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1 Objectives

• Defined and look at properties of orthogonal matrices.

2 Summary

• Recall:

Theorem The columns of m× n matrix Q form an orthonormal set if and only if
QTQ = In.

• The above leads to an interesting idea. Recall that we can view the columns of a
matrix as the result of where the standard basis gets sent to under viewing that
matrix as a linear transformation. An interesting kind of linear transformation is
one in which the standard basis gets sent to an orthonormal set (as the standard
basis itself is orthonormal, the hope is that this kind of transformation will preserve
a lot of geometric structure).

We call a square n×n matrix whose columns form an orthonormal set a orthogonal
matrix.

Theorem Q is orthogonal if and only if QT = Q−1.

Example Rotation matrices are orthogonal

• Geometrically, orthogonal matrices distort space is very nice ways. Namely, they
preserve lengths. This property is called being an isometry.

Theorem If Q is a n× n matrix then TFAE:

1. Q is orthogonal.

2. (Qx) · (Qy) = xẏ for every x, y ∈ Rn

3. ||Qx|| = ||x|| for every x ∈ Rn (this is the property that says Q is an isometry).

Proof. This proof is omitted. It is theorem 5.6 in the book.
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Example

• Let’s change gears slightly and look at orthogonal properties of subspaces. Let us
recall that there are two very important subspaces associated with a m× n matrix
A:

– The column space: col(A) ⊆ Rm. This is the range of A viewed as a linear
transformation.

– The null space: null(A) ⊆ Rn. This is the kernel (the vectors sent to 0) of A
viewed as a linear transformation.

There are two other subspaces which are really these in disguise:

– The row space: row(A) ⊆ Rn. This is col(AT ).

– The left null space: This is {x ∈ Rm | xA = 0 }. It is also null(AT ) (can you
see why?).

• The row space and null space are the same type of object; they’re both subspaces
of Rn. We expect there to be some type of relationship between the two, and there
indeed is.

We already know that the dimensions of the two add up to n by the rank-nullity
theorem (and the fact that the dimension of the row space is always equal to the
dimension of then null space). There is actually a more fundamental relationship.

• If W is a subspace of Rn then the orthogonal complement of W , W⊥ (pronounced
‘W perp’) is the set of vectors which are orthogonal to vectors in W :

W⊥ = {x ∈ Rn | ∀w ∈W.x ·w = 0 }

Theorem Let W be a subspace of Rn. Then:

– W⊥ is a subspace of Rn.

–
(
W⊥

)⊥
= W .

– W ∩W⊥ = ∅ (that is, the only set in common of each is 0).

– W = span(w1, . . . ,wk) then v ∈W⊥ if and only if v ·wi for all 1 ≤ i ≤ k.

Proof.

2



Example

• We can now finally give the fundamental relationship between the null space and
the row space of a m × n matrix A (and therefore, the relationship between the
column space and left null space as they are the same thing but for the matrix AT ).

Theorem If A is a m× n matrix then:

(row(A))
⊥

= null(A)

Proof.

Example

• Let W be the subspace of R5 spanned by:

w1 =


1
−3
5
0
5

 w2 =


−1
1
2
−2
3

 w3 =


0
−1
4
−1
5


Get a basis for W⊥.
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• In another class you might have explored the idea of a projection of one vector onto
another. Let us explore that idea

• We can see the projection of v onto u is given by:

proju v =

(
u · v
||u||2

)
u

• We can extent this idea to the projection of a vector onto a space.

Let v be a vector of Rn and W a subspace and {u1, . . . ,uk} is an orthonormal basis
for W then we say the orthogonal projection of v onto W is defined to be:

projW (v) = proju1
(v) + · · ·+ projuk

(v)

A worry, of course, is that this might depend on the basis. We will see that it does
not.
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