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1 Graph Theory

Recall when we talked about relations. Relations were a way to talk about different objects (perhaps a set)
and say that one object was related to another. Graph theory can be viewed as study of relations, especially
the finite kind.

1.1 Graphs

Definition 1. A (simple) graph is a mathematical structure consisting of two parts: a set V called the
set of vertices, and a relation E on the set V called the edge relation; we require that the edge relation
is irreflexive and symmetric, but make no other restrictions.

We picture a graph by arranging vertex as dots on the plane, and connecting two of the dots if and only if
they are related by the edge relation. For instance, the graph with vertices V = {a, b, c, d}, and edge relation
corresponding to {{a, b} , {a, c} , {a, d} , {b, d}} is pictured by:

a b

c d

e1

e2
e3

e4

Definition 2. Every line in the picture can represented by the double-ton {v1, v2}, where v1, v2 ∈ V , and
v1Ev2. We call this connection an edge.

We say the size of a graph is the number of edges in the graph. We notate this with |E| where E is the
edge relation.

We say v1 and v2 are adjacent if v1Ev2.
If e is an edge and v ∈ e, then we say they are incident.
We define a function deg : V → N on the set of vertices. deg(v) is equal to the number of edges that

contain v. We call this the degree of a vertex.

Example 1. In the above picture, e1 is the edge {a, b}. vertex a is incident to edge e1. The degree of a is
3, and the degree of c is 1.

Theorem 1. If G is a graph with vertices V then∑
v∈V

deg(v) = 2|E|

Proof. Every edge is counted twice in the sum of the degrees. Thus we can divide by 2 and this will count
the number of edges.

Theorem 2 (Handshaking Lemma). In any graph, there is an even number of odd degree vertices.

Proof. Exericse.
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Given a graph, we often imagine “traversing” the graph. This leads us to make the following definitions:

Definition 3. If G is a graph with vertex set V and edge relation E, then a walk through the graph is a
sequence

〈v1, v2, v3, . . . vn〉

Where each vi is a vertex, and vi is adjacent to vi+1 for each i. A walk is closed if v1 = vn; otherwise it is
open.

A (simple) path is a walk where no vertex is repeated. A (simple) cycle is a closed walk where only
the first and last vertex is repeated.

A tail is a walk in which no edge is repeated. A circuit is a closed trail.

Remark 1. Formal graph theory is actually still a rather new field, especially compared to older fields like
number theory and geometry. The terminology is still sort of non-standard. Some people say “path” when
really it is a walk, as we defined it. Be careful of terminology; if you look at a graph theory, make sure you
know how they have defined all of these terms.

Imagine a graph represents a city. The vertices are different points of interest, and the edges are con-
nections between them (perhaps roads, or maybe subway lines). We would like to know that the we can get
anywhere in the city from any point we are at; this is obviously a very desireable property.

Definition 4. A graph is connected if for every distinct v1, v2 there is a path starting at v1 and ending at
v2. Otherwise, we say a graph is disconnected.

All graphs are not connected. For example:

This, as you can see, has no paths connecting vertices on the left hand to ones on the right.

Definition 5. We define an equivalence relation ∼ on the set of vertices, where we say a ∼ b if and only if
there is a path from a to b. We call the equivalence classes of this relation the connected components of
the graph.

Example 2. If the graph is connected, there is only one connected component. However, in the graph
above, there are two connected components. One is the triangle on the left, and the other the line on the
right.

Definition 6. If G is a graph with vertex set V and edge relation E then we say G′ is a subgraph of G,
written G′ ⊆ G, if G has vertex set V ′ and edge relation E′ and the two conditions hold:

1. V ′ ⊆ V

2. For every a, b ∈ V ′, if aE′b then aEb. That is, G′ makes no new edges.

1.2 Trees

Definition 7. A tree is a graph which is minimally connected; that is, a tree is a graph which the removal
of any edge makes the graph disconnected.

Example 3. Trees are a very important notion. Here is an example of a tree:
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Theorem 3. Let T be a graph with n vertices. The following are equivalent:

1. T is a tree.

2. T is connected and has n− 1 edges.

3. T is connected and has no cycles.

4. For every v, u vertices in T , there is a unique path from v to u

We will not prove these. You should do it as an exercise! (Seriously; this is an exam technique question).
But we will prove a few helpful lemmas.

Lemma 1. If a graph G with n vertices (n ≥ 2) has < n− 1 edges, then it is disconnected.

Proof. We prove this by the method of infinite descent. We go by contradiction, assuming that it is false,
and we take n to be the smallest counterexample. So, n is such that there is a connected graph on n vertices
and n − 2 edges. We claim there is a degree 1 vertex. Otherwise, all vertices are of degree 2 or more.(∑

v∈V deg(v)
)

= 2|E|. As the sum is at least 2n, we have E is at least n. Thus there is a degree 1 vertex.
Remove it from the graph; obviously the graph is still connected. This is a graph on n− 1 vertices which is
connected.

Lemma 2. If a connected graph has no degree one vertex then it has a cycle.

Proof. Take G connected with no degree one vertices. We claim there is a cycle. Start at any vertex v and
build a maximal path, that is build a path that you cannot make longer without repeated a vertex.

vu u′

Let u be an endpoint of the path. As u is maximal, we every neighbor of v is in the path. Furthermore,
as u has at least degree 2 so it has an edge not in the path. This edge connects u to some vertex u′. This
makes a cycle.

We now have a very important theorem about trees.

Theorem 4. Every tree has a degree one vertex.

Proof. This is from the last lemma and the theorem which says that trees are acyclic.

Definition 8. A vertex which has degree one is called a leaf

We often do induction on trees and use this property in our induction steps. An example would be (3)
implies (4) above.

Theorem 5. If T is a tree (in particular, acyclic connected) then for every u and v vertices in T there is a
unique path from v to u.

Proof. Do induction on the number of vertices of T . It is trivial in the case when n = 1, as there is nothing
to check.

Suppose that T is a tree on n+ 1 many vertices, and for any tree on n vertices we have the property. As
T is acyclic, T has a leaf, l. Remove l from T . Now we have a tree on n vertices as it must remain connected;
so by the induction hypothesis, every pair of vertices has a unique path. Put l back in. Take v, w in T . If
neither v or w is l, then they were on the tree with l removed, and therefore these is a unique path; l could
not have created a new path as l is degree 1 so is a “dead end.” If either v or w is l, then wlog it is v. Look
at the vertex l is connected to, v′ (there is only one as l is degree 1). Every path leaving v goes through v′,
and there is only one path from v′ to w.
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1.3 Königsberg Bridge Problem

Königsberg was a city in East Prussia (now Russia). Running through the city was the Pregel River.
As shown above, there were two main bodies of land created by the river, and a island in the center.

There were 7 bridges connecting the various pieces of land (as shown above). The question posed was can
you go travel across every bridge exactly once and end up where you started. Leonhard Euler proved that
it was impossible (this was in 1735). The methods that he used began the field of graph theory.

Here we can represent this as the following picture.

Remark 2. Note, that this is not a simple graph as we had before. This is a multi-graph. A multi-graph is
like a graph, but we allow from multiple edges connecting vertices. So, in reality the structure of a multigraph
is a vertex set V , and a function mapping unordered pairs of vertices to N. Then, if a pair is mapped to some
number it means there is that number of edges connecting them. We will not dwell much on multi-graphs,
and the following will all be able simple graphs unless otherwise stated.

Remark 3. There are two natural questions you might want to ask about a graph given the above definitions:

1. Does the graph contain a trail/circuit which uses every edge?

2. Does the graph contain a path/cycle which uses every vertex?

If the answer to the first question is yes, then we say the graph is Eulerian. If the answer to the second
question is yes, then we say the graph is Hamiltonian.

We can now phrase the question Euler answered in terms of graph theory: Is the Königsberg Graph
Eulerian?

Euler actually proved a much stronger theorem.

1.4 Eulerian Graph Theorem

Theorem 6. A connected graph G is Eulerian if and only if every vertex has even degree.

Proof. This theorem is somewhat amazing, becuase the left to right direction, as we will see, is completely
trivial. So, somehow a very simple necessary condition which follows from Eulerian is also sufficent for
proving that such a circuit exists.
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(⇒) We prove the contrapositive. Suppose that G has a vertex v of odd degree. Then in any closed walk
which spans every edge it must enter/leave the vertex at least the size of its degree as it must traverse all if
its edges. Therefore, if the walk starts and ends at v, then it must have entered/left v an even number of
times. Similarly, if it ends somewhere else the number of times it is entered must be equal to the number of
times it left, so it is also even. But, since it has odd degree, it must be that the walk used an edge incident
to v twice. Therefore, G is certainly not Eulerian.

(⇐) The direction is a bit trickier. We do induction on the size of the graph. If there are no edges, then
we are done. Otherwise, there are n edges, for n > 0.

We claim there is a cycle. As G is connected, every vertex has at degree at least one. As every vertex
has even degree, every vertex has at least degree 2. Therefore, by lemma 2, there is a cycle.

Get a graph G′, subgraph of G, by eliminating the edges from a cycle from G. Perhaps we have discon-
nected G into different connected components. Regardless, any connected component of G now has an even
number of edges (can you see why?). We can apply the induction hypothesis to each of these connected
components and get a Eulerian cirucuit. Now, put back in the cycle. It’s clear that we can extend the
Eulerian circuits created by the induction hypothesis; start at any of the connected components of G′ and
continue along the circuit. When you get to a vertex in the cycle, go along the cycle until you get to a vertex
in another connected component, and then follow the Eulerian circuit through thre connected component
back to the cycle, and continue along it. Continue until you have traversed the cycle, and then return to the
first connected component to finish that circuit.

Theorem 7. The above theorem also holds for multigraphs (where the degree of a vertex of a multigraph
counts the multiplicity of all of its incident edges).

Proof. It is the same proof.

Remark 4. This resolved the Königsberg Bridge Problem. The graph representing the bridges of Königsberg
has verexes of odd degree (all of them in fact).
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