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1 Objectives

• Talk about subspaces of Rn.

• Prove results about special subspaces from a matrix.

• Define dimension and basis.

• We have actually already encountered some subspaces without mentioning it explicitly. Let A be a
m× n matrix.

– The row space of a matrix A is the subspace (of Rn) spanned by the rows of the matrix. We
denote this subspace row(A).

– The column space of a matrix A is the subspace (or Rm) spanned by the columns of the matrix.
We denote this subspace col(A).

Example What is the row space and column space of I?

Example Is [1, 1] in the row space of (
3 4
1 2

)
Theorem Let A be a matrix. Suppose that A is row equivalent with a matrix B. Then

row(A) = row(B)

Proof. Bookkeep the row operations of obtaining B from A. These tell you that any row B can be
written as a linear combination of rows of A, and therefore (by a homework problem), span(B) ⊆
span(A). But, row operations are reversible; so we can do a similarly thing starting with B and getting
A and there span(A) ⊆ span(B) follows.

• Let A be an m × n matrix. The null space (also called the kernel) is the set of all solutions to the
homogeneous equation represented by A. That is:

null(A) = {x ∈ Rn | Ax = 0 }

Here, is non-trivial that this is a subspace.

Theorem null(A) is a subspace

Proof. This is theorem 3.21 in the book. We will prove it in class.

• A basis for a subspace V is a set of vectors which spans the set V and is linearly independent. As it
turns out, all vector spaces haves a basis (in fact, most have infinitely many).

Example The standard unit vectors e1, . . . , en ⊆ Rn is a basis. They clearly span the set as [a1, . . . ,an] =
a1e1 + · · ·+ anen. Moreover, the are all linearly independent (why?).

Example The set of vectors {[1, 1], [2, 2]} span a line, but they are not a basis for the line since they
are not linearly independent.
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Example If I wanted to find a basis for the line spanned by {[1, 1], [2, 2]} I would just find a linear
dependency (like [1, 1] = 1/2[2, 2]) and then remove the vector from the set. So the set {[2, 2]} is a
basis for the line.

Example Suppose I wanted to find a basis for the row space of this matrix:
1 1 3 1 6
2 −1 0 1 −1
−3 2 1 −2 1
4 1 6 1 3


clearly, the row vectors span the row space since the row space is defined to be the span of the row
vectors. So we need to only determine if the vectors are linearly dependent. If we row reduce the
matrix, all the rows are still in the row space of the original matrix. Moreover, if we row reduce to
rref the rows are linearly independent (why?). Therefore, row reducing will give us a basis for the row
space. We can see when we row reduce we get:

1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0


Thus the following set is a basis for the row space:


1
0
1
0
−2

 ,


0
1
2
0
3

 ,


0
0
0
1
4




Remark So in order to find a basis for a subspace spanned by some set, you can put the vectors are
row and reduce to (reduced) row echelon form. The non-zero rows of this matrix are then a basis.
Alternatively, you can iteratively write one as a linear combination of the rest and then remove that
vector, until you get to a linearly independent set.

• In linear algebra, we often want to capture invariants. That is, things that stay the same even when
you alter them. We know lots of them: for instance, the row space is invariant under row operations
(so if you do row operations, the row space does not change).

Along with invariants are particular parameters or characteristics. For instance, we know (sort of-we
haven’t prove it) that the number of nonzero rows in a matrix’s row echelon form does not dependent
on the row echelon form you chose. Therefore, this is a parameter that we called rank.

Now we will learn a new parameter called dimension. The definition will not make sense (as with rank)
until we prove a certain invariance.

• The dimension of a subspace is the size of a basis. We denote the dimension of V by dimV

Theorem If V is a subspace of Rn, then any two bases of V have the same number of vectors.

Proof. This is theorem 3.23 in the book. We will prove it in class.

Remark What should the dimension of the trivial subspace be?

• Intuitively, the dimension is exactly what we want to capture. 1 dimensional subspaces of Rn are lines
since their basis is of size 1, so it’s all vectors that are cv. 2 dimensional objects are like planes, as it’s
vectors like sv+ tu. 3 dimensional objects are...well, whatever they are called, which is a 3 dimensional
hyperplanes, but that’s not so important. Just like planes look like a copy of R2 in R3, so does a 3
dimensional subspace look like a copy of R3 in higher dimensions, like R4, it’s just harder to picture.

• Theorem The row and column space of a matrix have the same dimension

Proof. Let A be the matrix. Clearly dim(row(A)) = dim(row(A′)) where A′ is in rref. dim(row(A′))
is the number of nonzero rows of the matrix which, by the many connections we’ve made, is the same
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as the rank of the matrix (i.e. the number of zero rows is the same as the number of leading entries of
A′).

Now, although col(A′) 6= col(A) they have a fundamental relationship: A is linearly independent if and
only if A′ is, and moreover, the dependency is demonstrated in the same way (e.g. if the first column
is a multiple of the second in A′ then it is so in A as well).

We now make a claim that a moments thought makes clear: in A′ all the columns without leading
entries can we written as a linear combination of columns with leading entries. Why? Because all
the columns with leading entries are elements of the standard basis of Rm and all the columns not
containing leading entries only have nonzero components in places that have a leading entry!

Therefore, the dimension of A′ (which as noted is the same as the dimension of A) is equal to the number
of leading entries, which is the rank, which is the number of nonzero rows, which is the dimension of
the row space! Wow, cool.

• We can then give an equivalent meaning for rank (which actually is not the last one we will see) which
is more important when thinking about matrices rather than systems: The rank of a matrix is the
dimension of the row and column spaces.

• What can you say about the connection between rank(A) and rank(AT )?

• With this new version of rank, one would expect that we could say more about The Rank Theorem,
and rephrase it in this new matrix-centric way. You’d be right.

With systems there is a tug of war: The more the rank has, the less free variables there will be. What
is the tug of war between with regards to the dimension of the column and row spaces?

• The nullity of a matrix is the dimension of its null space.

Theorem If A is m× n then:
rank(A) + nullity(A) = n

Proof. View A as a homogeneous system of equations. Then if the rank of A is r then there are n− r
total free variables by the rank theorem. The solution set of this system is exactly the nullspace, and
as there are n− r free variables, it has dimension n− r. Therefore, the nullity is n− r, and as we knew
the rank is r, which makes the sum n.

• We can now add some things to the fundamental theorem of invertible matrices:

Theorem (The fundamental theorem of invertible matrices version 2 (thm 3.27)) If A is n × n then
TFAE:

1. A is invertible.

2. rank(A) = n.

3. nullity(A) = 0

4. The column space of A is a basis for Rn.

5. The row space of A is a basis for Rn.

Proof. This is proved in the book with lots of other results filled in too. You should try to work out
the proofs by yourself as practice.
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