Ein-
stein who realized that there is no luminiferous ether and that entirely new and
counterintuitive spacetime structures are needed to account for what happens
in the real world in situations in which the transmission of information cannot
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be regarded as instantaneous. For such spacetime structures, the precedence
relation is no longer total, i.e. there may be pairs of distinct events neither of
which precedes the other. Simulaneity can no longer be given a useful meaning
and there is no absolute time. The “speed of light” is no longer the speed of
anything, it becomes merely a unit conversion factor. There are no relativistic
counterparts to frames of reference that are not inertial. A detailed explanation
of the spacetime of Special Relativity can be found in [MN].

Note:
I sent a copy of an earlier version of this paper to Steven Pinker. Here

is his answer by email, dated Oct 6, 1998:

“Dear Professor Noll,
Many thanks for your kind words, and for sending me your fascinating

paper on the illusion of physical space. The central thesis is an interesting
consequence of the psychology of space, and quite convincing.

With best wishes, Steve Pinker”
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[2] On Material Frame-Indifference

1. Introduction.
There is a considerable amount of confusion in the literature about the

meaning of material frame-indifference, even among otherwise knowledgeable
people. This paper is an attempt at clarification. I first started thinking about
this issue when I was a student and tried to learn the theories of linearized
elasticity and of linearly viscous fluids (a.k.a. Navier-Stokes fluids). In the
former, one assumes that the stress T at a material point is determined by the
gradient of the displacement-vector field u. In the latter, one assumes that the
stress T at a material point is determined by the gradient of the velocity field
v and the density. For either case, denote the function which describes the
dependence on the gradient by T̂. Then the following additional assumptions
are most often introduced, not necessarily in the order and in the form given
here.
(1) T̂(A) depends only on the symmetric part of A, i.e. *)

T̂(A) = T̂(
1
2
(A + A>)) for all lineons A.

(2) The function T̂ is linear.
(3) We have T̂(QEQ>) = T̂(E) for all symmetric lineons E and all orthogonal
lineons Q .

Using some fairly elementary pure mathematics, it is then proved that
the function T̂ must be given by the following specific formula:**)

T̂(E) = 2µE + (λ(trE) + p)1V for all symmetric lineons E.

(In the case of elasticity, µ is the shear modulus, λ + 2
3µ is the modulus of

compression, and p is most often assumed to be zero. In the case of viscous fluid
theory µ is the shear viscosity, λ+ 2

3µ is the bulk viscosity, and p is the pressure,
all of which may depend on the density.)

Most of the justifications that I found in the textbooks for these as-
sumptions were mysterious to me. I was not satisfied by the justification that
the two theories have been spectacularly successful for describing many phys-
ical phenomena and for designing machines, bridges, ships, airplanes, etc.. I
now know that the assumption (1) is a consequence of the principle of frame-
indifference. In the case of viscous fluid theory, assumption (3) also follows from

*) We use the mathematical infrastructure, notation, and terminology of
[FDS]. In particular, we use “lineon” as a contraction of “linear transformation
from an linear space to itself”. In [NLFT] the term “tensor” is used instead of
“lineon”. I pointed out in [N10] that “tensor” has a much more general meaning
and lineon is just a special case. Given a lineon A, we denote its transpose
(a.k.a.“adjoint”) by A> and its trace by trA.

**) 1V denotes the identity mapping of the underlying vector space V.
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the principle of frame-indifference. In the case of elasticity, however, assump-
tion (3) means that the material possesses a special kind of material symmetry,
namely isotropy; there are many elastic materials for which (3) is not appro-
priate. In the case of elasticity, assumption (2) follows from the fact that the
theory is obtained by linearization from the theory of finite elasticity and can
be valid only approximately for small deformations from a stress-free “natural”
configuration. (If large deformations are taken into account, then assumption
(1) becomes inconsistent with the principle of frame-indifference.) In the case
of viscous fluid theory, the only justification for assumption (2) that I know of
is that it comes out as a first approximation when one applies the retardation
theorem for general simple fluids as described in [CN].

In classical particle physics it is often assumed that the force that is
exerted at a given instant by one particle on another depends only on the position
of the two particles. Then the following additional assumptions are introduced:

(a) The force has the direction given by the straight line joining the two particles.
(b) The magnitude of the force depends only on the distance between the two
particles.

The textbooks do not usually give any convincing reasons for making
these two assumptions beyond claiming that they are reasonable. In fact, both
of them are consequences of the principle of material frame-indifference, as we
will prove in Sect.4.

In recent years, the theory of liquid crystals has become a very popular
subject. A large part of this theory deals only with bodies that are not subject
to deformation, but only to changes involving a director field n, which influences
the optical and electromagnetic properties of the body. It is assumed that this
director field gives rise to a free energy with a density σ per unit volume, and
that this density at a given material point depends only on the values of n and
its gradient at that point. Denote the function which describes this dependence
by σ̂. The following additional assumption is then introduced: The identity

σ̂(Qu,QGQ>) = σ̂(u,G) for all vectors u and all lineons G

is valid for all proper orthogonal lineons Q when dealing with cholesteric liq-
uid crystals or for all orthogonal lineons Q, proper or not, when dealing with
nematic liquid crystals. Some authors have claimed that this assumption is jus-
tified by the principle of frame-indifference. (Even “Galilean Invariance” has
been invoked by some as a justification.) These authors are mistaken. Rather,
the assumption expresses a certain kind of material symmetry. Roughly, it states
that the director-field interacts isotropically (or hemitropically in the cholesteric
case) with the underlying body. In other words, the body has no implicit pre-
ferred directions in addition to the explicit one given by the director-field itself.
It is quite conceivable that there are materials for which this assumption fails
to be appropriate, although one should not call such materials “liquid crystals”.

The term “principle of material frame-indifference” was introduced in
1965 by C. Truesdell and me in our contribution [NLFT] to the Encyclopedia of
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Physics. Earlier, I had used the term “principle of objectivity”, and some people
use this term to this day. I meant “objectivity” to express independence of the
“observer”, but Truesdell disliked the term as being too easily misinterpreted.
In fact, “observer” is also easily misinterpreted; a much better term is “frame
of reference”, or “frame” for short. In my doctoral thesis in 1954, I used the
term “principle of isotropy of space”, but I discarded it soon thereafter because
I realized that there is really no such thing as (physical) “space”. Of course,
the principle has been applied implicitly for a long time without the use of an
explicit name or formulation.

2. Frames of reference, motion.

As stated in the first paper [1] of this collection, a frame of reference
should make it possible to speak of locations. Mathematically, locations are
points in a (genuine) Euclidean space (as defined precisely in Chapter 4 of [FDS]),
which we will then call a frame-space. Such a frame-space can be constructed
from a suitable rigid material system (the most important example is the earth).
Mathematically, such a rigid system is a metric set, i.e., a set S endowed with
structure by the specification of a function d : S × S −→ PI *). Given any two
points x and y of the rigid system, d(x, y) should be interpreted as the distance
from x to y as measured, for example, with a measuring tape. The observed
facts of such measurements show that S is isometric to a suitable subset of any
given 3-dimensional Euclidean space. Of course, there are infinitely many such
spaces, any two of which are isomorphic. In Sect.6 I will show how one can
construct, by an intrinsic mathematical construction, a particular such space,
and how the given rigid system can be imbedded in that space, which we then
call the frame-space determined by the given rigid system.

As stated in [1] one can use geometric concepts such as straight line,
direction, angle, etc. only when such a frame-space is at hand. Members of the
translation-space of the frame-space are then called vectors. Hence concepts such
as velocity, acceleration, kinetic energy, and force also require the specification
of a frame-space.

If one deals only with the internal properties of a body not subject to
deformation, one can use the body itself as a metric set from which a frame-
space can be constructed. In this case it is not natural to consider any other
frame-space, and hence frame-indifference is not an issue. This is the case for
the theory of liquid crystals mentioned above. However, frame-indifference does
come into play in theories that deal with deforming liquid crystals.

3. Inertia.

In elementary science and physics courses, students are very often con-
fronted with statements such as “a particle will move along a straight line with

*) PI denotes the set of all positive real numbers (including zero). We will
use RI to denote the set of all real numbers.

15



constant speed unless it is subject to an outside force.” Later they will learn
about “Newton’s law” f = ma: the force acting on a particle is proportional
to its acceleration, its inertial mass m being the proportionality factor. As was
pointed out in the previous paper [1] of this collection, these statements aquire
a meaning only after a frame of reference has been specified. They cannot be
valid relative to every frame of reference. In fact, one can always construct
frames relative to which the particle will undergo any motion prescribed at will.
Newton’s law is valid only in certain preferred frames, which are called inertial
frames. There are infinitely many inertial frames, any one of which moves rel-
ative to any other in a uniform translational motion. Hence the laws of inertia
remain valid under such changes of frame. This fact is often called “Galilean
Invariance”. It turns out that the frame of reference determined by the fixed
stars and the condition that the center of the sun be at rest is, for most practical
purposes, an inertial frame. This fact, together with the inverse-square law for
gravitation, made it possible not only to explain the orbits of the planets and
their moons, but even to make accurate predictions about the orbits of artifi-
cial satellites. Thus Newtonian mechanics became, perhaps, the first triumph of
modern mathematical science. However, I believe that Newton’s absolute space
is a chimera.

Inertia plays a fundamental role in classical particle mechanics and
also in the mechanics that deals with the motion of rigid bodies. However, when
dealing with deformable bodies, inertia plays very often a secondary role. In
some situations, it is even appropriate to neglect inertia altogether. For exam-
ple, when analyzing the forces and deformations that occur when one squeezes
toothpaste out of a tube, inertial forces are usually negligible. Thus, I believe
that the basic concepts of mechanics in general should not include items such as
momentum, kinetic energy, and angular momentum, because they are relevant
only when inertia is important. What remains are the two fundamental balance
laws:

(1) The sum of all the forces (including the inertial forces) acting on a system
or any of its parts should be zero.
(2) The sum of the moments (including the moments of inertial forces) acting
on a system or any of its parts should be zero.

As far as these balance laws are concerned, inertial forces should be
treated on equal terms with other kinds of forces. In this context, Newton’s law
f = ma should be viewed as the result of the combination of two laws. The first
is the force-balance law in the form f + i = 0, where f denotes the sum of the
non-inertial forces acting on the particle, while i denotes the inertial force acting
on it. The second law is the constitutive law of inertia. It states that i = −ma
when an inertial frame of reference is used. If the frame used is arbitrary, not
necessarily inertial, the constitutive law of inertia takes the form

i = −m(u•• + 2Au• + (A• −A2)u). (1)

Here, the value u(t) of the function u at time t denotes the position vector
of the particle relative to a reference point (often called “origin”) which is at
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rest in some inertial frame, although not necessarily in the frame used. The
value A(t) of the function A at time t is a skew lineon; it measures the rate
of rotation of the given frame relative to some inertial frame. Dots denote
time-derivatives. If the refence point is at rest not only in some inertial frame
but also in the frame used and if A is constant, i.e. if A• is zero, then the
contributions to the inertial force given by the second and third term on the
right of (1) are called Coriolis force and centrifugal force, respectively. For
example, the frame of refence determined by the earth is approximately inertial
for small-scale phenomena, but the contribution of the Coriolis force can be
decisive when large-scale wind or ocean-current phenomena are analyzed. In his
famous pendulum experiment in 1851, Foucault demomstrated that the Coriolis
force can be detected even on a small scale. This effect is nowadays used in
gyrocompasses.

4. Frame-Indifference.

Physical processes are usually described in a mathematical framework
provided by a frame of refence with its corresponding frame-space F . Concepts
such as vector, lineon, or tensor become meaningful only relative to the given
frame-space. For example, a vector is a member of the translation-space V of
F , and a lineon is a member of the space LinV of all linear transformations of
V into itself.

Now consider two frames of refence with corresponding frame-spaces
F and F ′ and denote their translation spaces by V and V ′, repectively. If x is
the position of a material point or particle at a given time t in the frame-space
F , then the position of the same particle at the same time t in the frame-space
F ′ will be given by x′ = αt(x) where αt : F −→ F ′ is an isometry and hence
a Euclidean isomorphism (see Sect.45 of [FDS]). The mapping t 7→ αt describes
the motion of the frame F as seen in the frame F ′. The gradient At := ∇αt (see
Sect.33 of [FDS]) is an inner-product preserving linear mapping from V onto V ′.
A vector u and a lineon L relative to the frame-space F at time t will appear
as u′ = Atu and L′ = AtLAt

>, repectively, relative to the frame-space F ′. To
say that descriptions in two frame spaces F and F ′ describe the same physical
process means that these descriptions must be isomorphic. Therefore, there must
be a fixed Euclidean isomorphism β : F ′ −→ F with the following property: If
we replace the isomorphism αt above with the composite γt := β ◦ αt, which is
a Euclidean automorphism of F , then the fomulas for a change of frame given
above remain valid with F ′ and V ′ replaced by F and V, repectively, i.e. we have
u′ = Qtu and L′ = QtLQt

>, where Qt := ∇γt = ∇β ◦At is an inner-product
automorphism of V, i.e. an orthogonal lineon Qt ∈ OrthV.

Consider now a physical system. The principle of material frame-
indifference, as applied to this system, can then be formulated as follows:

The constitutive laws governing the internal interactions be-
tween the parts of the system should not depend on whatever external
frame of reference is used to describe them.
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The principle should apply to interactions of any kind, be they me-
chanical, thermodynamical, optical, electromagnetic, or whatever.

It is important to note that the principle applies only to internal inter-
actions, not to actions of the environment on the system and its parts, because
usually the frame of reference employed is actively connected with the environ-
ment. For example, if one considers the motion of a fluid in a rigid container,
one usually uses the frame of reference determined by the container, which cer-
tainly affects the fluid. Inertia should always be considered as an action of the
environment on the given system and its parts, and hence its description does
depend on the frame of reference used. As we saw in Sect.3, the inertial force
has a simple description only when an inertial frame is used.

In many cases, gravitational, electric, and magnetic fields are gener-
ated by entities that are outside the system under consideration. Hence the
laws that describe the response of the parts of the system to these fields are
not frame-indifferent. Perhaps one should call such laws “external constitutive
equations”. These laws may have certain symmetry properties, but these should
not be confused with frame-indifference. For example, the most common exter-
nal constitutive law is the law i = −ma for the inertial force. It is valid for all
inertial frames. Its symmetry, usually called “Galilean invariance”, has nothing
whatever to do with frame-indifference. Of course, laws that describe gravita-
tional, electric, or magnetic interactions between parts of the given system are
subject to the principle of frame-indifference. For example, the law of gravita-
tional attraction between two particles, which has the form (12) stated below
with h(r) := m1m2/r3 for all r ∈ PI , is frame-indifferent indeed.

It is also important to note that the principle applies only to external
frames of reference, not to frames that are constructed from the system itself, as
is the case in the theory of liquid crystals not subject to deformation described
in Sect.1.

To illustrate how the principle of material frame-indifference is applied,
we consider the simple example already mentioned in Sect.1, namely a system
consisting of only two particles and the force-interaction between them.*) We
assume that the force f exerted at a given time on the first particle by the
second depends only on the positions of the two particles at that time. Denote
the function that describes this dependence by f̂ : F × F −→ V, so that

f = f̂(x, y) (2)

is this force when the particles are located at x, and y, respectively. Now, after
a change of frame given by the Euclidean automorphism γ : F −→ F (the
dependence of γ on time is not relevant in this particular case), the particles
appear at the locations x′ = γ(x) and y′ = γ(y) and the force appears to be

*) In the derivation that follows, we use the concepts, notations, and
results of Sects.32, 33, and of Chapt.4 of [FDS]. Essentially the same derivation
was presented first in 1957 on pp.38-40 of [N9].
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f ′ = Qf , where Q := ∇γ. The principle of material frame-indifference states
that the function f̂ should also describe the dependence of the force on the
locations after the change of frame, so that

Qf = f ′ = f̂(x′, y′) = f̂(γ(x), γ(y)). (3)

Combining (2) and (3), we find that the function f̂ must satisfy

Qf̂(x, y) = f̂(γ(x), γ(y)) when Q := ∇γ. (4)

This equation should be valid for every Euclidean automorphisms γ of F and all
points x, y ∈ F . Now choose a point q ∈ F arbitrarily and define ĝ : V −→ V by

ĝ(u) := f̂(q, q + u) for all u ∈ V. (5)

Let x, y ∈ F be given. We apply (4) to the case when γ is the translation
u := q− x that carries x to q. Since the gradient of a translation is the identity
and since u(x) = x + (q − x) = q and u(y) = y + (q − x) = q + (y − x) , the
equation (4) reduces to

f̂(x, y) = f̂(q, q + (y − x)) = ĝ(y − x), (6)

valid for all x, y ∈ F . Recalling that the gradient Q of a given Euclidean
automorphism γ is characterized by the condition that γ(x)− γ(y) = Q(x− y)
holds for all x, y ∈ F , we conclude from (6) and (4) that

Qĝ(u) = ĝ(Qu) (7)

must be valid for all u ∈ V and all orthogonal lineons Q. Given u ∈ V, the
equation (7) must be valid, in particular, for all orthogonal Q that leave u
unchanged. Hence ĝ(u) must also remain unchanged by these Q. Since the only
vectors that have this property are scalar multiples of u, we conclude that there
is a function g : V −→ RI such that

ĝ(u) = g(u)u for all u ∈ V. (8)

In view of (7), this function must have the property that

g(u) = g(Qu) for all orthogonal lineons Q. (9)

Now choose a unit vector e arbitrarily and define the function h : PI −→ RI by

h(d) := g(de) for all d ∈ PI . (10)

Given u ∈ V, it is easily seen that we can choose an orthogonal Q such that
u = |u|Qe = Q|u|e. Using (9) with u replaced by |u|e, it follows that

g(u) = h(|u|) for all u ∈ V. (11)
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Combining (11) with (8) and (6), we see that the equation (2) for the dependence
of the force f on the locations x and y must reduce to the specific form

f = f̂(x, y) = h(|x− y|)(x− y), (12)

which justifies the assumptions (a) and (b) stated in Sect.1.

For the derivation of (12) above, it was irrelevant that the Euclidean au-
tomorphisms γ for which (4) holds may depend on time. However, such possible
time-dependence plays a crucial role, for example, when applying the principle
of frame-indifference to derive the specific form of the constitutive equation for
linearly viscous fluids discussed in Sect.1.

It is possible to make the principle of material frame-indifference vacu-
ously satisfied by using an intrinsic mathematical frame-work that does not use
a frame-space at all when describing the internal interactions of a physical sys-
tem. I did this in 1972 in [N7] for the continuum mechanics of simple materials,
defined in the technical sense of Sect.4 of the paper [3], which is the next in this
collection. However, the mathematics that is needed to do this, although not
necessarily complicated, is not familiar to many people and hence resisted by
some as being “too abstract”. Also, it seems that the action of the environment
on a system cannot be described without using a frame of reference, and hence
one must introduce such a frame in the end when dealing with specific problems.

5. Relativity.
Up to now, we have tacitly assumed the validity of the common-sense

notions of time and distance. Specifically, we implicitly have taken for granted
that the following statements are unambiguously valid:
(1) Any two given events are either simultaneous or one of them precedes the
other.
(2) To any given two events one can assign a time-lapse, which is zero if and
only if they are simultaneous.
(3) To any two simultaneous events one can assign a distance between them.
A precise mathematical structure that describes a world in which these assump-
tions are valid is described in Sect.4.1 of [MN] under the name of Pre-classical
Spacetime. In the present paper we have given an intuitive idea of what is meant
by a frame of reference; in Sect.4.2 of [MN] one can find a more precise definition
in the context of pre-classical spacetime.

In the Theory of Relativity (both Special and General) the common-
sense notions of time and distance can no longer be used: Simultaneity becomes
meaningless. There can be two events neither of which precedes the other. Even
if one event does precede another, the timelapse between them may depend on
a world-path connecting them. There is no simple notion of distance, and hence
one cannot define unambiguously what is meant by a rigid system. Therefore,
there is no relativistic counterpart of a frame of reference. The only correlation
one can make is between inertial frames and world-directions (as defined in
Sect.53 of [MN]).
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In view of these remarks, it is not clear what a relativistic coun-
terpart to the principle of material frame-indifference would be. The only
proposal for such a counterpart that I know of is the principle of non-
sentient response of Bragg [B]. The idea behind this principle is the fol-
lowing : The dependence of the state of a given material point X on the
world-paths of the material points surrounding X can only involve informa-
tion about these world-paths that can be obtained by signals originating from
the worldpath of X and reflected back from these nearby world-paths.

6. Construction of frame-spaces.
In this section, I will describe the construction of a Euclidean space

from a given metric set, as already announced in Sect.2.
Assume that a metric set S, endowed with structure by the prescription

of a function d : S × S −→ PI , is given. We also assume that S is isometric
to some subset of some Euclidean space. This means that we can choose a
Euclidean space E and a mapping κ : S −→ E such that

d(x, y) = |κ(x)− κ(y)| for all x, y ∈ S. (13)

We may assume, without loss, that E is the flat span of the range Rngκ of κ,
i.e. the smallest subspace of E that includes Rngκ, because otherwise we could
replace E by this flat span.

We now define the mapping Φ : E −→ Map(S, PI ) *) by

Φ(z)(x) := |z − κ(x)| for all z ∈ E , x ∈ S. (14)

Using Prop.7 of Sect.45 of [FDS] one can easily prove that the mapping Φ thus
defined is injective and that z ∈ Rngκ if and only if 0 ∈ Rng(Φ(z)). We now
put

F := RngΦ ⊂ Map(S, PI ) (15)

and endow F with the structure of a Euclidean space by requiring that the
invertible mapping Φ|F : E −→ F **) be a Euclidean isomorphism. Using
Prop.5 of Sect.45 of [FDS] one can easily prove that the subset F of Map(S, PI ),
its structure as a Euclidean space, and the injective mapping

φ := Φ|F ◦ κ : S −→ F (16)

are all independent of the initial choice of E and κ. We call F the frame-space
of the given metric set S.

*) Given any two sets S and T , Map(S, T ) denotes the set of all mappings
from S to T .

**) Φ|F is the mapping obtained from Φ by adjusting the codomain from
its original, namely Map(S, PI ), to the range F .
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We use the mapping (16) to imbed the metric set S into the frame-
space F constructed from it. Then a given point x ∈ S becomes identified with
the function φ(x) = d(x, ·), which gives the distances from x to all points in S.
Every point in the frame space F is identified with the function that gives its
distances from all the points in S.

The construction just given implies that locations in the frame-space
constructed from a given rigid system S can be determined by distance mea-
surements alone. In practice, however, it is often convenient to also use angle-
measurements involving lines of sight.
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[3] Updating The Non-Linear Field Theories
of Mechanics

0. Introduction

Clifford Truesdell was my thesis advisor when I was a graduate stu-
dent at Indiana University in 1954. Later he invited me to become a co-author
in a treatise which he initiated: The Non-Linear Field Theories of Mechan-
ics ([NLFT]). I described the genesis of [NLFT] in detail in [N6]. Over the
years [NLFT] became a basic reference treatise for continuum mechanics. It
was reprinted in 1992, and a translation into Chinese appeared in 2002. A
third edition, with a preface by Stuart Antman, appeared in 2004. Starting
with my thesis, I introduced a mathematical infrastructure, mainly based on
coordinate-free linear algebra, into continuum mechanics. I believed that this
structure would provide better clarity and conceptual insight. Unfortunately,
this infrastructure was familiar to almost nobody working in the field of con-
tinuum mechanics and was scornfully dismissed by some as lacking any value.
Clifford Truesdell, on the other hand, had an open mind and soon began to see
the value of my approach. Thus, [NLFT], which appeared in 1965, was largely
written using this new mathematical infrastructure. In the preface to the third
edition Stuart Antman wrote “It is interesting to note that Truesdell and Noll’s
system of notation, symbols, and terminology has been widely adopted, even by
the scientific descendents of critics of their enterprise”.

As I pointed out in the Introducton [N0] to this collection, [NLFT]
is in many respects obsolete and perhaps should be updated after almost 40
years of its original publication. I believe that such an update should be very
different from the original, and I would like to present here some guidelines.
These guidelines call for a mathematical infrastructure that is more sophisticated
than the one used in [NLFT]. It is outlined in Sect.2 below. I am under no illusion
that it will be widely accepted easily and soon. Perhaps I am really ahead of
my time, as the reviewer mentioned in the Introduction [N0] conjectured.

Guidelines for an update of [NLFT]

1. The role of mass

Gravitational attractions between parts of a body are negligeable ex-
cept when dealing with very large bodies such a as whole planets or stars. Thus,
inertial and gravitational mass should not occur in internal constitutive laws be-
cause they involve only external actions (namely inertia and gravitation) on the
parts of a body. Contrary to the statement in Sect.15 of [NLFT], mass should
not be assigned a priori as part of the specification of a body. In some situations,
it is perfectly all right to neglect inertia or gravity or both. Thus, what is called
Cauchy’s law af motion (16.6) in [NLFT] should be replaced by

divT + b = 0, b = bni + i, (1.1)
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where b is the total body force per unit volume, bni is the non-inertial body
force per unit volume, and i is the inertial force per unit volume. The latter is
given by i = −ρa, where ρ is the mass density and a the acceleration, only when
an inertial frame of reference is used. When the frame is not inertial, Cauchy’s
law (1.1) is still valid, but one must use the more complicated formula for i
obtained from (1) on p.15 of [N2] by replacing m with ρ. It is more appropriate
to call (1.1) Cauchy’s balance law because it is not necessarily related to any
motion.

Remark 1: In classical “analytical” mechanics, which deals only with point-
particles and rigid bodies, inertia does play an essential role and can never
be neglected. (See the beginning of the Introduction to [NLFT].) Continuum
mechanics is conceptually quite different, and inertia should not be part of its
basic principles. This insight came to me only after the first edition of [NLFT]
was published in 1965.

2. Mathematical infrastructure.
A good update of [NLFT] should be based on a much more effective

mathematical infrastructure. Better familiarity is needed with linear spaces
that are not only not RI n, but not even innner-product spaces. Also, one
should be comfortable with constructions *) of new linear spaces from one
or more given ones. For example, given a linear space T , one can construct
T ∗, the dual of T , the space Lin T of all lineons (linear transformations)**)
on T , and the space Lin (T , T ∗) ∼= Lin 2(T × T , RI ) of all linear mappings
from T to its dual T ∗, which is naturally identified with the space of all bi-
linear forms on T . The symmetric members of this space form a subspace
Sym(T , T ∗) and the skew-symmetric ones a subspace Skew(T , T ∗). The set of
positive (a.k.a. positive semi-definite) members of Sym(T , T ∗) form a linear
cone Pos(T , T ∗), and its strictly positive (a.k.a. positive-definite) members a
linear cone Pos+(T , T ∗). Spaces such as Lin (Lin T ) are needed, for example,
in the theory of elasticity. (To call them “4th order tensors” only obscures the
true nature of the concepts in question.) To endow the given space T with the
structure of an inner-product space, one singles out a particular member
ip ∈ Pos+(T , T ∗) and uses it to identify T ∗ with T .

Of great importance, also, is an intrinsic differential calculus involving
finite dimensional spaces. A fairly full treatment of these matters is presented
in my book [FDS] of 1987, which is now also available on my website

One should also be aware that a fundamental part of mathematics
is the study of mathematical structures, which are defined by specifying

*) I call such constructions “tensor functors”. A detailed description is
given in [N10].

**) In [NLFT] the term “tensor”is used instead of “lineon”. I pointed out
in [N10] that “tensor” has a much more general meaning and lineon is just a
special case. I introduced the contraction “lineon” for “linear transformation”
in [FDS].
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ingredients and axioms. For example, the ingredients for a structure of a
continuous body system as given in Sect.3 below are the set B and the class
PlB ; the axioms are the requirements (B1), (B2), and (B3). The ingredients of
the (fairly complicated) structure of a state space system as described in Sect.7
are the sets C,Π,Σ,R, the mappings Ĉ, R̂, and the functional ρ̂. There are five
axioms, stated in Sect.7.

For each species of mathematical structures, one has a natural notion
of isomorphism. The set of all automorphism of a particular structure, i.e
the isomorphism from that structure to itself, give the symmetry group of
that structure.

3. Body systems, placements, configurations, motions,
and deformations.

In Sect.1 of [NLFT] a body is simply defined to be a three-dimensional
differentiable manifold. First, the term body should be replaced by continuous
body system, because one would not require it to have the connectedness implied
by the term body alone.

To give a modern precise definition one first has to introduce two
classes:

(i) A class Fr consisting of subsets of three-dimensonal Euclidean
spaces that are candidates for regions occupied by a body system when placed
in a frame of reference,

(ii) a class Tp of mappings which are candidates for changes of place-
ment of a body system from one frame to another or itself.

We call the members of Tp transplacements. It serves well to take
Fr to be the class of all fit regions introduced in [NV]. The set of fit regions
included in a given Euclidean space F will be denoted by FrF ; its members are
all open subsets of F . We take Tp to be the class determined by the following
requirements:

(T1) Every λ ∈ Tp is an invertible mapping whose domain Dom λ and whose
range Rng λ are subsets of Euclidean spaces Dspλ and Rspλ , which are
called the domain-space and range-space of λ, respectively.

(T2) For every λ ∈ Tp, there is a C2- diffeomorphism *) φ : Dspλ −→ Rspλ such
that λ = φ|Rng λ

Dom λ.

Definition. A continuous body system B is a non-empty set endowed with
structure by the specification of a non-empty class PlB satisfying the following
requirements:

(B1) Every κ ∈ PlB is an invertible mapping with Dom κ = B and
Rng κ ∈ Fr.

(B2) For all κ, γ ∈ PlB we have κ ◦ γ← ∈ Tp.

*) In most contexts, C2 is good enough, but there may be situations where C2

should be replaced by Cn with n > 2.
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(B3) For every κ ∈ PlB and λ ∈ Tp such that Rng κ = Dom λ we have
λ ◦ κ ∈ PlB.
The elements of B are called material points. The members of PlB are

called placements of B. Given κ ∈ PlB, we call Rng κ the region occupied
by B in the placement κ. The Euclidean space in which Rng κ is a fit region
is denoted by Frm κ and is called the frame-space of κ. Its translation space
is a three-dimensional inner-product space denoted by Vfr κ and is called the
frame-vector-space of κ.

It is clear that a body system has the structure of a C2-manifold, and hence
also the strucure of a topological space, but the axioms above imply more than
just that. More details can be found in [N10]. If a continuous body system is
connected, we call it simply a body.

Given a body system B and a placement κ ∈ Pl B, we define dκ : B×B −→ PI
by

dκ(X, Y ) = |κ(X)− κ(Y )| for all X, Y ∈ B. (3.1)

Then dκ is a metric on the set B that is isometric to the subset Rng κ of the
Euclidean space Frm κ. We call this metric the configuration induced by the
placement κ. It is clear that one and the same configuration can be induced by
infinitely many placements. (See also Sect.6 of the previous paper [N2].)

We now assume that a continuous body system B is given. When describing
the behavior of the body in some environment, one must usually use a frame of
reference, which is described mathematically by a three-dimensional Euclidean
space F , called the frame space. The translation space V of F is a 3-dimensional
inner product space.

A motion of B in F is a mapping µ : B × I −→ F , where I is a genuine
closed interval, with the following property: For every t ∈ I the mapping
µt : B −→ Rt := Rng µ(·, t) defined by

µt(X) := µ(X, t) for all X ∈ B (3.2)

is a placement of B in F (in the sense of the precise definition given above). We
usually assume that the left endpoint of I is 0. Let a motion µ be given. Then
dµ : B × B × I −→ PI , defined by

dµ(X, Y, t) := dµt
(X, Y ) for all t ∈ I, X, Y ∈ B (3.3)

is called the deformation process induced by µ. If the motion is a rotation
or translation, then the induced deformation process is just a freeze at a fixed
configuration.

4. Body elements, simple materials.
Let a continuous body system B and material point X ∈ B, as defined in

Sect.3, be given. Since B has the structure of a C2-manifold, we can consider
the tangent space TX and call it the body element of B at X, because it is the
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precise mathematical realization of what is often represented as an “infinitesimal
element” of the body. It is very important to be aware that TX is just a three-
dimensional linear space and not an inner product space.

Let a placement κ of B be given. We use F := Frm κ and V := Vfrκ for the
frame-space and frame-vector-space of B, respectively. Since κ is an invertible
mapping of class C2 from B to an open subset of F , we can consider its gradient
at X:

K := ∇Xκ ∈ Lis (TX ,V). (4.1)

We call K the placement of the body element TX in the frame-vector
space V induced by the placement κ. Since V is an inner-product space, it can
be identified with its dual and hence the transpose K> is a member of the space
Lis (V, T ∗X). Therefore, we can consider

G := K>K ∈ Pos+(TX , T ∗X). (4.2)

Now, G depends on the placement κ only through the configuration dκ defined
by (3.1). Hence we call G the configuration of the element TX induced by the
configuration dκ. This dκ is a metric that induces a Riemannion structure on
the body-manifold. This structure assigns a “metric tensor” to each point X in
the body system. The configuration G is nothing but this metric tensor.

Now let a motion µ : B × I −→ F of B in a given frame-space F , as defined
in the previous section, be given. We call the mapping M : I −→ Lis (TX ,V)
defined by

M(t) := ∇Xµt for all t ∈ I (4.3)

the motion of the element TX induced by the motion µ of the whole body
system B. Of course, the value M(t) at a given t ∈ I is simply the placement of
TX induced by the placement µt of B.

The mapping P : I −→ Pos+(TX , TX
∗), defined by

P(t) := M(t)>M(t) for all t ∈ I (4.4)

is then called the deformation process of the element TX induced by the
deformation process dµ of the whole body system B as given by (3.3).

We assume now that the mapping M defined by (4.3) is differentiable. Its
derivative is then given by

M• = LM, (4.5)

where the value of L : I −→ Lin (V) at time t gives the velocity gradient of the
body at the location of the material point at that time. Recall that the values
of the symmetric and skew parts of L, i. e.

D :=
1
2
(L + L>) , W :=

1
2
(L− L>) , with L = D + W , (4.6)
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give the corresponding stretching and spin, respectively. (See, for example, equa-
tion (25.6) in [NLFT].) Differentiating (4.4) and using (4.5) and (4.6) we easily
obtain

P• = 2M>DM. (4.7),

relating the rate of deformation P• to the stretching D. If P is n times
differentiable, we have

P(n) = M>AnM. (4.8),

relating the n’th rate of deformation P(n) to the n’th Rivlin-Ericksen tensor
An, as defined by (24.14) in [NLFT]. Thus, these rates of deformation are simply
frame-free counterparts of the Rivlin-Ericksen tensors.

Material properties of body systems are local. These material properties
may change from material point to material point. Generalizing what is called
the “Principle of local action” in Sect.26 of [NLFT], one should formulate this
postulate as follows:

The constitutive laws that describe the material properties at a
material point X in a continuous body system B should involve only
arbitrarily small neighborhoods of X in B.

We say that B consists of a simple material if these constitutive laws for
every material point X involve only the body element TX . A precise way of
formulating such laws is to put them in the form of a mathematical structure, as
in the example presented in Sect.7 below. We say that the body system is ma-
terially uniform if the structures for any two material points are isomorphic.
One must observe the distinction between material uniformity and homogeneity
as described in Sect.27 of [NLFT].

5. Reference-free constitutive laws.

In the past, the formulation of constitutive laws often involved the use of a
reference placement. Here is a passage from Sect.21 of [NLFT]:

“While the body B is not to be confused with any of its spatial placements,
nevertheless it is available to us only in those placements. For many purposes it
is convenient to reflect this fact by using positions in a certain fixed placement
as a means of specifying the material points of a body. This reference placement
may be, but need not be, one actually occupied by the body in the course of its
motion.” (I have changed the terms configuration and particle to placement and
material point, respectively.)

In Chapter II of [NLFT] the kinematics of body systems is presented not
intrinsically, as in Sects. 3 and 4 above, but only relative to a given placement
κ whose frame space coincides with the frame space F for the motions under
consideration. Thus, instead of a motion µ as described in Sects. 3 and 4 above,
[NLFT] uses the corresponding transplacement process given by

χ(X, t) = µ(κ←(X), t) for all t ∈ I, X ∈ Rng (κ). (5.1)
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(Instead of “transplacement process”, the term “family of deformations” is used
in [NLFT], but the trouble with this terminology is already alluded to in footnote
4 on p.48 of [NLFT].) The transplacement gradient (called “deformation
gradient” in [NLFT]) is given by

F(X, t) := ∇Xχ(· , t) = M(t)K−1 for all t ∈ I, (5.2)

where K and M(t) are given by (4.1) and (4.3) with X := κ←(X).
If one uses such a reference placement in the formulation of a constitutive

law, one must insure that the substance of this law is invariant under changes
of reference placement. The best way to insure this is to formulate constitutive
laws completely intrinsically, and not use a reference placement at all.

6 Frame-free constitutive laws.
Consider now a continuous body system B. As was discussed in [1], The

principle of material frame-indifference, as applied to this system, can
then be formulated as follows:

The constitutive laws governing the internal interactions between
the parts of the system should not depend on whatever external frame
of reference is used to describe them.

It is important to note that the principle applies only to internal interac-
tions, not to actions of the environment on the system and its parts, because
usually the frame of reference employed is actively connected with the environ-
ment. For example, if one considers the motion of a fluid in a container, one
usually uses the frame of reference determined by the container, which certainly
affects the fluid. Inertia should always be considered as an action of the environ-
ment on the given system and its parts, and hence its description does depend
on the frame of reference used. It is also important to note that the principle
applies only to external frames of refence, not to frames that are constructed
from the system itself.

In the past, insuring that this principle is satisfied was not a trivial mat-
ter and often required a fair amount of mathematical manipulation. (See, for
example, Sect.26 of [NLFT].)

The best way to insure that this principle is satisfied is to formulate consti-
tutive laws completely intrinsically, and not use an external frame of reference
at all. For simple materials, one can do this by concentrating on body elements.
Such a body element corresponds mathematically to a three-dimensional linear
space T as described in Sect.4. (Since we keep the material point X fixed, we
omit the subscript X from now on.) We emphasize again that T is just a three-
dimensional linear space and not an inner product space. A configuration
of T is a member of the linear cone Pos+(T , T ∗). An inner product is just a
configuration that is singled out and made part of the structure if T were an
inner-product space. Here one can still use the concepts and notations usually
used in the theory of inner-product spaces, but they must be used only relative to
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a given configuration. For example, if G ∈ Pos+(T , T ∗) is such a configuration,
then a given basis b := (b1,b2,b3) of T is G-orthonormal if

(Gbi)bj = G(bi,bj) = δi,j :=
{

0 if i 6= j
1 if i = j

for all i, j ∈ {1, 2, 3} . (6.1)

A basis that is G-orthonormal necessarily fails to be G′- orthonormal when
G 6= G′. Given any basis of T , there is exactly one G ∈ Pos+(T , T ∗) that
makes it G- orthonormal.

Given any configuration G ∈ G, the orthogonal group of G is defined by

Orth (G) := {A ∈ Lis T | A>GA = G}. (6.2)

Orth (G) is not only a subgroup of the linear group Lis T , but even of the
unimodular group

Unim T := {A ∈ Lis T | |detA| = 1}. (6.3)

Unim T includes infinitely many orthogonal groups as subgroups, namely one
for each configuration G.

The internal force-interactions in a body system B can often be described
by a stress field. Given a motion µ of B, as desribed in Sect.4 above, and a
material point X ∈ B , the Cauchy-stress T(t) at X and t ∈ I is a lineon that
belongs to the space SymV, where V is the translation space of F , which is an
inner-product space. Using the motion M : I −→ Lis (T ,V) of the given body-
element, we associate with the Cauchy-stress T(t) the intrinsic stress defined
by

S(t) := M(t)−1T(t)M(t)>−1 ∈ Sym(T ∗, T ) for all t ∈ I. (6.4)

A frame-free constitutive law should involve only such intrinsic stresses.

The internal forces in a body system B can be described in a frame-free
manner as follows: Every configuration d : B × B −→ PI makes B a metric
set in the sense of Sect.6 of [2]. Using the construction desribed there, one can
imbed B in a Euclidean frame-space Ed with translation space Vd . For every
X ∈ B there is a natural isomorphism from Vd to the tangent space TX . This
isomorphism transports the inner product of Vd to the configuration G of the
body element TX induced by the configuration d of the whole body system B.

If d is the configuration at some time in a deformation process for the whole
body system B, then Ed and Vd are instantaneous spaces because they also
depend on time. A frame-free description of force interactions would use only
vectors in the instantaneous space Vd . Stresses would then be members of
SymVd . The intrinsic stress can be obtained by transporting the elements of
SymVd to Sym(TX

∗, TX) by using the natural isomorphism from Vd to TX as
described above. This means that (6.4) remains valid if T(t) is interpreted to
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be the frame-free stress in SymVd just described and if M(t) ∈ Lis (TX ,Vd) is
interpreted to be the natural isomorphism described in the previous paragraph.

7. State-space systems.

The Introduction [0] contains the following quote from the preface to the
second edition of [NLFT]:

“The Principle of Determinism for the Stress stated on p. 56 of [NLFT] has
only limited scope. It should be replaced by a more inclusive principle, using the
concept of state rather than a history of infinite duration, as a basic ingredient.”

A state-space system is a mathematical structure with the following seven
ingredients:

(S1) A set C whose members are called conditions.

(S2) A set Π of processes, which are one-parameter families of conditions. More
precisely, they are mappings of the form

P : IP −→ C , (7.1)

where IP is a closed interval whose left endpoint is 0. Thus, IP is either of the
form

IP = [0, dP] with dP ∈ PI , (7.2)

in which case dP is called the duration of P, or we have IP = PI , in which case
we put dP := ∞ and say that IP has infinite duration. One should interpret the
value P(t) to be the condition at time t of the system during the given process.
We use the notation Pi := P(0) for the initial condition of P, and, if P is of
finite duration, we use the notation Pf := P(dP) for the final condition of P.

(S3) A set Σ whose members are called states. The set itself is called the
state-space.

(S4) A mapping
Ĉ :−→ C, (7.3)

whose value Ĉ(σ) is called the condition of the system when it is in the state σ.

(S5) An evolution functional

ρ̂ : {(P, σ) ∈ Π× Σ | Ĉ(σ) = Pi} −→ Σ . (7.4)

Starting with the initial state σ, the final state after applying the process P to
the system is ρ̂(P, σ).

(S6) A set R whose members are called responses.

(S7) a mapping
R̂ : Σ −→ R, (7.5)
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whose value R̂(σ) represents the response that the system gives when in the
state σ.

The set of processes is assumed to satisfy the following two natural axioms:

(P1) Let a process P and t1, t2 ∈ IP with t1 ≤ t2 be given. We then define
the process P[t1,t2] , of duration t2 − t1, by

P[t1,t2](s) := P(t1 + s) for all s ∈ [0, t2 − t1] . (7.6)

We say that this process is a segment of P. If P belongs to Π, it is assumed
that all of its segments also belong to Π.

(P2) Let two processes P1 and P2 be given such that P1 has finite duration
and P1

f = P2
i. The process P1 ∗P2, defined by

(P1 ∗P2)(t) :=
{

P1(t) if t ∈ IP1

P2(t− dP1) if t ∈ dP1 + IP2

(7.7)

is then called the continuation of P1 with P2. Its duration is dP1 + dP2 . If P1

and P2 belong to Π, we assume that P1 ∗P2 does, too.

The evolution functional ρ̂ is assumed to satisfy at least the following three
natural axioms.

(E1): Let a state σ ∈ Σ and a process P ∈ Π be given such that Ĉ(σ) = Pi,
We require that

Ĉ(ρ̂(σ,P)) = Pf , (7.8)

i.e. that the final state ρ̂(σ,P) resulting from the process P be compatible with
the final condition of P.

(E2): Let a state σ ∈ Σ and two processes P1 and P2 in Π be given such
that Ĉ(σ) = P1

i and P2
i = P1

f , as defined in (S2), so that the continuation
(P1 ∗P2), defined by (7.7), belongs to Π. We require that

ρ̂(σ,P1 ∗P2) = ρ̂(ρ̂(σ,P1),P2) . (7.9)

(E3): if σ1, σ2 ∈ Σ satisfy C := Ĉ(σ1) = Ĉ(σ2) and

R̂(ρ̂(σ1,P)) = R̂(ρ̂(σ2,P)) (7.10)

for all P ∈ Π with Pi = C, then we require that σ1 = σ2.

The axiom (E3) expresses the assumption that there must be an operational
way to distinguish between states. Specifically, if two states are different but
produce the same condition, there must be some process which produces a state
with two different responses.
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Remark 2. I came up with the idea of a state-space system in 1972 in the
context of simple material elements as introduced in [N7] and summarized in the
next section. State-space systems, although not with the axioms I introduced,
have been used before without my being aware of it. (See [W] and the literature
cited there.) My paper [N7] had some influence on the work by Coleman, Owen,
Del Piero, Silhavy, and others in [CO1], [CO2], [CO3], [D1], [D2], [D3], [DD],
[O], [S] [SK], [KS]. See also the references cited in Sect. 4.1 of [S]. The abstract
concept of a state-space system presented here seems to be new.

8. Simple material elements.

Here is a sketch of a theory that was developed, in detail, in my paper [N7]
of 1972. The structure of a simple material element is put on top of a body
element as described in Sect.4, i.e. on a given three-dimensional linear space T .
This structure will be the structure of a state-space system with the following
specifications

(a) The set C of conditions in (S1) is taken to be a suitable subset G of the linear
cone Pos+(T , T ∗). The members of G will be called configurations.

(b) The set R of responses in (S5) is taken to be the set S := Sym(T ∗, T ) ; its
members will be called intrinsic stresses.

Everywhere in Sect.6, the symbols C and R should now be replaced by G
and S, respectively. Accordingly, Ĉ and R̂ should be replaced by Ĝ and Ŝ,
respectively. It is assumed, of course, that the axioms (P1),(P2),(E1),(E2), and
(E3), are satisfied.

In Sect.11 of [N7] it is explained how one can define, in a natural manner,
a topology in the state space Σ and hence consider limits. Let G ∈ G be given.
The G-section

ΣG := {σ ∈ Σ | Ĝ(σ) = G} (8.1)

of the state space Σ, i.e. the set of all states whose configuration is G, is endowed
with a natural Hausdorff topology. The entire state space Σ =

⋃
{ΣG | G ∈ G}

is the sum of the topologies of the sections. The mappings Ŝ and ρ̂(·,P), for any
given process P, are continuous.

Given G ∈ G and t ∈ PI , we call the process G(t) : [0, t] −→ G, defined by

G(t)(s) := G for all s ∈ [0, t] , (8.2)

the freeze at G of duration t. We now add an additonal axiom:

(F) For every G ∈ G and every t ∈ PI , the freeze G(t) belongs to Π, and for
every state σ ∈ Σ the limit

λ̂(σ) := lim
t→∞

ρ̂(σ, Ĝ(σ)(t)) (8.3)

exists.
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The members of the range of the mapping λ̂ : Σ −→ Σ defined by (8.3) are
called relaxed states. We denote this range by Σrel.

We say that the given material element is semi-elastic if two different
relaxed states cannot produce the same configuration, i.e. if Ĝ(σ1) = Ĝ(σ2)
with σ1, σ2 ∈ Σrel can happen only when σ1 = σ2. Theorem 16.1 in [N7] shows
that the theory of semi-elastic materials is but a reformulation of the older theory
of simple materials with memory first formulated by me in my paper [N12] of
1958 and described in [NLFT].

We say that the given material element is elastic if it is semi-elastic and if
all of its states are relaxed. If this is the case, the state space can be identified
with G and the evolution functional becomes trivial.

Let two simple material elements with ingredients (T1,G1,Π1,Σ1, Ĝ1, ρ̂1, Ŝ1)
and (T2,G2,Π2,Σ2, Ĝ2, ρ̂2, Ŝ2) be given. A material isomorphism between
these elements is then induced by a linear isomorphism A ∈ Lis (T1, T2) with the
following properties:

(i) A>G2A = G1,
(ii) A>Π2A = Π1, and
(iii) there is an invertible mapping

ιA : Σ1 −→ Σ2 (8.4)

such that, for every σ ∈ Σ1, the equations

Ĝ1(σ) = A>Ĝ2(ιA(σ))A , (8.5)

Ŝ2(ιA(σ)) = AŜ1(σ)A> , (8.6)

and
ιA(ρ̂1(σ,A>PA)) = ρ1(ιA(σ),P) (8.7)

hold for all P ∈ Π2 such that Ĝ1(σ) = A>PiA.

In Sect.9 of [N7] it was shown that there can be at most one ιA with the
properties just described. It is a homeomorphism between the topological spaces
Σ1 and Σ2.

We now deal again with a single material element. Then A ∈ Lis T is
called a symmetry of the element if it induces a material isomorphism from
the element to itself. These symmetries form a subgroup ģ of Lis T , called the
symmetry group of the element. It acts on the state space Σ by an action
ι : ģ −→ Perm Σ that has the following properties:

Ĝ(σ) = A>Ĝ(ιA(σ))A (8.8)

and
Ŝ(ιA(σ)) = AŜ(σ)A> (8.9)
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hold for all σ ∈ Σ and all A ∈ ģ, and

ιA(ρ̂(σ,P)) = ρ̂(ιA(σ), (A>)−1PA−1) (8.10)

holds for all σ ∈ Σ, all A ∈ ģ, and all deformation processes P such that
Ĝ(σ) = Pi. (For an explanation of the concept of an action of a group on a set,
see Sect.31 [FDS].)

Again, let a state σ ∈ Σ be given. The set

ģσ := {A ∈ ģ | ιA(σ) = σ} (8.11)

of all symmetries that leave σ invariant is a subgroup of ģ; it is called the
symmetry group of the state σ. ģσ is also a subgroup of the orthogonal
group of the configuration Ĝ(σ), so that

ģσ ⊂ ģ ∩ Orth (Ĝ(σ)) . (8.12)

We say that the state σ is isotropic if ģσ = Orth (Ĝ(σ)).
Given any symmetry A ∈ ģ, the symmetry groups of the states σ and ιA(σ)

are conjugate. In fact, we have

ģιA(σ) = AģσA−1 . (8.13)

Definition 1.We say that the element is semi-fluid if its symmetry group is the
full unimodular group, i.e. if ģ = Unim T (see (6.3)). We say that the element
is fluid if it is both semi-fluid and semi-elastic in the sense defined above. If the
element is semi-fluid [fluid] and incompressible in the sense of Sect.8 of [N7] we
say that it is semi-liquid [liquid]. *)

Remark 3. The theory summarized above has seen only few direct applications
in the past 30 years. Notable among them are in the Theory of Inelastic Be-
havior of Materials presented by S̆ilhavý and Kratochv́il in [SK] and [KS] and
in the paper On the Elastic-Plastic Material Element by Del Piero in [D1] and
[D2]. This work corroborates the following claim in the Preface to the Second
Edition in [NLFT]: “The new concept of material makes it possible also to in-
clude theories of ‘plasticity’ in the general framework, and one can now do much
more than ‘refer the reader to the standard treatises’ as we suggested on p.11 of
the Introduction.”

*) The term “fluid” was already introduced in [N7]. Using “liquid” for “in-
compressible fluid” is compatible with the dictionary definition: “liquid refers
to a substance that flows readily ... but retains its independent volume ; fluid
applies to any substance that flows” (Webster’s New World Dictionary, Second
College Edition). The prefix semi is used to indicate that flow may occur only
after sufficient force is applied, as is illustrated in Sect.6 of the sequel [4] to this
paper.
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A theory of simple materials that includes not only mechanics but also
thermodynamics has not yet been fully developed, although the work of Coleman
and Owen in Part II of [CO1] may be a good beginning. Unfortunetely, their
description is not frame-free.

A thermomechanical process of a body system B, in a frame-free description,
should involve, in addition to a deformation process, a temperature process

θ̂ : B × I −→ PI ×, (8.14)

whose value θ̂(X, t) is the absolute temperature at the material point X ∈ B at
time t ∈ I. Assuming that θ̂ is differentiable, we can consider the temperature
gradient

g := ∇X θ̂(·, t) ∈ Lin (RI , TX) = T X
∗ . (8.15)

As indicated in Sect.21 (b) of [N7], a thermomechanical structure of a simple
material element should be a state-space structure with the following specifica-
tions:

(A) The set C of conditions in (S1) is taken to be of the form C := G× PI ××T ∗,
where G is a set of configurations as described in (a) above. The triple
C := (G, θ,g) ∈ C gives the configuration, the temperature, and the tem-
perature gradient of the condition C.

(B) The setR of responses in (S5) is taken to be of the form, R := S×PI ×RI ×T ,
where S := Sym(T ∗, T ) as in (b) above. The quadruple R := (S, ε, η,q)
gives the intrinsic stress, the internal energy per unit volume, the entropy
per unit volume, and the intrinsic heat flux of the response R.

A formula for the rate of entropy production, like (21.4) in [N7], should play
a fundamental role in developing the theory.

9 Material elements of grade two.

Not all situations in the real world can be modelled adequately by a theory of
simple material elements. For example, models intended to describe the behavior
of liquid crystals often require a theory based on body elements given not just
by the tangent space T but a second order tangent structure to a point of the
C2-manifold describing the continuous body system, as explained in Sect.3
above, if such a theory is formulated in a frame-free way. Such second order
tangent structures are quite complicated. Following [N13], they involve the fol-
lowing ingredients and axioms: Here are the ingredients:

(1) The tangent space T ,
(2) A linear space S, called the shift space,
(3) A linear mapping I : Lin T −→ S,
(4) A linear mapping P : S −→ T ,
(5) A bilinear mapping B ∈ Skew2(S × S, T ), called the shift bracket.
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Here are the axioms:

(6) I is injective, P is surjective, and NullP = Rng I,
(7) The linear mapping

s 7−→ B(s, ·) ∈ Lin (S,Lin (S, T )) (9.1)

is injective.

The content of (1)-(4) with the axiom (6) is often expressed by saying that

{0} −→ Lin T I−→ S P−→ T −→ {0} (9.2)

is a short exact sequence
If T has dimension 3, then Lin T has dimension 32 = 9 and S has dimension

32 + 3 = 12.
We call the structure thus described a second grade body element.
A linear mapping K ∈ Lin (T ,S) is called a connector if it is a right inverse

of P, i.e. if
PK = 1

¯T
. (9.3)

The set of all connectors, which we denote by Conn(T ,S), is a flat in the linear
space Lin (T ,S). The torsion of a connector K is defined by

Tor(K) := −B ◦ (K×K) ∈ Skew2(T × T , T ) . (9.4)

We say that a given connector K is symmetric if Tor(K) = 0. The set of
all symmetric connectors will be denoted by Sconn(T ,S). It is also a flat in
Lin (T ,S).

A configuration of a continuous body-system as described in Sect.3 above
is a metric that induces a Riemannian structure on the body-manifold. This
structure not only assigns a “metric tensor” to each point X, here called the
configuration of the body element T , but also what is often called a “symmetric
affine connection”. Such an affine connection can be viewed as a field of symmet-
ric connectors as defined above, one for each point in the body system. Thus,
a condition for this system is reasonably defined to be a pair (G,K), where
G ∈ Pos+(T , T ∗) as in Sect.8, and where K ∈ Sconn (T ,S).

The structure of a material element of grade two is put on top of a second
grade body element as described above. This structure will be the structure of
a state-space system, as described in Sect.6, with the following specifications:

(a) The set C of conditions in (S1) is taken to be a suitable subset of the set
Pos+(T , T ∗)×Sconn (T ,S). Each member of C is a pair (G,K) as described
above.

(b) The set R of responses in (S5) is taken to be the set
R := Sym(T ∗, T )×Skew2(T ∗×T ∗, T ). Each member of R is a pair (S,C),
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where S ∈ Sym(T ∗, T ) is an intrinsic stress, and C ∈ Skew2(T ∗ × T ∗, T )
is an intrinsic couple stress.

It is my conjecture that the internal interactions in materials of grade 2
cannot be described by forces alone but must also include couples.
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[4] The Theory of Simple Semi-Liquids,
a Conceptual Framework for Rheology

0. Introduction.
In this paper, the framework of the New Theory of Simple Materials

introduced in [N7] in 1972 and summarized in [3] is used to give a careful analysis
of the concept of a monotonous state (called a ”state of monotonous flow” in
[N7]) and to introduce the narrower concept of a uni-monotonous state, of which
a state of simple shearing is a special case. New is also a detailed analysis of
material elements that are semi-liquid according to Def.1 of [3].

In the last two sections of this paper, it will be shown how the theory
of semi-liquids generalizes the now conventional theory of incompressible simple
fluids. In particular, it will be shown how the entire theory of viscometric
flows treated in [CMN] can be extended to semi-liquids. In fact, the present
paper could be the basis for a radical update of [CMN] as well as of Chapter E
of [NLFT]. The examples of Poiseuille flow and Couette flow will be analyzed
explicitly in the last section here. It should be a fairly easy exercise to produce
similar analyses for helical flow, cone and plate flow, torsional flow, and the
other examples of visometric flows treated in Chapter IV of [CMN]. I believe
that the theory of semi-liquids is a good mathematical model for many materials
considered by rheologists, toothpaste being a familiar example.

The theory of semi-liquids presented here is conceptual, axiomatic,
and very general. It can serve as a framework for more specific and more special
theories. In the sequel [5] to this paper, I will present such a special theory,
which I call the theory of nematic semi-liquids. It may furnish a mathematical
model for certain aspects of the flow of nematic liquid crystals.

To understand the mathematical background used in this paper, the
reader should be thoroughly familiar with the concepts, terminology, and nota-
tion used [3] and in [FDS].

For later use, we record here the rule for the gradient of the determi-
nant function det : Lin T −→ RI :

(∇L det)M = (detL)tr(ML−1) for all L ∈ Lis T , M ∈ Lin T . (0.1)

1. Monotonous processes.
We assume now that body elements T1 and T2 and corresponding

deformation processes (as defined in Sect.4 of [N3]) P1 and P2 are given. We
say that P1 and P2 are congruent if P1 and P2 have the same duration d :=
dP1 = dP2 and if there is a linear isomorphism A ∈ Lis (T1, T2) such that

P1(t) = A>P2(t)A for all t ∈ [0, d]. (1.1)

Remark 1: This notion of congruence is analogous to congruence of curves in a
Euclidean space. Intuitively, if one takes still pictures of two congruent curves,
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one cannot tell from the pictures which is which. Analogously, if one makes
motion pictures of two congruent deformation processes, one cannot tell which
is which by showing the movies.

We assume that now that a body element T is given.

Definition 1. We say that a deformation process P of T is monotonous if
any two segments of P of equal duration are congruent.

Remark 2: An idea that led to the concept of a monotonous process, as defined
here, was first introduced by Coleman in his paper [C] in 1962, but he used the
term “substantially stagnant motion”. In the same paper, he also introduced
the concept and the term “viscometric flow”. Shortly thereafter, in [N14], I
found a description of monotonous flows in terms of lineonic exponentials.
(I then used the term “motion with constant stretch history”.) In [N15] in 1972,
I gave a rigorous proof of the Representation Theorem for Monotonous Processes
stated below, and started using the adjective “monotonous”, because the earlier
terminology was not suitable for the frame-free approach I employed from then
on.

A trivial example of a monotonous process is a freeze, which is a process
whose value-configuration is constant (see Sect.8 of [3]). The following basic
theorem characterizes all monotonous processes in terms of the lineonic expo-
nential function exp : Lin T −→ Lin T , which is defined and discussed in Sect.612
of [FDS]. It is characterized by the following property: Given E ∈ Lin T and
defining F : RI −→ Lin T by

F(t) := exp(tE) for all t ∈ PI , (1.2)

we have
F• = EF = FE and F(0) = 1T . (1.3)

Also, we have

exp(t (AEA−1) = A exp(tE)A−1 for every A ∈ Lis T and for all t ∈ RI . (1.4)

Representation Theorem for Monotonous Processes: A given deforma-
tion process P is monotonous if and only if there is a lineon E ∈ Lin T such
that

P(t) = exp(tE>)Piexp(tE) for all t ∈ IP. (1.5)

If this is the case, we say that P is a monotonous process of exponent E.

The proof of this Theorem, which is highly non-trivial, can be found in
[N15].

Remark 3: One can define monotonous curves in a three-dimensional Euclidean
space in a manner that is analogous to the definition above. It can easily be
proved that a curve is monotonous in this sense if and only if it has constant
curvature and torsion. The only such curves are straight, circular, or helical.
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We record the following result for later use.

Proposition 1. Let a monotonous process P of exponent E and A ∈ Lis T be
given. Then (A−1)>PA−1 is a monotonous process of exponent AEA−1. Its
initial configuration is (A−1)>PiA−1.

Proof: Let t ∈ IP be given. By (1.5) we have

(A−1)>P(t)(A−1) = (A−1)>exp(tE>)Piexp(tE)A−1.

Using (1.4), it follows that

(A−1)>P(t)(A−1) = exp(t (AEA−1)>)(A−1)>Pi(A−1)exp(t (AEA−1)). (1.6)

Since t ∈ IP was arbitrary and since (A−1)>PiA−1 = ((A−1)>PA−1)i, the as-
sertion follows from (1.6) and the Representation Theorem.

Let E ∈ Lin T be given. We denote the subgroup of Lis T that consists of
all A ∈ Lis T that commute with E by

ComE := {A ∈ Lis T | AEA−1 = E}. (1.7)

2. Monotonous states.

We now assume that a simple material element, in the sense of Sect.8 of [3],
is given, and consider its symmetry group ģ

Definition 2. Let a state σ ∈ Σ and a lineon E ∈ Lin T be given. We say that
σ is a monotonous state and that the exponent of σ is E if

exp(sE) ∈ ģ for all s ∈ RI (2.1)

and if
ιexp(tE)(ρ̂(σ,P[0,t])) = σ for all t ∈ PI , (2.2)

where P is the monotonous process of exponent E and of infinite duration which
satisfies Pi = Ĝ(σ), i.e. the process defined by (1.5) with Pi := Ĝ(σ) and
IP := PI .

Remark 4: If ģ is a Lie-group, then (2.1) states that E belongs to the Lie-
algebra of ģ.

Consider the case when E := 0. Then the process P of Def.2 becomes the
freeze of infinite duration at G := Ĝ(σ) and (2.2) reduces to

ρ̂(σ,G(t)) = σ for all t ∈ PI , (2.3)

where G(t) is the freeze of duration t at G.
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Now, by Prop.12.1 of [N7], a state σ ∈ ΣG is a relaxed state, as defined
in Sect.8 of [3], if and only if (2.3) holds. Hence the monotonous states whose
exponent is 0 are just the relaxed states.

We now assume that G ∈ G and E ∈ Lin T are given.

Proposition 2. Let P be the monotonous process of exponent E, of infinite
duration, and of initial configuration Pi = G. Assume that (2.1) holds. Let
τ0 ∈ ΣG be given and put

τt := ιexp(tE)(ρ̂(τ0,P[0,t])) for all t ∈ PI . (2.4)

Then τt ∈ ΣG for all t ∈ PI . If the family (τt | t ∈ PI ) converges, then its limit
not only belongs to ΣG but is a monotonous state of exponent E.

Proof: Let t ∈ PI be given. We apply Ĝ to both sides of (2.4). Using (8.10)
of [3] with A replaced by exp(tE), then using axiom [E1] of Sect.7 of [3], and
finally (1.5), we obtain

Ĝ(τt) = Ĝ(ρ̂(ιexp(tE)(τ0), exp(−tE>)P[0,t] exp(−tE))) =

= (exp(−tE>)P[0,t] exp(−tE))f = exp(−tE>)P(t) exp(−tE) = P(0) = Pi = G ,

which means that τt ∈ ΣG.
Let t, r ∈ PI be given. It follows from (7.7), (7.9) of [N3], and from (1.5)

above that

P[0,r+t] = P[0,r] ∗P[r,r+t] = P[0,r] ∗ exp(rE>)P[0,t] exp(rE) . (2.5)

Using first the axiom [E2] of Sect.7 and then (8.10) of [3], with A replaced
by exp(−rE) = (exp(rE)−1, we conclude from (2.5) that

ρ̂(τ0,P[0,r+t]) = ρ̂(ρ̂(τ0,P[0,r]), exp(rE>)P[0,t] exp(rE)) =

= (ιexp(rE))←(ρ̂(ιexp(rE)(ρ̂(τ0,P[0,r])),P[0,t]) . (2.6)

Since ιexp((r+t)E) = ιexp(tE) ◦ ιexp(rE), it follows from (2.6) that

ιexp((r+t)E)ρ̂(τ0,P[0,r+t]) = ιexp(tE)(ρ̂(ιexp(rE)(ρ̂(τ0,P[0,r])),P[0,t]) . (2.7)

Assume now that the family (τt | t ∈ PI ) defined by (2.4) converges and de-
note its limit by σ. Since we deal with a topology in ΣG, the limit σ must belong
to ΣG. Taking the limit r → ∞ in (2.7) and using the continuity properties of
ρ̂ and ιexp(rE), we obtain

σ = ιexp(tE)(ρ̂(σ,P[0,t])) .

Since t ∈ PI was arbitrary, it follows from Def.2 that σ is indeed a monotonous
state.
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In the case when E := 0, the definition (2.4) reduces to τt := ρ̂(τ0,G(t)).
By Axiom (F) in Sect.8 of [3], the family (τt | t ∈ PI ) then converges
to the relaxed state λ̂(τ0) obtained from τ0 by the relaxation mapping
λ̂ : Σ −→ Σ defined by (8.3).

Definition 3. Let a monotonous state σ be given. Assume that its exponent
is E and that its configuration is G. We say that σ is stable if there is a
neighborhood Υ of σ in ΣG with the following property: For every τ0 ∈ Υ the
family (τt | t ∈ PI ), defined by (2.4) in Prop.2, converges to σ.

Proposition 3. Let a monotonous state σ and A ∈ ģ be given. Then ιA(σ)
is again a monotonous state, and if E is the exponent of σ then AEA−1 is the
exponent of ιA(σ). Moreover, if σ is stable, so is ιA(σ).

Proof: Put G := Ĝ(σ) and consider the monotonous process P of infinite
duration, with exponent E, and with Pi = G. Put

E′ := AEA−1, P′ := (A−1)>PA−1 . (2.8)

By Prop.1 P′ is the monotonous process of infinite duration, with exponent E′

and initial configuration Pi = (A−1)>GA−1.
Let t ∈ PI be given. It follows from (2.8)2 and from (8.10) in [3], with P

replaced by P[0,t], that

ιA(ρ̂(τ,P[0,t])) = ρ̂(ιA(τ),P′[0,t]) for all τ ∈ ΣG . (2.9)

By (2.8)1 and (1.4) we have exp(tE′) = Aexp(tE)A−1 and hence

ιexp(tE′) = ιA ◦ ιexp(tE) ◦ (ιA)← . (2.10)

Applying the mapping (2.10) to (2.9), we see that

ιA(ιexp(tE)(ρ̂(τ,P[0,t]))) = ιexp(tE′)(ρ̂(ιA(τ),P′[0,t])) for all τ ∈ ΣG . (2.11)

In the case when τ := σ, it follows from (2.2) that (2.11) reduces to

ιA(σ) = ιexp(tE′)(ρ̂(ιA(σ),P′[0,t])) .

Since t ∈ PI was arbitrary, this means, by Def.2, that ιA(σ) is indeed a
monotonous state.

Now assume that the monotonous state σ is stable and consider a neigh-
borhood Υ of σ in accord with Def.3. Since ιA is a homeomorphism, the image
(ιA)>(Υ) is a neighborhood of ιA(σ). Thus, a given member of this image-
neighborhood must be of the form ιA(τ0) , where τ0 ∈ Υ. By Def.3, the family
(τt | t ∈ PI ) defined by (2.4) must converge to σ. Using (2.9) with τ := τ0 for
every t ∈ PI , it follows from (2.4) that the family (τ ′t | t ∈ PI ) defined by

τ ′t := ιexp(tE′)(ρ̂(ιA(τ0),P′[0,t])) for all t ∈ PI
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satisfies ιA(τt) = τ ′t for all t ∈ PI . By the continuity of ιA, we see that
(τ ′t | t ∈ PI ) must converge to ιA(σ). Therefore, ιA(σ) is again stable.

3. Uni-monotonous states, states of simple shearing.

We assume again that a simple material element is given.

Definition 4. Let a state σ ∈ Σ be given and denote its configuration by
G := Ĝ(σ). We say that σ is a uni-monotonous state if
(i) σ is a stable monotonous state, and
(ii) there is no other stable monotonous state whose configuration is G and
which has the same exponent as σ.

Proposition 4. Let a uni-monotonous state σ and A ∈ ģ be given. Then ιA(σ)
is again a uni-monotonous state.

Proof: Denote the exponent of σ by E and its configuration by G. By Prop.3,
ιA(σ) is a stable monotonous state. Its exponent is AEA−1 and, by (8.8) of [N3],
its configuration is (A−1)>GA−1 . Now let τ be any stable monotonous state
whose exponent is AEA−1 and whose configuration is (A−1)>GA−1. Applying
Prop.3 to the case when σ is replaced by τ and A by A−1, we see that ιA−1(τ)
is a stable monotonous state whose exponent is E and whose configuration is G.
By the uniqueness of σ, we have ιA−1(τ) = σ and hence ιA(σ) = τ .

Recall that the orbits in the state space Σ under the action of the symmetry
group ģ are called reduced states (see Sect.10 of [N7]) and that the orbit of a
given state σ is defined by

Ωσ := {ιA(σ) | A ∈ ģ} . (3.1)

We see that Prop.4 can be phrased in the following way: If a reduced state
contains one uni-monotonous state, then it consists entirely of uni-monotonous
states. Such a reduced state will be called a uni-monotonous reduced state.

We assume now that a uni-monotonous state σ is given and we denote its
exponent by E and its configuration by G.

Proposition 5. The symmetry group ģσ of σ, as defined by (8.11) of [3],
satisfies

ģ ∩ OrthG ∩ ComE ⊂ ģσ ⊂ ģ ∩ OrthG . (3.2)

Proof: Let A ∈ ģ ∩OrthG∩ComE be given. By (1.7) we have AEA−1 = E,
and by (6.2) and (8.5)in [N3] we have G = (A−1)>GA−1 = Ĝ(ιA(σ)). Therefore,
by the uniqueness of σ, we must have ιA(σ) = σ, i.e. A ∈ ģσ. We conclude that
the first inclusion of (3.2) is valid; the second is merely a restatement of (8.12)
in [3].

The following is an immediate consequence of Prop.5 and of (8.9) and (8.11)
in [3].
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Proposition 6. The intrinsic stress S := Ŝ(σ) produced by the given uni-
monotonous state σ satisfies

ASA> = S for all A ∈ ģ ∩OrthG ∩ ComE (3.3)

We recall (see the end of Sect.17 of [N7]) that a monotonous process is
called a simple shearing if its exponent E satisfies E2 = 0 but is not zero.
The following fact of linear algebra will be needed.

Proposition 7. We have E2 = 0 but E 6= 0 if and only if there is a
G-orthonormal basis b of T such that the matirx [E]b of E relative to b has
the form

[E]b := κ

 0 0 0
1 0 0
0 0 0

 , where κ ∈ PI × . (3.4)

Proof: If (3.4) holds it is evident that E2 = 0 but E 6= 0. Assume, conversely,
that E2 = 0 but E 6= 0. We then have Rng E ⊂ NullE and hence dim Rng E ≤
dim NullE. This is compatible with the equality dim Rng E + dim NullE = 3
(see the Theorem on Dimension of Range and Nullspace in Sect.7 of [FDS]) and
with E 6= 0 only if dim Rng E = 1 and dim NullE = 2. Now choose a G-unit
vector b1 in the G-orthogonal supplement of NullE. Since E 6= 0 we must have
Eb1 6= 0 and hence we can determine κ ∈ PI × and a G-unit vector b2 such that
Eb1 = κb2. Choosing a G-unit vector b3 that is G-orthogonal to both b1 and
b2 we obtain a G-orthogonal basis b := (b1,b2,b3) with the desired property
(3.4).

Definition 5. We say that a uni-monotonous state is a state of simple shear-
ing if its exponent E satisfies E2 = 0.

Proposition 8. Assume that σ is a state of simple shearing and let
S := Ŝ(σ) be the intrinsic stress produced by σ. Determine, according to Prop.7,
a G-orthonormal basis b of T such that the matrix of E relative to b has the
form (3.4). Assume, also, that the lineon A ∈ Lin T whose matrix relative to b
is

[A]b =

 1 0 0
0 1 0
0 0 −1

 (3.5)

belongs to the symmetry group g. Then the matrix T of SG ∈ Lin T relative to
b is symmetric and has the form

[SG]b =: T =

T11 T12 0
T12 T22 0
0 0 T33

 . (3.6)

Proof: The symmetry of T follows from the symmetry of S. It is clear that
A ∈ OrthG ∩ ComE. In view of (6.2) in [3], we see that A>G = GA−1.
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Therefore, since A ∈ ģ, it follows from Prop.6 that SG = ASA>G = ASGA−1

and hence that
T = [A]bT [A]b

−1
. (3.7)

By the rules of matrix multiplication, it follows from (3.5) that

[A]bT [A]b
−1 =

 T11 T12 −T13

T12 T22 −T23

−T13 −T23 T33

 ,

which is compatible with (3.7) only if T is of the form (3.6).

4. Semi-liquid material elements.

Now we assume that a semi-liquid simple material element, in the sense of
Def.1 in Sect.8 of [N3], is given.

Proposition 9. Given any G0 in the set G of all configurations of the element,
we have

G = {G ∈ Pos+(T , T ∗) | det(G0
−1G) = 1} = {A>G0A | A ∈ ģ} . (4.1)

The proof is exactly the same as that of Prop.19.1 of [N7] and will not be
repeated here.

Because of the incompressibility of the element, we must now interpret Ŝ(σ)
to be the intrinsic extra-stress produced by a given σ ∈ Σ , which differs from
the intrinsic stress by an indeterminate pressure-term of the form −p(Ĝ(σ))−1

with p ∈ RI . It is useful to fix Ŝ by the normalization condition

tr (Ŝ(σ)Ĝ(σ)) = 0 for all σ ∈ Σ . (4.2)

(See Sect.8 of [N7].)
Using the differentiation rule (0.1) for the determinant function it follows

from (1.3) and the Chain Rule that the function F given by (1.2) satisfies

(det ◦F)• = (det ◦F)trE , (det ◦F)(0) = 1 . (4.3)

As in [N7] we use the notation

Lin 0T := {L ∈ Lin T | trL = 0} (4.4)

for the set of all traceless lineons on T . The following result is an immediate
consequence of (4.3), (1.2) and the definition of ģ = Unim T given by (6.3) of
[3].
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Proposition 10. For every E ∈ Lin 0T , we have exp(tE) ∈ ģ for all t ∈ RI ,
i.e. the condition (2.1) is satisfied. Hence every E ∈ Lin 0T is a candidate for
the exponent of a monotonous state.

Proposition 11. Let a uni-monotonous state σ0 be given. Denote its exponent
by E0 and its configuration by G0. Let a G0-orthonormal basis b0, a configu-
ration G ∈ G, and a G-orthonormal basis b be given. Denote by E ∈ Lin T the
lineon whose matrix relative to b is the same as the matrix of E0 relative b0, so
that

[E0]b0 = [E]b. (4.5)

Then there is exactly one uni-monotonous state σ whose configuration is G
and whose exponent is E. The states σ and σ0 belong to the same reduced
uni-monotonous state, i. e. we have

σ = ιA(σ0) for some A ∈ ģ . (4.6)

Finally, putting S0 := Ŝ(σ0) and S := Ŝ(σ) , the matrix of GS relative to b is
the same as the matrix of S0G0 relative to b0, i. e. we have

[S0G0]b0 = [SG]b. (4.7)

Proof: We denote by A ∈ Lis T the lineon which sends the basis b0 to the basis
b, so that

Ab0
i = bi for all i ∈ {1, 2, 3}. (4.8)

It then follows from (4.5) that

E = AE0A−1 . (4.9)

To say that b0 is G0-orthonormal and that b is G-orthonormal means, by (6.1)
in [N3], that

(G0b0
i)b0

j = δi,j = (Gbi)bj for all i, j ∈ {1, 2, 3} . (4.10)

Substituting (4.8) into (4.10), we see that

(G0b0
i)b0

j = (Gbi)bj = (GAb0
i)Ab0

j

= ((A>GA)b0
i)b0

j for all i, j ∈ {1, 2, 3} ,

which implies
A>GA = G0 . (4.11)

Using Prop.9, (4.11), and basic properties of determinants we see that

1 = det(G−1G0) = det(G−1A>G) detA = det(A>) detA = (detA)2 (4.12)
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and hence that |detA| = 1, which shows that A ∈ ģ. It follows from Prop.4,
from (4.9), from Prop.3, from (4.11), and from (8.8) of [3] that σ := ιA(σ0) has
the desired properties.

The condition (8.9) of [3] implies that S = AS0A>. Using (4.11), it follows
that

SG = AS0A>G = AS0A>GAA−1 = A(S0G0)A−1 ,

which, in view of (4.8), shows that (4.7) is valid.

Prop.11 shows that a given reduced uni-monotonous state Ω can be charac-
terized by a matrix B ∈ Lin 0 RI 3 in the following way: Given any configuration
G ∈ G and any E ∈ Lin 0T whose matrix relative to some G-orthonormal basis
is B, there is exactly one ω ∈ Ω whose configuration is G and whose exponent is
E. Given any orthogonal matrix R ∈ Orth RI 3, the matrices B and RBR> de-
termine the same reduced uni-monotonous state. One cannot assert that every
matrix B ∈ Lin 0 RI 3 characterizes a reduced uni-monotonous state. However,
from now on we will make the following assumption:

Assumption I. For every κ ∈ PI × the matrix

B = κU with U :=

 0 0 0
1 0 0
0 0 0

 and κ ∈ PI × , (4.13)

does characterize a reduced uni-monotonous state Ωκ.

It follows from Prop.7 that, for every κ ∈ PI ×, the members of Ωκ are all
states of simple shearing. Hence Prop.8 yields:

Proposition 12. One can determine three functions

τ , σ1 , σ2 : PI × −→ RI (4.14)

with the following property: Let κ ∈ PI × be given. Given any configuration
G and any G-orthonormal basis b , let ωκ ∈ Ω be the state of simple shearing
determined by G and b according to Assumption I and Prop.11. Denote by Sκ

the intrinsic extra-stress produced by ωκ. Then the matrix T of SκG relative
to b has the form

[SκG]b =: T =

 T11 τ(κ) 0
τ(κ) T22 0

0 0 T33

 (4.15)

with
σ1(κ) = T11 − T33 , σ2(κ) = T22 − T33 . (4.16)

The functions τ , σ1 , σ2 are called the visco-metric functions of the
given semi-liquid element. Specifically, τ is called the shear stress function,
and σ1 and σ2 are called the normal stress functions.
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Since trT = T11 + T22 + T33 = 0 by the normalization (4.2), it follows from
(4.15) and (4.16) that the matrix T is completely determined by the values at κ
of the viscometric functions. If we replace in (4.15) the intrinsic extra-stress Sκ

by the intrinsic stress, which is of the form Sκ − p (Ĝ(σ))−1, then the formulas
(4.15) and (4.16) remain valid but the trace of T need no longer be zero.

Assumption II. Let a configuration G and a G-orthonormal basis b be given.
For every κ ∈ PI ×, let ωκ ∈ Ω be the state of simple shearing determined as in
Prop.12. Then ωκ depends continuously on κ and has a limit ω0 := limκ→0 ωκ.

In view of the continuity of the function Ŝ, it follows that Sκ := Ŝ(ωκ)
depends continuously on κ and has a limit

S0 := lim
κ→0

Sκ . (4.17)

Hence, by (4.15) and (4.16), the viscometric functions (4.14) are continuous and
have limits

τ0 := lim
κ→0

τ(κ) , σ10 := lim
κ→0

σ1(κ) , σ20 := lim
κ→0

σ2(κ) . (4.18)

Remark 5. It is clear that the limit ω0 in Assumption II is a monotonous state
of exponent 0, i.e. a relaxed state, and that its configuration is G. The state
ω0 need not be a uni-monotonous state because it may depend on the choice of
the G-orthonormal basis b. Therefore, there is no reason for ω0 to be isotropic
and hence for the limits (4.18) to be zero. However, if the element is semi-elastic
and hence an element of a simple liquid in the sense of Def.1 in Sect.8 of [3],
then ω0 is the only relaxed state whose configuration is G. In this case, ω0 is
uni-monotonous with exponent zero and hence isotropic by Prop.5. Then we
have S0 = 0 and the limits in (4.18) are all zero. The viscometric functions then
reduce to the ones considered, for example, in Sect.10 of [CMN].

5. Monotonous and viscometric flows.
We now assume that a continuous body system B and a motion

µ : B × I −→ F are given as described in Sect.3 of [3]. We also use the no-
tations of Sect.3 of [3]. We assume that the motion is of class C2.

Let t ∈ I be given. The relative transplacement function
χt : Rt × I −→ F is defined by

χt(x, r) := µ(µt
←(x), r) for all r ∈ I , x ∈ Rt . (5.1)

We denote its gradient by

Ft(x, r) := ∇xχt(·, r) for all r ∈ I , x ∈ Rt . (5.2)

Putting
W := {(z, t) | t ∈ I , z ∈ Rt} , (5.3)
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we define the velocity field v : W −→ V of the given motion by

v(z, t) := (χt(χt
←(z), ·))•(t) for all (z, t) ∈ W , (5.4)

so that

v(χt(X), t) := (χt(X, ·))•(t) for all X ∈ B , t ∈ I . (5.5)

Often, a motion is characterized by the prescription of a set W of the form
(5.5) and a velocity field v : W −→ V. Given t ∈ I, the relative transplacement
function χt can then be obtained by noting that, for each x ∈ Rt, the function
χt(x, ·) : Rt −→ E is the solution of the initial-value problem described by

(χt(x, ·))• = v(χt(x, ·), ·) , χt(x, t) = x . (5.6)

We now fix X ∈ B and consider the motion M : I −→ Lis (TX ,V) of the
element TX induced by the motion µ as defined by (4.3) in [N3]. We also fix
t ∈ I and put x := χt(X). In view of (5.1), (5.2), and (4.3) of Sect.4 in [N3] we
have

Ft(x, r) = M(r)M(t)−1 for all r ∈ I . (5.7)

Now, It := PI ∩ (I − t) is a closed interval whose left endpoint is 0, and the
mapping Pt : It −→ Pos+(TX , TX

∗), defined by

Pt(s) := M(t + s)>M(t + s) for all s ∈ It , (5.8)

is a deformation process of the element TX . Given any r ∈ I with r ≥ t, we have

Pt(s) = Pr((r − t) + s) for all s ∈ It . (5.9)

If all the processes Pt, with arbitrary t ∈ I, are monotonous, it is clear from
(1.5) and (5.9) that they must all have the the same exponent.

Definition 6. We say that the given motion M of TX is a monotonous flow
of exponent E ∈ Lin TX if, for every t ∈ I, the deformation process defined by
(5.8) is a monotonous process of exponent E. In the case when E2 = 0, we say
that M is a viscometric flow.

The proof of the following result is almost the same as that of Prop.17.3 of
[N7] and will not be repeated here.

Proposition 13. The given motion M of TX is a monotonous flow if and only
if, for every t ∈ I, there is a B ∈ LinV and a mapping R : I −→ OrthV such
that

Ft(x, r) = R(r) exp(rB) for all r ∈ I , (5.10)

where x = µt(X). The exponent of the flow is then given by

E = M(t)−1BM(t) ∈ Lin TX . (5.11)
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In the case when M is a viscometric flow, we have B2 = 0 in (5.10) and
hence, since exp(rB) = 1V + rB in this case, (5.10) reduces to

Ft(x, r) = R(r)(1V + rB) for all r ∈ I . (5.12)

Proposition 14. Assume that, for a given κ ∈ PI ×, one can associate, with
each r ∈ I, an orthonormal basis e(r) such that

(e(r)iFt(x, r)e(t)j | i, j ∈ {1, 2, 3}) =

 1 0 0
rκ 1 0
0 0 1

 for all r ∈ I . (5.13)

Then M is a viscometric flow. Moreover, putting

G := M(t)>M(t) and bi := M(t)e(t)i for all i ∈ {1, 2, 3} , (5.14)

b is a G-orthonormal basis and the matrix B := [E]b of the exponent E of M
relative to b has the form (4.13).

Proof: It follows from (5.13) that (5.12) is satisfied when B ∈ LinV is the lineon
whose matrix B := [B]e(t) relative to the basis e(t) has the form (4.13) and
when R : I −→ OrthV is determined by the condition that R(r)e(t)i = e(r)i

for all i ∈ {1, 2, 3}. Hence Prop.13 shows that M is viscometric. The assertion
concerning the matrix of E follows from (5.11).

We now go back to the given motion µ of the whole body B. We say that
this motion is a monotonous flow [viscometric flow] if, for every X ∈ B,
the motion M of the element TX induced by µ according to (5.3) of [3] is a
monotonous flow [viscometric flow]. Important examples of viscometric flows
are the curvilineal flows considered in Sect.18 of [CMN]. In fact, it is Prop.14
above that is used there to show that the curvilineal flows are viscometric.

6. Special viscometric flows of semi-liquids.
In this section, we assume that a materially uniform semi-liquid body system

B is given. (See [3], end of Sect.4, for definition of material uniform and Def.1
of Sect.8 for semi-liquid.) This means that all the material elements of B are
semi-liquid and materially isomorphic to each other. We assume the validity
of Assumptions I and II in Sect.4 . It follows that the viscometric functions
described in Prop.12 are the same for all the elements of B.

We now consider a viscometric flow µ : I × B −→ F of B in a given frame
space F as defined in the previous section. Assume, for a moment, that the
I := RI . Physically, this means that the flow takes place for all time, past as
well as future. Although this may be unrealistic, it can be used as an idealization
of a flow that got started sufficiently long ago and has no definite end. Making
use of Assumption I stated in Sect.4, we can then expect, by Def.3 of Sect.4,
that each of the material elements of the body has reached a state of simple
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shearing as defined by Def.5. From now on we will assume that this is the case,
even though we leave open the specific nature of the interval I. It follows that
the results of Sect.4 apply.

Let X ∈ B be given and consider the viscometric flow M of the element TX

induced by µ as defined by (4.3) in [3]. Let t ∈ I be fixed. Then the configuration
of the element at time t is G := P(t) = M(t)>M(t) (see (4.4) in [3]). Denote
the state of simple shearing of the element at time t by ω. The (Cauchy-) stress
T ∈ SymV is related to the intrinsic stress S := Ŝ(ω) by

T = M(t)SM(t)> = M(t)SGM(t)−1 . (6.1)

(See (6.1) in [3].)
Now let B ∈ LinV be determined according to Prop.13, so that

(5.11) holds when E ∈ Lin TX is the exponent of the flow M. Since
B2 = 0 one can choose, by Prop.7, a basis e(t) such that the matrix
B := [B]e(t) of B relative to e(t) has the form (4.13). Now, define the
G-orthonormal basis b of TX by (5.14)2, so that

B = [E]b = [B]e(t) =

 0 0 0
κ 0 0
0 0 0

 with κ ∈ PI × , (6.2)

It follows from (6.1) and (5.14) that [T]b = [SG]e(t) and hence, by Prop.12,
that the matrix T of the stress T relative to e(t) is related to the viscometric
functions of Prop.12 by

[T]e(t) =: T =

 T11 τ(κ) 0
τ(κ) T22 0

0 0 T33

 (6.3)

with
σ1(κ) = T11 − T33 , σ2(κ) = T22 − T33 . (6.4)

We conclude that all the considerations of Chapters III and IV of [CMN] can be
applied here, provided they are modified to account for the possibility that the
limits (4.18) need not be zero. Before investigating some of these modifications
we add the following to the Assumptions I and II stated in Sect.4.

Assumption III. The shear stress function τ of (6.14) is strictly isotone and
we have

τ0 := lim
κ→0

τ(κ) > 0, lim
κ→∞

τ(κ) = ∞ . (6.5)

This assumption is analogous to the ones mentioned at the end of Sect.11 of
[CMN]. It insures that Rng τ = τ0 + PI × and that τ |Rng is invertible. The rate
of shear function λ : PI −→ PI introduced in Sect.11 of [CMN] must be given
the following new definition:

λ(S) :=
{

0 if S ∈ [0, τ0]
(τ |Rng )←(S) if S ∈ τ0 + PI × , (6.6)
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so that

λ(τ(κ)) = κ for all κ ∈ PI ×, λ(S) := 0 for all S ∈ [0, τ0] . (6.7)

It is this function that must be used when dealing with semi-liquids.
We now consider two special viscometric flows.

A. Poiseuille Flow.

The formulas of Sect.19 of [CMN] remain valid with the definition of λ given
by (6.6). In these formulas, R is the radius of the cylindrical tube through which
the flow takes place, f is the driving force, i.e. the force per unit volume that
produces the flow, and u : [0, R] −→ PI describes the axial speed of the flow as a
function of the distance from the axis of the tube. The formula (19.7) of [CMN]
reads

u(r) =
∫ R

r

λ(
uf

2
)du for all r ∈ [0, R] . (6.8)

We put

f0 :=
2τ0

R
and Rp :=

2τ0

f
. (6.9)

If f ≤ f0 and hence Rp ≥ R, then (6.8) and (6.7) give u(r) = 0 for all r ∈ [0, R],
showing that the material cannot move at all.

We now assume that f > f0 and hence Rp < R, and we put

up :=
∫ R

Rp

λ(
uf

2
)du . (6.10)

We then have u(r) = up for all r ∈ [0, Rp], showing that the material occupying
the cylinder of radius Rp moves rigidly at constant speed up. This cylindrical
part of the body is called the plug, so that up is the speed of the plug. The
formula (6.8) remains relevant when Rp ≤ r ≤ R.

Let Q : f0 + PI × −→ PI describe the volume discharge, i.e. the volume of
material passing through the tube per unit time, as a function of the driving
force that produces the flow. It follows from (19.9) of [CMN] and (6.7) above
that

Q(f) = π

∫ R

Rp

r2λ(
rf

2
)dr =

8π

f3

∫ Rf
2

τ0

S2λ(S)dS for all f ∈ f0 + PI × . (6.11)

This formula can be used to express the function λ in terms of the function Q.
In fact, we have

λ(S) =
1

4πRS2
Q̄•(

2S

R
) for all S ∈ τ0 + PI × , (6.12)

where Q̄ : f0 + PI × −→ PI is defined by

Q̄(f) := f3Q(f) for all f ∈ f0 + PI × . (6.13)
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The function Q may be amenable to determination by experiment. One can
then use (6.12) and (6.13) to calculate the rate of shear function λ and hence
the shear stress function τ .

B. Couette Flow.

Most of the formulas of Sect.17 of [CMN] remain valid with the definition of
λ given by (6.6). In these formulas R1 and R2, with R1 < R2 denote the radii
of the inner and outer cylinder between which the flow takes place, M is the
torque per unit height that produces the flow, and ω : [R1, R2] −→ PI describes
the angular speed of the flow as a function of the distance from the axis of the
cylinders. The angular speeds of the two bounding cylinders are

Ω1 := ω(R1) and Ω2 := ω(R2) . (6.14)

The formula (17.5) of [CMN] reads

ω(r)− Ω1 =
∫ r

R1

1
u

λ(
M

2πu2
)du for all r ∈ [R1, R2] . (6.15)

We put

M1 := 2πR1
2τ0 , M2 := 2πR2

2τ0 , Rp :=
√

M

2πτ0
. (6.16)

If M ≤ M1 and hence Rp ≤ R1, then (6.7) shows that the integrand in (6.15)
is zero and hence that ω(r) = Ω1 = Ω2 for all r ∈ [R1, R2], showing that
the material rotates rigidly at constant angular speed. If M ≥ M2 and hence
Rp ≥ R2, we have M

2πu2 ∈ τ0+ PI for all u ∈ [R1, r] in (6.15), so that the integrand
is nowhere zero and hence ω is strictly isotone. In this case, the results of Sect.17
of [CMN] apply without modification.

We now assume that M1 < M < M2 and hence that R1 < Rp < R2. Then
(6.7), (6.14), and (6.15) show that

Ω2 − Ω1 =
∫ Rp

R1

1
u

λ(
M

2πu2
)du (6.17)

and that ω(r) = Ω2 for all r ∈ [Rp, R2], which means that the the material
occupying the region between the cylinder of radius Rp and the outer cylinder
rotates rigidly at angular speed Ω2. This part of the body is again called the
plug, so that Ω2 is the angular speed of the plug. The formula (6.15) remains
relevant when R1 ≤ r ≤ Rp.

Let ∆ : [M1,M2] −→ PI describe the angular speed difference Ω2 − Ω1 as a
function of the torque per unit height needed to produce the flow. Then (6.17)
and (6.16) yield

∆(M) =
∫ M

2πR12

τ0

λ(S)
2S

dS for all M ∈ [M1,M2] . (6.18)
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This formula can be used to express the function λ in terms of the function ∆.
In fact, we have

λ(S) = 4πR1
2S∆•(2πR1

2S) for all S ∈ [τ0, (
R2

R1
)2τ0] . (6.19)

The function ∆ may be amenable to determination by experiment. One can
then use (6.19) to calculate the rate of shear function λ and hence the shear
stress function τ . The result may then be compared with the one obtained from
Poiseuille flow.

Remark 6. Assume that the shear stress function τ follows the simple rule

τ(κ) = τ0 + η0κ for some η0 ∈ PI × and for all κ ∈ PI × . (6.20)

Then, by (6.6), the rate of shear function λ satisfies

λ(S) =
1
η0

(S − τ0) for all S ∈ τ0 + PI (6.21)

and the integrals in the formulas (6.10), (6.11), and (6.17) can be evaluated
explicitly. The results are

up =
f

4η0
(R−Rp)2 , (6.22)

Q(f) =
πR4f

8η0

(
1− 4

3
(
2τ0

fR
) +

1
3
(
2τ0

fR
)4

)
for all f ∈ f0 + PI × , (6.23)

and
Ω2 − Ω1 =

τ0

2η0

(
(
Rp

R1
)2 − log

(
(
Rp

R1
)2

)
− 1

)
. (6.24)

The formula (6.23) is known, in the literature of rheology, as the Buckingham-
Reiner equation.
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[5] Nematic Semi-Liquids

0. Introduction.

This paper is a sequel to [4]. To understand the mathematical back-
ground used here as well as in [4], the reader should be familiar with the concepts,
terminology, and notation used in [3] and [FDS]. He should be comfortable, in
particular, with 3-dimensional linear spaces that are not inner-product spaces.
Given such a linear space T , we apply the concepts familiar from inner product
spaces to each of the members of Pos+(T , T ∗) (see Sect.6 of [3]).

For later use, we record the following result from linear algebra.

Proposition 1. Let G ∈ Pos+(T , T ∗) and N ∈ T be given. Then N satisfies
the three conditions

trN = 1, N2 = N, and GN ∈ Sym(T , T ∗) (0.1)

if and only if there is n ∈ T such that

N = n⊗Gn and (Gn)n = 1 . (0.2)

The third of the conditions (0.1) says that N is symmetric relative to
G and the second of the conditions (0.2) says that n is a G-unit vector. Of
course, if n is replaced by −n, then (0.2) remains valid, and n is determined by
the conditions (0.2) only to within a change of sign.

We use the following abbreviation:

Lin cT := {L ∈ Lin T | trL = c} when c = 0 or 1. (0.3)

For c := 0, (0.3) reduces to (4.4) of [N4].

1. The general model.

We consider here a specific model of a semi-liquid material element
in the sense of Def.1 in Sect.6 of [3]. We describe the element with the same
notation as is used in [3] and [4]. The underlying body element is described by
the given linear space T . The set G of possible configurations of the element is
characterized by Prop.9 in Sect.4 of [4].

We assume that the state space Σ of the element consists of triples as
follows:

Σ := {(G,H,N) ∈ G × Lin 0T × Lin 1T | GH,GN ∈ Sym(T , T ∗)} . (1.1)

The configuration of a given state (G,H,N) ∈ Σ is assumed to be specified by

Ĝ(G,H,N) := G. (1.2)
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As we shall see later in (1.11), the term H describes the rate of change of
configuration. The term N can be interpreted to be the probability distribution
of of alignments of rod-like molecules, as described in Sect.1.3.1 of [V]. For
liquid crystals, N may be measurable by optical devices. In view of Prop.1, the
condition N2 = N can be interpreted as stating that the rod-like molecules are
all aligned in the same direction.

We assume that the function Ŝ whose value at a given state gives the
intrinsic stress produced by that state is determined by a continuous function

T̂ : Lin 0T × Lin 1T −→ Lin T (1.3)

which satisfies, for all H ∈ Lin 0T , N ∈ Lin 1T ,

T̂(AHA−1,ANA−1) = AT̂(H,N)A−1 for all A ∈ UnimT , (1.4)

and

T̂(G−1H>G,G−1N>G) = G−1T̂(H,N)>G for all G ∈ G , (1.5)

Let σ := (G,H,N) ∈ Σ be given. It easily follows from (1.5) and (1.1) that
T̂(H,N)G−1 ∈ Sym(T ∗, T ) and hence, by (1.1), that it is meaningful to specify
that the value of Ŝ at σ be

Ŝ(σ) := T̂(H,N)G−1 . (1.6)

We assume that a continuous function

F̂ : Lin 0T × Lin 1T −→ Lin T (1.7)

is given which satisfies, for all H ∈ Lin 0T , N ∈ Lin 1T ,

F̂(AHA−1,ANA−1) = AF̂(H,N)A−1 for all A ∈ UnimT , (1.8)

F̂(G−1H>G,G−1N>G) = G−1F̂(H,N)>G for all G ∈ G , (1.9)

and
tr F̂(H,N) = tr (HN) . (1.10)

Proposition 2. Let a state σ0 := (G,H0,N0) ∈ Σ and a continuously differ-
entiable deformation process P of duration dP with Pi = G be given. Put

H̄ := P−1P• (1.11)

and consider the following initial value problem: find the continuously differen-
tiable function N̄ : IP −→ Lin 0T which satisfies

N̄• = F̂(H̄, N̄)− H̄N̄ and N̄(0) := N0 . (1.12)
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(We assume that the function F̂ is such that this initial value problem always
has exactly one solution N̄.) Then

(P(t), Ĥ(t), N̂(t)) ∈ Σ for all t ∈ IP . (1.13)

Proof: The values of PH̄ = P• all belong to Sym(T , T ∗). Using Prop.9 and
the differentiation rule (0.2) for determinants, both in [N4], it is easily seen that

trH̄ = 0 . (1.14)

i.e. that the values of H̄ belong to Lin 0T .
It follows from (1.10) and (1.12) that (trN̄)• = 0. Since N0 ∈ Lin 1T

and hence trN0 = 1, we conclude that trN̄ = 1, i.e. that the values of N̄ belong
to Lin 1T .

It is an easy consequence of (1.12) and (1.11) that

(PN̄)• = PF̂(H̄, N̄) . (1.15)

We put
N̄′ := P−1N̄>P . (1.16)

Since P−1H̄>P = H̄ by (1.11), it follows from (1.16), (1.15) and (1.9) that

(PN̄′)• = (N̄>P)• = ((PN̄)>)• = F̂(H̄, N̄)>P =

PF̂(P−1H̄>P,P−1N̄>P) = PF̂(H̄, N̄′) . (1.17)

Now, since (PN̄)(0) = GN0 ∈ Sym(T , T ∗), it follows from (1.16) that N̄′(0) =
N̄(0) = N0. Therefore, by (1.17), both N̄ and N̄′ are solutions of the same
initial value problem and hence equal. In view of (1.16), this means that the
values of PN̄ all belong to Sym(T , T ∗).

In view of Prop.2 it is meaningful to specify that the evolution function
ρ̂ have the value

ρ̂(σ0,P) := ((P(dP), H̄(dP), N̄(dP)) , (1.18)

when P is of finite duration dP.
It must be noted that the class of continuously differentiable deforma-

tion processes is not stable under continuation and hence does not satisfy the
axiom (P2) of Sect.7 of [3]. Hence we must enlarge the class of deformation
processes by admitting those that are continuously differentiable except at a fi-
nite set of times and whose derivatives have jump-discontinuities at these times.
This class satisfies the axioms (P1), (P2), and (E1) of Sect.7 in [3]. Moreover,
the formula (7.9) of [3] shows that there is exactly one way of extending the
evolution function given by (1.18) to processes in this enlarged class in such a
way that the axiom (E2) is also satisfied.
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Let A ∈ Unim T be given and define ι : Unim T −→ Perm Σ by

ιA(G,H,N) := (A>−1GA−1,AHA−1,ANA−1) for all (G,H,N) ∈ Σ .
(1.19)

Since A ∈ Unim T was arbitrary, it is then easy to show, using (1.4),
(1.6), and (1.8), that ι is an action of Unim T on Σ having the properties (8.8),
(8.9), and (8.10) of [3]. Hence, the symmetry group is the unimodular group
and the material element is semi-liquid in the sense of Def.1 in Sect.8 of [3].

Remark 1: Suppose that the function (1.3) is assumed to satisfy (1.4), but
(1.5) only for some G ∈ G instead of for all G ∈ G. It is then easy to prove,
using (1.4) and Prop.9 of [4], that (1.5) must in fact be valid for all G ∈ G. Of
course, an analagous statement applies to the function (1.7).

Remark 2: The assumption (1.4) is actually a consequence of (1.5) and hence
redundant. To see this, let G1,G2 ∈ G be given and put A := G−1

2 G1. Using
(1.5) with G replaced by G1 and then again with G replaced by G2 and H by
G−1

1 HG2, it is easily seen that (1.4) is valid for the given A.
Now, in view of Prop.9 in Sect.4 of [4], the set of all A of the form

A := G−1
2 G1 with G1,G2 ∈ G consists of all lineons in UnimT that are di-

agonable and have positive spectral values. It turns out that this set, together
with −1T , generates the entire unimodular group UnimT . (William Lawvere of
SUNY Buffalo informed me that his collegue Stephen H. Schanual has a proof of
this fact). Therefore (1.4) follows from (1.5). Similarly, (1.8) is is a consequence
of (1.9).

2. The special model.
We now consider the case when the functions T̂ and F̂ have the follow-

ing special form:

T̂(H,N) := (λ1 +
λ2

2
tr(HN))N +

λ3

2
H +

λ4

2
(HN + NH) (2.1)

and
F̂(H,N) := (µ + 1)(HN + NH)− (2µ + 1)tr(HN)N , (2.2)

valid for all (H,N) ∈ Lin 0T × Lin 1T . The numbers λ1, λ2, λ3, λ4, µ ∈ RI
are material constants. It is easy to verify that (1.4), (1.5), (1.8), (1.9), and
(1.10) are all satisfied when (2.1) and (2.2) hold.

As in the previous section, we now assume that an initial state
σ0 := (G,H0,N0) ∈ Σ and a continuously differentiable deformation process
P of duration dP with Pi = G are given and we use the notation (1.11). The
initial value problem of Prop.1 then becomes:

Find the continuously differentiable function N̄ : IP −→ Lin 0T which
satisfies

N̄• = µH̄N̄ + (µ + 1)N̄H̄− (2µ + 1)tr(H̄N̄)N̄ and N̄(0) := N0 . (2.3)
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The following result shows that one can reduce the initial-value problem
(2.3) to a simpler one if the initial value of N0 is idempotent, i.e. if N2

0 = N0.

Proposition 3. Assume that N0 is idempotent. In that case, the values of
the solution N̄ of the initial value problem (2.3) are all idempotent. Moreover,
there is a n0 ∈ T such that the solution of the initial-value problem: Find
n : IP −→ T , of class C1, such that

n• = µH̄n− (µ +
1
2
)((Pn)(H̄n))n and n(0) = n0 (2.4)

is related to the solution N̄ of the initial-value problem (2.3) by

N̄ = n⊗Pn . (2.5)

Proof: First, using Prop.1, we choose n0 ∈ T such that

N0 = n0 ⊗Gn0 and (Gn0)n0 = 1 (2.6)

and we consider the solution n : IP −→ T of the initial value problem (2.4). We
now define N̄ by (2.5). We then have

(Pn)H̄n = tr(H̄n⊗Pn) = tr(H̄(n⊗Pn) = tr(H̄N̄) = tr(N̄H̄).

Hence (2.4) gives

n• = µHn− (µ +
1
2
)(tr(N̄H̄))n. (2.7)

Using (2.5), it follows that

n• ⊗Pn = µH̄N̄− (µ +
1
2
)(tr(N̄H̄))N̄. (2.8)

It follows from (1.11) that P• = P•> = (PH̄)> = H̄>P and hence,by (2.5),

n⊗P•n = n⊗ (H̄>P)n = (n⊗Pn)H̄ = N̄H̄. (2.9)

Using (2.7), we see that

n⊗Pn• = µ(n⊗PH̄n)− (µ +
1
2
)(tr(N̄H̄)(n⊗Pn)

Therefore, since PH̄ = P• by (1.11), it follows from (2.9) and (2.5) that

n⊗Pn• = µN̄H̄− (µ +
1
2
)(tr(N̄H̄)N̄. (2.10)

Differentiating (2.5) using the product rule gives

N̄• = n• ⊗Pn + n⊗P•n + n⊗Pn•. (2.11)
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Substituting (2.8), (2.9), and (2.10) for the three terms on the right side of
(2.11), we easily sees that N̄ does indeed satisfy the differential equation (2.3).

Remark 3: Prop.3 shows that one could reduce the size of the state space Σ
by adding the condition N2 = N in (1.1) and still use the differental equation
(1.12) to define the evolution function σ̂ by (1.18). In this case, the special
model becomes a frame-free description of a theory first introduced in 1960 by
J.L. Ericksen with the name “Theory of incompressible anisotropic fluids”. (See
Sects. 127, 128, and 129 in [NLFT] and the literature cited there.) In fact,
this is a theory of semi-liquid material elements with no isotropic states in the
sense of the definition given in Sect.8 of [3], so that the term “anisotropic fluid”
is not entirely inappropriate, even though it is only a semi-fluid in the present
terminology. We note that (2.1), with N2 = N, is a frame-free version of the
constitutive equation (127.34) in [NLFT].

We now consider the case when the given deformation process P in
Prop.2 is obtained from a motion

M : IP :−→ Lis (T ,V)

in a frame-space F with translation V space as described in Sect.4 of [N3]. We
have

P := M>M : IP −→ G . (2.12)

We assume that M is differentiable. Its derivative is given by

M• = LM, (2.13)

where the value of L : [0, dP] −→ Lin (V) at time t gives the velocity gradient of
the body at the location of the material element at that time. Recall that the
values of the symmetric and skew parts of L, i. e.

D :=
1
2
(L + L>) , W :=

1
2
(L− L>) , with L = D + W (2.14)

give the corresponding stretching and spin, respectively. By (4.7) in [N3] and
using (2.12) and the definition (1.11) above, we find

H̄ = P−1P• = 2M−1DM. (2.15)

Let N̄ be the solution of the initial value problem (1.12) of Prop.2. A
spatial counterpart N̄ is given by

V := MN̄M−1 : IP −→ SymV ∩ Lin 1V . (2.16)

Since, by Prop.2, PN̄ has values in Sym(T , T ∗) it easily follows from (2.12) that
the values of V are indeed symmetric. These values have trace 1 because the
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values of N̄ have trace 1. An easy calculation, using the product rule and (2.13)
shows that

V• = LV −VL + MN̄•M−1. (2.17)

Assuming that the differential equation (2.3) for the special model is satisfied,
we substitute (2.3) for N̄• in (2.17), observe (2.15) and (2.16), and obtain the
following differential equation for V

V• = LV −VL + 2µDV + 2(µ + 1)VD− 2(2µ + 1)tr(DV)V . (2.18)

Since L = D+W by (2.14), this differential equation can also be written in the
form

V• + VW −WV = 2(µ + 1)(DV + VD)− 2tr(DV)V . (2.19)

Consider now the case when the values of N̄ are idempotent, as de-
scribed in Prop.3. In view of (2.16), the values of V are then also idempotent
and we have V = d⊗d, where d : dP :−→ V, in view of (2.12), is related to the
n of Prop.3 by

d := Mn. (2.20)

The values of d are unit vectors because trV = d • d = 1. Using the product
rule and (2.13), we obtain from (2.20) that

d• = Mn• + M•n = Mn• + LMn = Mn• + Ld . (2.21)

substituting (2.4) for n• in (2.21) and using (2.12), (2.15)2, and (2.14), a short
calculation gives the following differential equation for d:

d• −Wd = (2µ + 1)(Dd− (d •Dd)d). (2.22)

Remark 4: The equation (2.22) here is the same as (127.36) in [NLFT], with

λ replaced by (2µ + 1) and
◦
d by (127.31)1 in [NLFT]. It is the coordinate-

free version of the equations first proposed be J.L. Ericksen as mentioned in
Remark 3.

3. Monotonous Processes.
We first consider the general model of Sect.1 and assume that a configu-

ration G ∈ G and a monotonous process P of exponent E ∈ Lin 0T with Pi = G
are given (see Sect.1 of [4]). By the Representation Theorem of Monotonous
Processes in Sect.1 of [N4] we then have

P = L>GL : IP −→ G (3.1)

with
L(t) := exp(tE) for all t ∈ IP (3.2)

and hence
L• = LE = EL . (3.3)

As in the previous section, we also assume that N0 ∈ Lin 1T is given and we
observe the definition (1.11) of H̄.
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Proposition 4. Let N̄ be the solution of the initial value problem (1.12).Then

K̄ := LN̄L−1 (3.4)

is the solution to the initial value problem

K̄• = F̂(G−1E>G + E, K̄)− (G−1E>GK̄ + K̄E), K̄(0) = N0 . (3.5)

Proof : It follows from (3.1), the product rule, and (3.3) that

P• = (L•)>GL + L>GL• = L>(EG + GE)L ,

and hence, by (3.1) and (1.11), that

H̄ = (L>GL)−1P• = L−1(G−1E>G + E)L . (3.6)

Using the condition (1.8) on F̂ with A := L(t) for every t ∈ IP, it follows from
(3.4) and (3.6) that

F̂(H̄, N̄) = L−1F̂(G−1E>G + E, K̄)L . (3.7)

By (3.4) we have K̄L = LN̄. Differentiating this equation using the product
rule and (3.3), we find that

K̄•L + K̄EL = ELN̄ + LN̄• = EK̄L + LN̄•. (3.8)

Using (1.12), (3.6), (3.7) and (3.4), a short calculation shows that the desired
result (3.5) is valid.

It follows from the conclusion (1.13) of Prop.1 and from (1.1) that the
values of PN̄ belong to Sym(T , T ∗), i.e. that PN̄ = (PN̄)>. Using (3.1) and
(3.4), it follows that

GK̄ = K̄>G. (3.9)

From now on we use G to endow T with the structure of an inner-
product space, so that T ∗ becomes identified with T via the isomorphism G.
Then Sym (T , T ∗) becomes identified with Sym T := Sym (T , T ), which is a
subspace of Lin T . The formulas (3.9), (3.6) and (3.5) then remain valid when
G is replaced by the identity 1T . Therefore K̄ has values in Sym T and (3.6)
reduces to

H̄ = L−1(E> + E)L. (3.10)

Using (1.9) for the particular G given in this section, we see that
F̂(H,N) ∈ Sym T when H,N ∈ Sym T . Putting

SymcT := Lin cT ∩ Sym T when c := 0 or 1, (3.11)
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we see that we can replace F̂ in (3.5) by an adjusted mapping

F̂G : Sym0T × Sym1T −→ Sym0T (3.12)

and hence reduce (3.5) to

K̄• = F̂G(E> + E, K̄)− (E>K̄ + K̄E), K̄(0) = N0. (3.13)

It follows from (1.8) that F̂G satisfies, for all H ∈ Sym0T , N ∈ Sym1T ,

F̂G(QHQ>,QNQ>) = QF̂G(H,N)Q> for all Q ∈ OrthT . (3.14)

By (3.2) we have L(0) = 1T and hence, by (3.10),

H0 := H̄(0) = E> + E . (3.15)

Proposition 5. Put
σ0 := (G,H0,N0). (3.16)

Then

ιL(t)ρ(σ0,P[0,t]) = (G,E> + E, K̄(t)) for all t ∈ PI , (3.17)

and σ0 is a monotonous state if and only if K̄(t) has the constant value N0, i.e.,
when

F̂G(E> + E,N0) = (E>N0 + N0E) . (3.18)

Proof: It follows from (1.18), (3.1), (3.10), and (3.4) that

ρ(σ0,P[0,t]) = (P(t), H̄(t), N̄(t)) =

= (L(t)>GL(t), L(t)−1(E> + E)L(t), L(t)−1K̄(t)L(t)) . (3.19)

Using (1.19) with A := L(t) for every t ∈ PI , we conclude that (3.17) is valid.
The condition for σ0 to be a monotonous state is in accord with Def.2 of Sect.2
in [N4].

We now consider the case of the special model described in Sect.2, i.e.
the case when T̂ and F̂ have the forms (2.1) and (2.2). Using (2.2) and recalling
that K̄ has values in Sym T , we easily see that the initial value problem (3.13)
reduces to

K̄• = CK̄ + K̄C> − 2tr(CK̄)K̄ , K̄(0) = N0 , (3.20)

where
C := (µ + 1)E + µE> . (3.21)

It turns out that this initial value problem can be solved explicitly:
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Proposition 6. The solution of the initial value problem (3.20) is

K̄ =
JN0J>

tr(JN0J>)
, (3.22)

where J : PI −→ Lin T is defined by

J(t) := exp(tC) for all t ∈ PI . (3.23)

Proof: It is clear from (3.23) that

J• = CJ = JC. (3.24)

We now define K̄ by (3.22) and put

τ := tr(JN0J>), (3.25)

so that
τK̄ = (JN0J>) . (3.26)

By the product rule, (3.24), and (3.26) we have

(JN0J>)• = J•N0J> + JN0J•
> = τ(CK̄ + K̄C>) , (3.27)

and hence, by (3.25),

τ• = τ tr(CK̄ + K̄C>) = 2τ tr(CK̄) . (3.28)

Applying the product rule to (3.26) and observing (3.27), we see that

τ•K̄ + τK̄• = τ(CK̄ + K̄C>),

which, by (3.28), shows that (3.20) is valid.

4. Monotonous states.

We assume that a configuration G ∈ G is given and, as after (3.9), we
use G to endow T with the structure of an inner product space. Also, we let an
exponent E ∈ Lin 0T be given.

Proposition 7. Let H ∈ Sym0T , N ∈ Sym1T be given. Then

σ := (G,H,N). (4.1)

is a monotonous state of exponent E (in the sense of Def.2 of [N4]) if and only if

H = E> + E (4.2)
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and
F̂(E> + E,N) = (E>N + NE) . (4.3)

For the special model, (4.3) reduces to

CN + NC> − 2tr(CN)N = 0, (4.4)

where
C := (µ + 1)E + µE> (4.5)

Proof : Apply Prop.5 of the previous section, with σ0 := (G,H0,N0) replaced
by σ := (G,H,N), to the monotonous process P of infinite duration, of exponent
E, and initial configuration G. Comparing (2.2) of Def.2 [4] with (3.17), we see
that σ is a monotonous state if and only (4.2) holds and K̄ has the constant
value N. By (3.13), this is the case if and only if (4.3) is valid. For the special
model, it follows from (3.20) and (3.21) that (4.3) is equivalent with (4.4) and
(4.5).

From now on, we consider only the special model. In that case, finding
the monotonous states amounts to solving the eqation (4.4) for N with C defined
by (4.5).

Proposition 8. Let b, c be spectral vectors of C such that b • c 6= 0. Then
(G,E> + E,N) is a monotonous state when

N :=
b⊗ c + c⊗ b

2b • c
. (4.6)

Proof : Let β and γ be the spectral values of C corresponding to b and c,
respectively, so that

Cb = βb, Cc = γc. (4.7)

By (4.6) we then have

CN =
βb⊗ c + γc⊗ b

2b • c
. (4.8)

Since tr(b ⊗ c) = tr(c ⊗ b) = b • c, we see that from (4.8) tr(CN) = β + γ.
Since (CN)> = NC>, a short calculation using (4.8) shows that (4.4) is indeed
valid.

Remark 5: It seems likely that for every monotonous state (G,E> + E,N),
N must be of the form (4.6).

In the case when b = c, Prop.8 reduces to:

Corollary. Let b be a spectral unit vector of C, so that b • b = 1. Then
(G,E> + E,b⊗ b) is a monotonous state.

We now assume that C is diagonable, which means that there is a basis
of T all of whose terms are spectral vectors. (See Sect.82 of [FDS].)
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Proposition 9. Denote the largest spectal value of C by β and assume that
the multiplicity of β is 1. Let b be a spectral unit vector for β. Then
(G,E> + E,b ⊗ b) is the only stable monotonous state with exponent E and
hence uni-monotonous (in the sense of Def.3 and Def.4 of [4]).

Proof : We use the notations

3] := {1, 2, 3} and 3] © 3] := {(i, k) ∈ 3] × 3] | i ≥ k} . (4.9)

We choose a basis (b1,b2,b3) with b1 := b such as

Cbi = γibi for all i ∈ 3] with γ1 := β and β > γ2, γ3 , (4.10)

The family ( 1
2 (bi⊗bk +bk⊗bi) | (i, k) ∈ 3]©3]) is a basis of SymT . Therefore,

given N0 ∈ Sym0T , we can determine a family (Ni,k | (i, k) ∈ 3]© 3]) such that

N =
∑

(i,k)∈3]©3]

1
2
Ni,k(bi ⊗ bk + bk ⊗ bi). (4.11)

In view of (3.23), (b1,b2,b3) is also a basis of spectral vectors of J(t) for every
t ∈ PI and we have

J(t)bi = etγibi for all i ∈ 3] and all t ∈ PI . (4.12)

It follows from (4.11) and (4.12) that

J(t)N0J(t)> =
∑

(i,k)∈3]©3]

1
2
et(γi+γk)Ni,k(bi ⊗ bk + bk ⊗ bi) ,

which, separating the (1, 1)-term, may be rewritten as

J(t)N0J(t)> = e2tβ
N1,1b⊗ b +

∑
(i,k)∈3]©3] \{(1,1)}

1
2
e−t(2β−γi−γk)Ni,k(bi ⊗ bk + bk ⊗ bi)

. (4.13)

Since 2β−γi−γk > 0 for all (i, k) ∈ 3]©3] with (i, k) 6= (1, 1),we conclude that

lim
t→∞

e−2tβ(J(t)N0J(t)>) = N1,1b⊗ b (4.14)

and hence
lim

t→∞
e−2tβ tr(J(t)N0J(t)>) = N1,1b • b = N1,1 . (4.15)

Assume now that N1,1 6= 0. In view of (3.22), it follows from (4.14) and (4.15)
that

lim
t→∞

K̄(t) = b⊗ b .
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Now, the set of all N0 ∈ Sym0T such that N1.1 6= 0 is an open dense set in
Sym0T and hence a neighborhood of b ⊗ b. Therefore (G,E> + E,b ⊗ b)
is a stable monotonous state. The set of all N0 ∈ Sym0T such that
N1.1 = 0 has an empty interior and hence cannot include the neighborhood of
any member of Sym0T . Hence (G,E>+E,b⊗b) is the only monotonous state of
exponent E.

Remark 6: If the multiplicity of the largest spectral value is stricly greater
than 1, all monotonous states are unstable.

Remark 7: If the assumption that C is diagonable is dropped, then Prop.9
may still be valid in some cases. In others, there will be no stable monotonous
states at all.

4. Viscometric functions.

In this section we consider only the special model. We assume that a
state σ := (G,H,N) of simple shearing in the sense of Def.5 in [N4] is given.
As in the previous section, we use G to endow T with the structure of an inner-
product space. In view or Prop.7 we then have

H = E> + E with E2 = 0 but E 6= 0 . (5.1)

Making use of Prop.7 in Sect.3 of [4], we choose an orthonormal basis
e := (e1, e2, e3) of T such that the matrix of E relative to e is of the form

[E] := κ

 0 0 0
1 0 0
0 0 0

 , where κ ∈ PI × . (5.2)

Here and from now on we denote the matrix of any A ∈ Lin T relative
to the basis e by [A]. By (5.2) and (4.5) we have

[C] := κ

 0 µ 0
µ + 1 0 0

0 0 0

 . (5.3)

We consider only the case when

µ > 0 or µ < −1 . (5.4)

An easy calculation shows that the spectrum of C is

SpecC = {κγ, 0,−κγ} with γ :=
√

µ(µ + 1) . (5.5)

It follows that C is diagonable and that κγ is its largest spectral value, which
has multiplicity 1. Hence Prop. 9 applies and yields:
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Proposition 10. The state (G,H,N) is a state of simple shearing if and only
if one can determine κ ∈ PI × and an orthonormal basis e of T relative to G
such that H = κH1 and

[H1] :=

 0 1 0
1 0 0
0 0 0

 , [N] :=

 α2 αβ 0
αβ β2 0
0 0 0

 , (5.6)

where

α :=
√

µ

2µ + 1
, β :=

√
µ + 1
2µ + 1

. (5.7)

Proof : (5.6)1 follows from (5.1) and (5.2). An easy calculation shows that a
unit spectral vector b for the spectral value κγ has the component-column

[b ] :=

α
β
0

 (5.8)

and hence, since H = b⊗ b by Prop.9, it follows that (5.6)2 holds.

We now use the considerations of Sect.4 of [4] to determine the visco-
metric functions for a material element described by the special model.

We assume that a configuration G is given and, as before, use it to
endow T with the structure of an inner product space. Let an orthonormal
basis e of T be given. Again, we denote the matrix of any A ∈ Lin T relative
to the basis e by [A]. Let κ ∈ PI × be given and let H1 and N be the lineons
whose matrices relative to e have the form (5.6). Then, by Prop.9, the state

ωκ := (G, κH1,N) (5.9)

is a state of simple shearing. Hence the Assumption I in Sect.4 of [4] is satis-
fied. Obviously, ωκ depends continuously on κ and converges to (G,0,N) as κ
goes to 0. Hence the Assumption II in Sect.4 of [4] is also satisfied.

In view of (1.6) and (5.9), the intrinsic stress Sκ := Ŝ (ωκ) produced
by the state ωκ satisfies SκG = T̂(κH1,N), which, by (2.1), gives

SκG = λ1N + κ
λ3

2
H1 + +

λ2

2
tr(H1N)N +

λ4

2
(H1N + NH1)

 . (5.10)

Since the matrices of H1 and N are given by (5.6) and (5.7), the equation (5.10)
can be used to calculate the matrix of SκG. The result is

[SκG] =

σ1(κ) τ(κ) 0
τ(κ) σ2(κ) 0

0 0 0

 , (5.11)

where
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τ(κ) = λ1αβ + κ
(λ3

2
+ λ2α

2β2 +
λ4

2
) , (5.12)

σ1(κ) = λ1α
2 + καβ

(
λ2α

2 + λ4

)
, (5.13)

σ2(κ) = λ1β
2 + καβ

(
λ2β

2 + λ4

)
. (5.14)

Comparing (5.11) with (4.15) and (4.16) in [4], we see that (5.12),
(5.13), and (5.14) are indeed the viscometric functions for the special model of
nematic semi-liquids. Hence they can be used to analyse the behavior of nematic
semi-liquids for all viscometric flows and, in particular, for Poiseuille flow and
Couette flow as in Sects. 6 A and 6 B of [4]. The shear stress function τ given
by (5.12) is of the form (6.20) in Remark 6 in [4] with

τ0 = λ1αβ and η0 =
λ3

2
+ λ2α

2β2 +
λ4

2
. (5.15)

The vector e1 always gives the flow-direction in viscometric flows. By
(5.8), α is the inner product of b with e1 and hence the cosine of the angle
between the flow direction and the alignment direction.

Remark 8: The equations (5.12), (5.13), and (5.14) reproduce J.L.Ericksen
results for his anisotropic fluids, as given by (129.6) in [NLFT]. (There is a small
error in (129.6), λ1 in the first line should be replaced by λ2.)

Remark 9: Recall that we have assumed that the material constant µ of (2.2)
satisfies (5.4). The case when −1 ≥ µ ≥ 0 remains to be investigated. In this
case, I conjecture that there is no state of simple shearing and, if the material ele-
ment is subjected to a simple shearing process P, the familiy (τt | t ∈ PI ) defined
by (2.4) in [N4] will become asymptotically periodic rather than converge.
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