
Day 6

Tuesday May 29, 2012

1 Basic Proofs

We continue our look at basic proofs. We will do a few examples of different methods of proving.

1.1 Proof Techniques

Recall that so far in class we have made two main distinctions: indirect and direct proofs. We’ve been using
the “law of the excluded middle” frequently too. Now, we will never make explicit mention to this.

But, we still make a distinction between direct and indirect proofs. Direct proofs have the following
characteristics:

• If you are proving an implication, you assume the hypotheses and prove the conclusion.

• If you are proving a universal statement, you take an arbitrary element in the domain of discourse,
and prove the statement for that element.

• If you are proving an existential statement, you prove a the statement for a specific element of the
domain of discourse.

Often, direct proofs are hard to do, and it’s much easier to do indirect methods. There are two main
indirect methods.

• Proof by Contraposition: If you are proving an implication, assume the negation of the conclusion and
prove the negation of the hypotheses.

• Proof by Contradiction: You assume the negation of the statement you want to show, and derive a
contradiction.

Question 1. I claim that any proof by contraposition can be rephrased into a proof by contradiction; why?

Answer 1. Well, say the statement is A → B. You begin with assuming A, and you want to prove B. By
contradiction, you assume ¬B and then aim for a contradiction.

Compare this with how you would do a proof by contraposition. You would assume ¬B, and aim for ¬A.
If you could prove ¬A just from ¬B, then that would also yield a contradiction in the proof by contra-

diction, since you are assuming A.
So, in a matter of speaking, you might as well do a proof by contradiction if you are going to do a proof

by contraposition. This is actually many proofs by contraposition are found; you begin with a proof by
contradiction, and then after you are done you realize you never use the assumption of A, so the proof is
rewritten.

1.1.1 Direct Proof Examples

Question 2. Write a formula ψ(x, y) such that for a given n and m integers, ψ(n,m) is true if and only if
n divides m.

Answer 2.
ψ(x, y) := ∃z ∈ Z .m = z · n
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Example 1.
∃m ∈ Z.∀n ∈ Z .m divides n

Proof. Let m = 1. Then let n be an arbitrary integer. Well,

n = 1 · n = m · n

So 1 divides n.

Example 2.

∀n ∈ Z.∀m ∈ Z . (n divides m)→ (∀z ∈ Z . (z divides n)→ (z divides m))

Proof. Let n and m be arbitrary integers, where n divides m. Let z be an arbitrary integer where z divides
n.

As n divides m, we can find an integer a such that m = a · n. Similarly, we can find b such that n = b · z
as z divides n.

Doing a substitution, we see m = a · (b · z), or

m = (ab) · z

So z divides m.

Question 3. Write a formula ϕ(x) such that for a given integer n, ϕ(n) is true if and only if n is an even
number.

Answer 3.
ϕ(x) := ∃m ∈ Z . x = 2 ·m

Example 3.
∀n ∈ Z . n(n+ 1) is even

Proof. Let n be an arbitrary natural number. We can do cases on whether n itself is even.
Case 1: n is even.
Then n(n+ 1) is even, since an even times an odd is even. Or, just using the definition of even, since n

is even we can find an m such that n = 2m. Thus, n(n+ 1) = 2(m(n+ 1)), which is clearly even.
Case 2: n is odd
Then n + 1 is even, and so n(n + 1) is even since an even times an odd is even. Or, just using the

definition, since n+ 1 is even we can find m such that n+ 1 = 2m. thus n(n+ 1) = 2(mn), which is clearly
even.

1.1.2 Contradiction Examples

Question 4. How would you define ϕ(x) to be such that for any real number y, if y is rational then ϕ(y)
holds.

Answer 4.
∃m ∈ Z.∃n ∈ Z . (m 6= 0) ∧

( n
m

= x
)

Example 4.
∃y ∈ R . ¬(y is rational)
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Proof. More specifically, we will prove
√

2 is irrational.
For contradiction, suppose that

√
2 was rational. Then we can take witnesses m and n integers, m 6= 0

such that n
m =

√
2. Multiplying both sides by m and squaring both sides, we have:

n2 = 2m2

Without loss of generality, we can assume that m and n have no common factors, ie. we wrote
√

2 as
a reduced fraction. Note that n2 is even. By a homework problem, we know that n is also even. By the
definition of even, we can find a n′ such that n = 2n′. Therefore,

(2n′)2 = 2m2

ie. 4(n′)2 = 2m2. Dividing both sides by 2, we have

2(n′)2 = m2

But, then m is also divisible by 2. So, m and n are both divisble by 2, which contradicts n
m being a fully

reduced fraction.

1.1.3 Contrapositive Examples

We have already seen two:

• ∀x, y ∈ R . (x ≥ y)→
(√
x ≥ √y

)
• ∀n ∈ Z . n2 is even→ n is even

Proofs by contrapositive are useful when the negation of the conclusion is “easier to work with” than the
hypotheses themselves. For instance

Example 5.
∀n,m ∈ N . (n+ 1 6= m+ 1)→ (n 6= m)

Proof. Notice, the assumption n+ 1 6= m+ 1 is odd to work with, because we’re not used to doing algebra
on non-equalities.

First, we take n,m in the naturals arbitrary, and then we proceed by contraposition. As a clue to our
reader, this is what I would say:

For sake of proving the contrapositive, assume n = m and we aim to prove that n+ 1 = m+ 1.
This statement tells the reader your assumption, and your goal.
Now, when we have n = m, we can just add 1 to both sides and be done!

1.1.4 Exhaustion Examples

A proof by exhaustion is a proof by cases. It’s also called a brute force proof. The idea is: extra
assumptions are good. The easiest way to get extra assumptions is the partition all possibilities into different
cases which give us more specific information. We’ve already seen some proofs by cases.

Example 6. The Triangle Inequality:

∀x, y ∈ R . |x+ y| ≤ |x|+ |y|

Proof. We did cases on where x+ y ≥ 0 and x+ y < 0.

Example 7.
∃x.∃y.¬(x is rational) ∧ ¬(y is rational) ∧ (xy is rational)

Proof. Here we do a proof by cases. First, note above we proved that
√

2 is irrational. Therefore, consider
the following:

Case 1:
√

2
√

2
is rational

Then we are done, as x = y =
√

2 satified all the above.
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Case 2:
√

2
√

2
is irrational

Then consider x =
√

2
√

2
and y =

√
2. Then

xy =
(√

2
√

2
)√2

=
√

2
√

2·
√

2
=
√

2
2

= 2

As 2 is rational, we are done.

2 Induction

Next we segway into another way to write a proof about natural numbers.
Consider a row of dominoes all upright. Let’s postulate that if the ith domino falls it will cause the

i+ 1th domino to fall. If you know the 1st domino falls, what can you say about the dominoes?

Definition 1 (Principle of Mathematical Induction). Let ϕ(x) be a formula. If ϕ(0) is true, and ϕ(n) →
ϕ(n+ 1) is true, then ϕ(m) is true for any natural number m. In particular, ∀m ∈ N . ϕ(m) is true.

Question 5. Think about the domino metaphor above. Do you think induction works for the integers,
rationals, and reals.

Answer 5. No; the integers aren’t like the dominoes because there is no first domino. The reals and the
rationals also don’t have a first, but even more disappointingly, they don’t have the “one after another”
property either, which is another hindrance to knowing they all get knocked down.

Remark 1. I am very particular about variables, as I said. This makes the form of an induction proof very
important to me. Pay attention to my form, and try to emulate it.

Theorem 1.

∀n ∈ N .
(

n∑
i=0

2i

)
= 2n+1 − 1

Proof With Exposition. The first thing you want to do in an induction proof is notify the reader that they
are about to read a proof by induction. Otherwise, it could be very confusing why you are doing what you
are doing. It’s also useful to say the variable you are inducting on.

We prove this by induction on n ∈ N.
First, we want to show that that we can knock down the first domino. This is called our base case.

Sometimes, we need to do more than one, depending what we are trying to prove. We will talk more about
this tomorrow.

But, we need to show the above sum is true when n = 0. When n = 0, the summation is just 20, which
is 1. The RHS is 21 − 1 = 1. So the base case is true.

Now, we need to show ∀n ∈ N . ϕ(n) → ϕ(n + 1). That is, if the nth domino falls, so will the n + 1th.
This is called out inductive step.

Let n be a natural number, and assume that
∑n

i=0 2i. This assumption is called the inductive hypoth-
esis. There are a few important things to note:

• The induction hypothesis is “allowed” to be the base case. For example, to see domino number 1 falls,
we need to know domino number 0 knocks down domino number 1. So it’s very important, since our
base case n = 0 is allowed to be the n assumed in the induction hypothesis.

• When you think about these proofs, think about them as an iterative procedure rather than a proof.
Don’t think about trying to prove ∀n ∈ N . ϕ(n) think concretely that you are interested in ϕ(70) or
something. The way you prove this is to prove ϕ(0), then prove ϕ(0)→ ϕ(1), then ϕ(1)→ ϕ(2), and
so on. The principle of induction formalized this procedure.

At this point in the proof, it’s useful to say your goal. We want to prove(
n+1∑
i=0

2i

)
= 2n+2 − 1
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Well, we know that (
n∑

i=0

2i

)
= 2n+1 − 1

So, notice, if we ass 2n+1 to both sides, we get

2n+1 +

(
n∑

i=0

2i

)
= 2n+1 + 2n+1 − 1

Which we can rewrite as (
n+1∑
i=0

2i

)
= 2 · 2n+1 − 1 = 2n+2 − 1

Which was what we wanted!
Now, you want to say a summary statement, concluding that we have accomplished our goal. So we

might say, by induction, this statement is true for all n in the natural numbers.

Proof as I’d write it. We proceed by induction on the natural number n
In our base case, n = 0. Note that

0∑
i=0

2i = 20 = 1 = 21 − 1

Thus the statement is true when n = 0.
For our induction hypothesis, let n be a natural number, and assume that our statement is true at n;

that is:

(IH)

(
n∑

i=0

2i

)
= 2n+1 − 1

We would like to true that this statement is true at n+ 1; that is(
n+1∑
i=0

2i

)
= 2n+2 − 1

Well, by adding 2n+1 to both sides of my induction hypothesis, we see

2n+1 +

(
n∑

i=0

2i

)
= 2n+1 + 2n+1 − 1

Simplifying, (
n+1∑
i=0

2i

)
= 2n+2 − 1

Which was what we wanted.
Thus, by induction, we have proved the statement for all n in the natural numbers.
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