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Abstract

A recent theorem of Bissacot, et al. proved using results about the clus-
ter expansion in statistical mechanics extends the Lovász Local Lemma
by weakening the conditions under which its conclusion holds. In this
note, we prove an algorithmic analog of this result, extending Moser and
Tardos’s recent algorithmic Local Lemma, and providing an alternative
proof of the theorem of Bissacot, et al. applicable in the Moser-Tardos
algorithmic framework.

1 Introduction

If events A1, A2, . . . , An are independent, then we have P(
⋂
Āi) > 0 so long

as P(Ai) < 1 for each i. A central tool in probabilistic combinatorics is the
Lovász Local Lemma proved by Erdős and Lovász [5], which can be seen as
generalizing this simple fact to situations where some dependencies among the
Ai are allowed, in exchange for good bounds on the probabilities P(Ai).

The Local Lemma is commonly presented through the framework of a de-
pendency graph on the events Ai, where if C is any family of non-neighbors of
some Ai, then we have that Ai is independent of the family C of events. The
Lovász Local Lemma is then as follows:

Theorem 1.1 (Lovász Local Lemma). Let G be any dependency graph for a
finite family A of events, and suppose that there are real numbers 0 < xA < 1
(A ∈ A) such that for all A ∈ A we have

P(A) ≤ xA
∏
B∼A

(1− xB), (1)

where B ∼ A indicates adjacency in G. Then

P

( ⋂
A∈A

Ā

)
>
∏
A∈A

(1− xA),
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and so in particular, we have

P

( ⋂
A∈A

Ā

)
> 0. (2)

The first breakthrough in finding an algorithmic version of the Local Lemma
was made by Beck, who demonstrated his method on the classical Local Lemma
application to 2-colorable hypergraphs. Beck’s method was subsequently refined
and given a more general framework [1,4,9,14], but required stronger bounds on
the probabilities of the events than were required by the nonalgorithmic version.

In Moser and Tardos’ recent breakthrough paper [10], they give an algorith-
mic proof of the Lovász Local Lemma in a setting which is general enough for
nearly all applications of the Lemma in combinatorics, with bounds identical
to those required by the nonalgorithmic version. In the framework Moser and
Tardos consider, the events in A depend on some underlying set V of indepen-
dent random variables, and they denote by vbl(A) (A ∈ A) the minimal set of
random variables from V on which each A depends; A is said to be ‘violated’
with respect to a particular evalation of the variables in vbl(A) if the event
occurs for that evaluation. A Moser-Tardos dependency graph is one which
implies that if events A and B are nonadjacent, then vbl(A) is disjoint from
vbl(B). (Note that this notion of a dependency graph is more restrictive than
the Lovász version based on probabilistic independence, as is demonstrated by
an example of Kolipaka and Szegedy [8].) Moser and Tardos’s theorem is then
the following:

Theorem 1.2 (Moser and Tardos). Let V be a finite set of mutually independent
variables in a probability space, and let A be a finite family of events determined
by these variables. If there are real numbers 0 < xA < 1 (A ∈ A) such that

P(A) ≤ xA
∏
B∼A

(1− xB) (3)

then there exists an assignment to the variables V which corresponds to no oc-
currence of any event from A. Moreover, the randomized algorithm described
below resamples an event A at most an expected xA

1−xA
times before finding the

evaluation, thus the total number of resampling steps is
∑
A∈A

xA

1−xA
in expec-

tation.

The Moser-Tardos algorithm consists just of beginning with a random evalu-
ation of all the variables in V, and then resampling vbl(A) for any violated
events A until no violated events remain. Of course, the efficiency of the algo-
rithm depends on the ability to resample variables efficiently and check whether
individual events are violated; this is generally an easy implementation problem,
however, making the analysis of the number of resampling steps the important
issue.

Recently, Bissacot, Fernández, Procacci and Scoppola proved the following
improvement of the Lovász Local Lemma:
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Theorem 1.3 (Bissacot, et al. [3]). Consider a finite family A of events in some
probability space Ω, with some dependency graph G. If there are real numbers
0 < µA <∞ such that

P(A) ≤ µA∑
I⊂Γ̄(A)
I indep.

∏
B∈I

µB
, (4)

where Γ̄(A) = {A} ∪ {B |B ∼ A}, then P

( ⋂
A∈A

Ā

)
> 0.

It is not difficult to check that condition (4) is weaker than condition (1) by
considering the substitution µA = xA

1−xA
. (Condition (1) would be equivalent to

(4) without the condition in the sum that the sets I be independent.) In [3],
they also give examples where this theorem improves some classical theorems
proved with the Local Lemma. Theorem 1.3 has also since been applied to
improve some theorems on graph colorings in [11].

Their proof of Theorem 1.3 is based on Shearer’s characterization of labeled
dependency graphs to which the conclusion of the Local Lemma applies [13]
and two of those authors’ recent results on the radius of convergence of logs
of partition functions [7]. (The connection between the Local Lemma and the
partition functions of statistical mechanics was first made by Scott and Sokal
[12].)

In this short note, we prove an algorithmic analog to the result of Bissacot,
et. al. That is, we will show that in the setting of Moser and Tardos’s algo-
rithmic Local Lemma, Moser and Tardos’s bounds on the running time of their
algorithm hold even with their condition (3) replaced with condition (4):

Theorem 1.4. Let V be a finite set of mutually independent variables in a
probability space, and let A be a finite family of events determined by these
variables. If there are real numbers 0 < µA <∞ (A ∈ A) such that

P(A) ≤ µA∑
I⊂Γ̄(A)
I indep.

∏
B∈I

µB
, (5)

then there exists an assignment to the variables V which corresponds to no oc-
currence of any event from A. Moreover, the Moser-Tardos algorithm resamples
an event A at most an expected µA times before finding the evaluation, thus the
total number of resampling steps is

∑
A∈A

µA in expectation.

(The running time bound here is equivalent to the Moser-Tardos bound under
the substitution µA = xA

1−xA
.)

The proof of Theorem 1.4 consists simply of re-doing one part of the proof of
Moser and Tardos’s theorem, taking advantage of some constraints which were
not necessary for Moser and Tardos’s original result.

Theorem 1.4 can be seen as doing two things: first, it extends the result
of Moser and Tardos by giving a weaker condition under which the identical
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result holds—note that this has also been done in a more general sense by
Kolipaka and Szegedy [8], who directly connect Shearer’s condition with the
Moser/Tardos algorithmic framework. Secondly, it gives an alternative proof of
the result of Bissacot, et al. (in the slightly more restrictive algorithmic setting)
which is independent of Shearer’s theorem and the cluster expansion methods
used in [7].

Bissacot, et al. note that their Theorem 1.3 can be extended to Lopsided
dependency graphs, first considered by Erdős and Spencer in [6]. In their pa-
per on their algorithmic Local Lemma, Moser and Tardos define an analog of
lopsidependency in the algorithm/variable setting, and a reader familiar with
Moser and Tardos’s paper can easily verify that our improvement to Moser and
Tardos’s theorem applies to their theorem on algorithmic lopsided dependency
graphs as well, as we only re-do their branching argument, which is applied to
the lopsided case in the same way as in their main result.

2 Proof

The Moser-Tardos algorithm is as follows:

1: procedure Moser-Tardos(P)
2: for all P ∈ P do
3: vP ←(random evaluation of P )
4: end for
5: while ∃A s.t. A is violated when P = vP (∀P ) do
6: for all P ∈ vbl(A) do
7: vP ←(new random evaluation of P )
8: end for
9: end while

10: end procedure

(Note that when multiple events exist satisfying line 5, one of the satisfying
events is chosen arbitrarily.)

Moser and Tardos’ proof that this algorithm terminates in polynomial time
(under condition (3)) is based on the notion of a ‘witness tree’. As the algorithm
runs and bad events are found and resampled, a witness tree is assigned to each
step of the algorithm (where a step consists of a resampling of an event). A
witness tree is a rooted tree with labels from A. The witness tree Wt for step
t of the algorithm is constructed as follows: choose as its root a vertex labeled
with whatever event A0 was resampled at step t. If the event A1 which was
resampled at step t − 1 overlaps the label of the root, a vertex is added as a
child of the root labeled with A1. (We may have A1 = A0.) In general, for each
step i = t − 1, t − 2, . . . , 1 of the algorithm, if the event Ai which was added
at step i overlaps any of the events currently labels of vertices of our partially
constructed Wt, we add a vertex labeled with Ai as the child of a vertex of
maximum depth whose label overlaps Ai. In the result, Wt, children always
overlap their parents, and children of a common parent always get distinct
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labels (otherwise, whichever was added after the other would have been added
as a child of the other). Any tree T with labels from A with these two properties
is called a proper witness tree.

Moser and Tardos’s proof of their algorithm’s efficiency consists of two parts:
first, they show that any proper witness tree T has probability at most∏

v∈T
P(Av) (6)

of occurring as a witness tree at any point in the running of the algorithm,
where here Av denotes the event labeling the vertex v.

Now, if an event A is resampled at step t, the number of occurrences of A
as a label in the witness tree Wt is equal to the number of times A has been
resampled on steps 1, . . . , t—in particular, all witness trees which will occur in
a run of the algorithm will be distinct. Thus if we let TA denote the set of
proper witness trees with root label A, the expected value of the number NA of
resamplings of A which occur in a run of the algorithm is equal to

E(NA) =
∑
T∈TA

P(T occurs in the log) ≤
∑
T∈TA

∏
v∈T

P(Av). (7)

The second part of Moser and Tardos’s proof consists of bounding the sum
of products in line (7). They do this by considering a random process for
constructing trees: Suppose xA (A ∈ A) are real numbers between 0 and 1.
Fix now any event A0. In the first round of the process, a vertex labeled A0 is
created. In each subsequent round, for each event vertex v with label Av created
in the previous round, and for each event Au ∈ Γ̄(Av) (in the dependency graph),
a vertex u with label Au is added as a child of v with probability xAu . (All of
these choices are made independently.)

Moser and Tardos prove:

Lemma 2.1 (Moser Tardos Branching Lemma). For any proper witness tree T
with root labeled A0, the probability pT that the process above produces exactly
the tree T is

pT =
1− xA0

xA0

∏
v∈T

(
xAv

∏
B∼Av

(1− xB)

)
. (8)

Thus, the Lemma gives us that

1 ≥
∑
T∈TA

pT ≥
1− xA
xA

∑
T∈TA

∏
v∈T

(
xAv

∏
B∼Av

(1− xB)

)
(9)

Thus the bound P (A) ≤ (xA
∏
B∼A(1− xB)) for all A implies, together with

line (7), that

E(NA) ≤ xA
1− xA

. (10)

5



Our improvement comes just from a slightly more careful branching argu-
ment. Note that any witness tree which occurs in the log of the algorithm
has the property that any children of a common vertex have labels which are
nonadjacent in the dependency graph. This condition—let’s call it strongly
proper—is stronger than requiring simply that children be distinct. Thus, we
can strengthen line 7, as we have the bound

E(NA) =
∑
T∈T S

A

P(T occurs in the log) ≤
∑
T∈T S

A

∏
v∈T

P(Av). (11)

where T SA ⊂ TA is the set of strongly proper witness trees.
To bound the sum in (11), we consider a modified branching process which

proceeds as follows.
Given real numbers 0 < µA <∞, we define xA = µA

µA+1 (note that 0 < xA <

1) and fix any event A0. In the first round of the process, a vertex labeled A0

is created. In each subsequent round, for each event vertex v with label Av in
the previous round, we carry out a ‘subprocess’, where for each Au ∈ Γ̄(v) (in
the dependency graph), a vertex u with label Au is added as a child of v with
probability xAu

(the choices are independent). At the end of the subprocess, we
check if the label-set of the resulting set of children for v is an independent set
in the dependency graph. If it is not, we delete the children created and restart
the subprocess. Note that xA < 1 (for all A) implies that the subprocess will
eventually end (with probability 1) having produced an independent set.

Note that the process described above is equivalent to one in which, in each
round and for each vertex v from the previous round, we create a set of children
u with labels from a set chosen from all independent sets Iv ⊂ Γ̄(v), where the
likelihood of the choice of each independent set Iv is weighted according the the
product

w(Iv) =

(∏
u∈Iv

xAu

) ∏
u∈Γ̄(v)\Iv

(1− xAu)

 .

Lemma 2.2 (Improved Branching Lemma). For any strongly proper witness
tree T with root labeled A0, the probability p′T that the modified branching process
described above produces exactly the tree T is

p′T = µ−1
A0

∏
v∈T

µAu∑
I⊂Γ̄(Av)
I indep.

∏
A∈I

µA
. (12)

Proof. Letting Wv = Γ̄G(Av) \ `(Γ+
T (v)), where Γ+

T (v) is the set of children of v
in T , and `(Γ+

T (v)) is the set of their labels, we have

p′T =
∏
v∈T

∏
u∈Γ+

T (v)

xAu

∏
B∈Wv

(1− xB)

∑
I⊂Γ̄(Av)
I indep.

∏
A∈I

xA
∏

B∈Γ̄G(Av)\I

(1− xB)
.
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This can be rewritten as

p′T =
∏
v∈T

∏
u∈Γ+

T (v)

xAu

1− xAu∑
I⊂Γ̄(Av)
I indep.

∏
A∈I

xA
1− xA

by dividing the top and bottom by
∏
B∈Γ̄G(Av)(1−xB). Since taking the double

product
∏
v∈T

∏
u∈Γ+

T (v) is equivalent to taking a product
∏
v∈T\{v0}, where v0

denotes the root vertex of T , this gives line (12), recalling that xA = µA

µA+1 and
so xA

1−xA
= µA.

This is applied now in the same way as the branching lemma used by Moser
and Tardos, but with regards to the family T SA of strongly proper witness trees
rooted with A, instead of the family TA of proper witness trees rooted with A.
We have

1 ≥
∑
T∈T S

A

p′T ≥ µ−1
A0

∑
T∈T S

A

∏
v∈T

µAu∑
I⊂Γ̄(Av)
I indep.

∏
A∈I

µA
. (13)

Putting this together with line (11), we see then that the condition (5) of the
theorem implies that

E(NA) ≤ µA, (14)

completing the proof the the Moser-Tardos algorithm still terminates in ex-
pected time ∑

A∈A
µA.
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