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1 Objectives

• Begin the discussion of similarity and diagonalization.

• Explore a few more properties of eigenvalues/eigenvectors to aid in exploration of
diagonalization.

• Get necessary and sufficent conditions for a matrix to be diagonalized.

2 Summary

• For now though, we will explore another equivalence relation on matrices. We have
explored one already: having the same reduced row echelon form. This preserves
lots of nice properties, like invertibility, rank, nullity, and even the row space and
the null space (but not the column space, although it will preserve the dimension
of this space, which is exactly the rank).

The bad thing of this equivalence relation is it does not preserve most spectral
properties. That is, elementary row operations in general do change the spectrum
or eigenvectors (although it does preserve some properties of the spectrum; for
example elementary row operations will never introduce/eliminate a 0 eigenvalue).
It also does not preserve the determinant (although it does preserve the nonzero-ness
of it).

• We say a matrix B is similar to (or conjugate to) matrix A if there is some
invertible matrix P such that:

B = P−1AP

We notate this as A ∼ B.

Example

Theorem For any A,B square matrices:

– A ∼ A.

– If A ∼ B then B ∼ A.

– If A ∼ B and B ∼ C then A ∼ C.

• Like the equivalence relation of row equivalence, similarity preserves lots of proper-
ties of a matrix. Let’s write them down:

Theorem If A and B are n× n matrices where A ∼ B then:
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– det(A) = det(B)

– A is invertible if and only if B is.

– A and B have the same rank.

– A and B have the same characteristic polynomial.

– A and B have the same eigenvalues.

Proof.

• This theorem gives us some easy ways to determine that matrices are not similar.

Example The following matrices are not similar:(
1 2
2 1

) (
2 1
1 2

)

• We have seen that having upper triangular and diagonal matrices helps a lot with
computations. To that end we make the following definition: a matrix A is diago-
nalizable if there is some diagonal matrix B such that A ∼ B.

• This might seem artificial, but it is of computational significance. For example,
suppose A was diagonalizable, and we wanted to calculate A100 (which is actually
not the most uncommon thing to do. We might even want to look at limAn as
n→∞!). Well, if A is diagonalizable by B then there is P such that A = P−1BP .
Then:

A100 = (P−1BP )(P−1BP ) · · · (P−1BP )︸ ︷︷ ︸
100

But, this is just:
A100 = P−1B100P

But raising a diagonal matrix to the 100 power is just raising the diagonal entries
by that power!

• If A is diagonalizable, then the matrix B must have the eigenvalues of A in its
diagonal entries. Can you see why?

Theorem If a matrix A is diagonalizable then it’s determinant is the product of
its eigenvalues.
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• We will explore when matrices are diagonalizable. This is related to properties
regarding the spectrum of a matrix. Here’s a helpful property:

Theorem Let x1, . . . ,xm be eigenvectors corresponding to eigenvalues λ1, . . . , λm.
Then x1, . . . ,xm is linearly independent.

Proof. Omitted for class. It’s in the book at the end of 4.3.

So, the big takeaway here is that eigenvectors that come from different eigenvalues
are linearly independent. So the eigenspaces corresponding to each of these are
these disjoint (except for 0) subspaces of Rn.

Theorem If A has n distinct eigenvalues then there is a basis for Rn from the
eigenvectors of A.

Proof.

Remark This is not an if and only if. The converse is false because there still could
be a basis. We can strengthen the two previous theorems:

Theorem Let A be an n × n matrix. Let λ1, . . . , λm be eigenvalues, and like Bm

be bases, where basis Bi is a basis for the eigenspace of λi. Then
⋃
B1, . . . , Bi is

linearly independent.

Proof. Omitted for class. It is 4.24 in the book.

Theorem Let A be a n × n matrix with k many distinct eigenvalues. There is a
basis for eigenvectors of Rn if and only if the sum of the geometric multiplicity of
each eigenvalue is n.

Proof. The proof is really rather the same. Each eigenvalue comes as associated with
some l-dimensional subspace (the eigenspace). This has a basis of l eigenvectors. If
the sum of the geometric multiplicity is n then the sum of the dimensions of all of
these vector spaces is n. Therefore we can choose a basis of eigenvectors by choosing
a basis for each eigenspace and then putting them together. By the above theorem,
they are linearly independent. As there are n of them, they must span the entire
space of Rn.

• The purpose for all this exploration is currently unclear, but here is a theorem that
will relate what we have just discovered to diagonalizability:

Theorem A matrix A is diagonalizable if and only if it has n linearly independent
eigenvectors. Moreover, if P−1AP = D then

– The diagonal of A is just the eigenvalues of A

– P is the collection of eigenvectors in the same order.
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Theorem If A is a n × n matrix with n eigenvalues with multiplicity, then the
following are equivalent:

1. A is diagonalizable

2. Rn has a basis of eigenvectors of A.

3. Each eigenvalue of A has algebraic multiplicity equal to its geometric multi-
plicity.
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