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ABSTRACT

We extend current results on abstract elementary classes (AECs) in terms of stability,

categoricity and axiomatization theorems. In most cases, we assume the existence of a

monster model as well as tameness. The first two chapters introduce readers to the major

questions and basic notions of AECs. The subsequent four chapters are the author’s papers

written during his PhD program, each with its own abstract, introduction and results. The

last chapter uses known results to derive a new categoricity transfer.
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CHAPTER 1

INTRODUCTION

This dissertation investigates the stability theory, categoricity transfer and presen-

tation theorems of abstract elementary classes, building mainly on the work of Shelah,

Grossberg, VanDieren, Boney and Vasey. In this chapter, we go through the motivation,

major open questions and the main results in the author’s papers.

Model theory studies classes of mathematical structures that have the same underlying

forms, which include the same logic (first-order or higher-order logics), the same language

(vocabulary/similiarity types) and the same theory. For example, in first-order theories,

we work in first-order logic and study the models of some first-order theory T . Since model

theory does not assume a specific form (say group theory), its foundation is usually the

Zermelo–Fraenkel set theory with the axiom of choice (ZFC). This allows the counting of

different objects: the sizes of the models, the number of types in a model (stability), the

number of nonisomorphic models (spectrum and categoricity)... Without looking into a

specific class, we would like to know how one number is related to another number. These

motivate a lot of developments in model theory.

For first-order theories, rich results have been produced in the past 60 years, in par-

ticular in Shelah’s book on classification theory [She90]. There he solved many problems

in stability and categoricity. Besides directly looking at other open questions in first-order

theories, one can generalize known results to higher-order contexts. One possibility is to

look at theories in Lκ,ω for some uncountable κ or even in Lκ,λ where λ is also uncountable.

Another approach due to Shelah [She87] is to provide an axiomatic framework that gener-

alizes the first-order theories. The framework is called abstract elementary classes (AECs)

which has fewer than ten axioms (see Chapter 2). We highlight some major obstacles of

studying AECs compared to first-order theories, and state relevant assumptions to simplify

the investigation.

1. Little relationship between the class and the underlying language: in a first-order

theory T , there is an underlying language L = L(T ) which determines the Löwenheim-
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Skolem number and the ordering (elementary substructure). In AECs, we only assume

that the ordering is a subclass of that of the L-substructure. The size of L can be

different from the Löwenheim-Skolem number. Only in the case of universal classes

do we assume that the ordering is by L-substructure.

2. Lack of the compactness theorem: if a first-order theory T has an infinite model,

then it has models of any size ≥ |L(T )|. Syntactic types that are consistent can

be realized in some models. In AECs, model sizes are closed downwards (by the

Löwenheim-Skolem axiom) but not upwards. There are no natural syntactic types

associated to AECs, and their syntactic consistency does not guarantee they are

realized. If one orders the class by elementary substructure with respect to that

language, they have to check it gives rise to an AEC. To remedy this, one assumes

the class has the amalgamation property, the joint-embedding property, no maximal

models and arbitrarily large models.

3. Lack of finite character of types: there is a notion of semantic types called the Galois

types (orbital types) that generalizes first-order syntactic types. While first-order

types are finitary and have good locality and continuity properties, they are not

inherent in AECs. For example, when checking syntactic type equality, one only

needs to compare the formulas in the types one by one; two Galois types can be

different even though their smaller restrictions are the same (failure of tameness and

shortness). To avoid this issue, one can assume tameness, shortness, continuity etc

to handle types more effectively.

4. Lack of a set-monster model: in complete first-order theories, it is common to work

in a set-monster model: types are over subsets of the monster model while models are

elementary substructures of it. Even with the extra assumptions in (2) for AECs, one

can at most build a weaker monster model (closed under two-dimensional amalgams).

This causes difficulty in manipulating certain notions like splitting over sets and

(λ, n)-uniqueness for independence relations. Certain classes allow the construction

of splitting over sets [SV18a] but in general one has to make an extra assumption of
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amalgamation over sets.

The above assumptions are used in our papers to investigate different problems of AECs.

We give an overview of the main results and open questions related to each paper.

� In Chapter 3, we study the stability theory of AECs. There were numerous results

on this area but one missing part is the first stability cardinal for stable AECs. In

first-order theories, the first stability cardinal is bounded above by 2|L(T )| (a precise

bound is in [She90, Chapter V]). Vasey used Morley’s method to show that under the

amalgamation property, an upper bound is ℶ(2LS(K))+ [Vas16c]. A natural question is

whether this bound could be improved, or whether amalgamation is necessary. Our

paper organized known stability results on AECs and provided examples of stable

AECs whose first stability cardinals and order property lengths can go up to any

cardinal below ℶ(2LS(K))+ (see also the table after this list). However, our examples

fail amalgamation so we ask the following open questions:

Question. 1. Assuming amalgamation and tameness, can we bound the first sta-

bility cardinal lower than ℶ(2LS(K))+ , or even to 2LS(K)?

2. Assuming tameness but not amalgamation, can we bound the first stability

cardinal by ℶ(2LS(K))+? Or are there counterexamples?

3. Can we say anything about the order property length (in place of the first

stability cardinal) in (1) and (2)?

On the other hand, by assuming amalgamation over sets, we gave simpler proofs of

known stability results on AECs, with some using the method of Galois-Morleyization

in [Vas16c]. We also showed that depending on the non-ZFC axioms, the joint-

embedding property might be necessary for [Bon17, Proposition 2.7].

� In Chapter 4, we study the presentation theorems of AECs. Shelah axiomatized

AECs and showed that they are PCLS(K),2LS(K) , where 2LS(K) indicates that the PC-

classes come from omitting at most 2LS(K)-many types. The original proof told little

about the actual number of omitted types, or in what cases it could be lowered. On
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the other hand, [SV21] had a technical proof of axiomatizing AECs in L
(22λ

+
)+++,λ+

where λ = LS(K). While we were not able to verify or simplify the proof there,

we made use of game quantification to axiomatize AECs in Lχ+,λ+(ω · ω) where

χ = λ+ I2(λ,K) ≤ 2λ (see Definition 4.3.1) and ω ·ω denotes the length of the game.

With extra assumptions, we could tell when χ = λ. Also, by adapting this result,

we showed that AECs are PCχ, which has a (potentially) fewer types omitted but a

bigger language size. By slightly changing the proof, we could also recover Shelah’s

original result. Although our focus was on AECs, we extended the results to µ-AECs

(see Definition 4.5.1), showing the generality of our argument. Here are some open

questions:

Question. 1. Assuming stability or categoricity, is it possible to obtain a better

bound than I2(LS(K),K) ≤ 2LS(K)? A positive answer provides an alternative

way to lower the complexity of our presentation theorems.

2. For µ ≥ ℵ1, do µ-AECs have Hanf numbers? A positive answer allows the

translation of some AEC techniques to the µ-AEC context.

� In Chapter 5, we study equivalent criteria for stable as well as for superstable AECs.

Throughout our paper, we assumed the existence of a monster model, tameness and

continuity of nonsplitting. The last assumption, which is implied by superstability,

allowed us to manipulate nonsplitting more easily while still in the strictly stable

context. There were a good amount of results on superstability and [GV17] estab-

lished equivalent criteria of superstability. However the criteria were eventual: one

statement implies another modulo moving up the cardinal by a great interval. There

were follow-up results but a clean picture was yet to be seen. We managed to organize

the important superstability results in one framework, and generalized them to the

strictly stable context. All but one of our equivalent criteria are local and require

moving up by at most a successor cardinal. Moreover, our results have a low cardinal

threshold (LS(K)+) so we can readily apply them in algebraic examples. While our

results work in the strictly stable context, we still need to assume a lot of stability
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because we cannot control the length of the order property (see Question 3 for the

discussion on Chapter 3 above). We also have the following open questions:

Question. 1. Assuming the existence of a monster model, tameness and continuity

of nonsplitting, we showed in Corollary 5.6.16 that if an increasing chain of

saturated models in Kµ+ has a saturated union, then K has uniqueness of limit

models of size µ. Can we replace µ+ by a general ξ > µ? This will give more

flexibility to the equivalent superstability criteria.

2. In AECs, one of the superstability criteria is no-long splitting chains (instead

of nonsplitting over a small set). In the strictly stable context, the possible

lengths of splitting chains in one cardinal might be different from those in another

cardinal. Let λ′ be the cardinal where the maximum length stabilizes and λ be

the first stability cardinal. Is it possible to lower the bound of λ′ < ℶ(2λ)+

by [Vas18c]? Our paper bypassed this problem by assuming the continuity of

nonsplitting and looking at an ω-interval of cardinals.

� In Chapter 6, we study the categoricity results of AECs, assuming amalgamation over

sets and tameness. Vasey had many papers on this area with gradual improvements

in different aspects. This posed a problem of understanding the current progress

and how different papers are related to each other. One of the goals in our paper

was to organize results on the construction of an ω-successful frame. [Vas16a] built

such a frame using coheir with tons of machinery, and the threshold was quite high

(fixed points of the beth function). It turned out that [Vas17e] (on universal classes)

had sketched a variation using nonsplitting with a better threshold, and this was

used in subsequent papers. We wrote out the details and bypassed the machinery

in [Vas16a, Sections 1-10]. On the other hand, [SV18b] showed that the eventual

categroicity conjecture is true assuming a (< ω)-extendible frame (a strengthening of

an ω-successful frame) and the weak general continuum hypothesis. We adapted their

proof and showed in ZFC that under amalgamation over sets (together with tameness

and arbitrarily large models), we can do the same categoricity transfer: if the AEC is

categorical in some µ > LS(K), then it is categorical in all µ′ ≥ µ. This allows us to
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reprove Morley and Shelah’s categoricity theorems for first-order theories, and also

Vasey’s categoricity theorem for homogeneous diagrams — there he used syntactic

results by Shelah; our result only has AEC techniques.

Question. 1. We ended up using amalgamation over sets because the following

is unknown: is it possible to build primes under the usual amalgamation and

shortness? Vasey [Vas17a] constructed primes for saturated models but this begs

the question on when it applies to non-saturated models (if they exist).

2. Adapting the examples in Chapter 3, we can construct tame AECs where the

first categoricity cardinals can be higher than any µ < ℶ(2LS(K))+ . Those ex-

amples failed amalgamation (AP ) and we also ruined joint-embedding in order

to guarantee arbitrarily large models (AL). As in Question 1 of the discussion

on Chapter 3 above, we ask: it is possible to give similar examples that satisfy

amalgamation, and perhaps also joint-embedding?

First stability cardinal / Order property length AP + AL AL only

Upper Bound ℶ(2LS(K))+ [Vas16c] ?

Counterexamples up to ? ℶ(2LS(K))+ (Ch. 3)

First categoricity cardinal AP over sets +AL AL only

Upper Bound ℶ(2LS(K))+ (Ch. 6) ?

Counterexamples up to ? ℶ(2LS(K))+ (Ch. 6)

In Chapter 7, we make use of Vasey’s and Esṕındola’s results to derive an additional

categoricity transfer. Since Esṕındola’s results involve heavy machinery in topos theory,

we separate the new result in that chapter.

We assume the readers to be familiar with notions in first-order model theory. Knowl-

edge of AECs would be ideal while Chapter 2 will provide the preliminaries. Readers can

also refer to [Gro21] which is a comprehensive guide for basic results in first-order theories

and AECs (and also a good source for historical comments).
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CHAPTER 2

PRELIMINARIES

2.1 ABSTRACT ELEMENTARY CLASSES

The notion of Abstract Elementary Classes (AECs) was introduced by Shelah [She87]

to generalize certain classes of models in L∞,ω(Q), which includes elementary classes (classes

of models of complete first-order theories) and also EC(T,Γ) classes (models of a complete

first-order theory T omitting a set of types Γ). We will follow [Gro21, Chapter 2] in first

defining abstract classes (ACs) and then adding more requirements to form AECs.

Definition 2.1.1. Fix a finitary language L. An abstract class K = ⟨K,≤K⟩ in L is such

that

1. K is a class of L-structures.

2. ≤K is a partial order on K. For any M,N ∈ K, if M ≤K N , then M ⊆ N as

substructure.

3. ≤K respects isomorphism:

(a) If M,N are L-structures, M ∈ K, M ∼= N , then N ∈ K.

(b) If fi :Mi
∼= Ni for i = 0, 1, M0 ≤K M1 and f0 ⊆ f1, then N0 ≤K N1.

N0 N1

M0 M1

id

f0 ∼=

id

f1 ∼=

4. We write L(K) := L.

From now on, unless otherwise specified, we assume M,N (with superscripts or sub-

scripts) to be in K. We do not distinguish M and its domain/universe. We also abuse

notation and write K instead of K; ≤ instead of ≤K if the context is clear (In [Vas17f],

more than one abstract class is considered and careful distinction would be necessary).
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Notice that one might allow abstract classes in infinitary languages, but since the

latter only appear in Galois-Morleyization in Chapter 3 in this dissertation, we do not gen-

eralize them here. The following requirements further exclude certain classes in infinitary

languages.

Definition 2.1.2. Let K be an abstract class.

1. K is coherent if for any M0,M1,M2 ∈ K, M0 ⊆ M1, M0 ≤ M2, M1 ≤ M2, then

M0 ≤M1.

2. Löwenheim-Skolem axiom: we require LS(K) to be defined where LS(K) is the first

infinite cardinal λ ≥ |L(K)| such that for any M ∈ K, A ⊆M , there is N ≤M such

that A ⊆ N and ∥N∥ ≤ λ+ |A|.

A (N) M

3. Chain axioms:

(a) For any ordinal α, any ⟨Mi : i < α⟩ ⊆ K such that Mi ≤ Mj for i < j < α, we

have M :=
⋃

i<αMi ∈ K and Mi ≤M for all i < α.

(b) In the above clause, if we have in addition N ∈ K and Mi ≤ N for all i < α,

then M ≤ N .

4. An abstract elementary class (AEC) is an abstract class satisfying clauses (1) to (3).

Remark 2.1.3. � Although AECs are our main objects of study here, some partial

versions are also useful. For example coherent abstract classes appear in independence

relations over saturated models because the latter might not be closed under unions.

� A typical counterexample to AECs is the class of well-orderings K ordered by initial

segments: it is not even a µ-AEC (see Chapter 4 or [BGL+16, Section 2] for more

discussions on µ-AECs) because LS(K) does not exist. But if we restrict the models to

have order types up to a fixed ordinal α, then the class is an AEC with LS(K) ≤ |α|.

Sometimes it is useful to restrict models of certain cardinalities inside K.

8



Definition 2.1.4. Let S be a class of cardinals, λ be a cardinal.

KS := {M ∈ K : ∥M∥ ∈ S}

Kλ := K{λ}

K≥λ := K[λ,∞)

and similarly for K>λ, K≤λ and K<λ.

Besides the ≤K relation, it is useful to describe mappings between models that respect

≤K:

Definition 2.1.5. Let K be an AEC. A mapping f : M → N is called a K-embedding if

M ∼= f [M ] ≤ N . If f fixes some M0 ≤M pointwise, we write f :M −−→
M0

N .

Hence M ≤ N is equivalent to id : M −→
M

N . Throughout this paper, functions

between models in K are assumed to be K-embedding, and we omit the label of an arrow

if it is the identity. We now look at some nice properties that an AEC may have:

Definition 2.1.6. 1. An AEC K satisfies the amalgamation property (AP ) if for any

M0 ≤ M1, M0 ≤ M2 in K, there is M3 ∈ K such that M1 ≤ M3 and there is a

K-embedding g :M2 −−→
M0

M3.

M2 M3

M0 M1

g

id

id id

2. An AEC K satisfies the joint embedding property (JEP ) if for any M0,M1 ∈ K,

there are M2 ∈ K and g :M1 →M2 with M0 ≤M2.

M0 M2

M1

g

3. An AEC K has no maximal models (NMM) if for any M ∈ K, there is N ∈ K with

M < N .

9



4. An AEC K has arbitrarily large models (AL) if for any infinite cardinal λ, there is

M ∈ K such that ∥M∥ > λ.

Remark 2.1.7. Notice that in the definition of AP , we can equivalently require fi :M0 →

Mi for i = 1, 2, using isomorphic models.

Some AECs do not satisfy NMM as in Remark 2.1.3. Some satisfy AP but not JEP ,

for example the class of algebraically closed fields (without specifying the characteristic).

On the other hand, some satisfy JEP but not AP (adapted from [Bal09, Example 19.2]):

Example 2.1.8. Let L = ⟨P, f, d0, d1⟩, K be the class of models ordered by substructures

such that for each M ∈ K,

1. d0 and d1 are constants.

2. f is a unary coloring function of range {d0, d1}.

3. P is an equivalence relation. Each class has no more than 2 members.

4. f(d0) = d0, f(d1) = d1 and {d0, d1} is one of the classes of P .

We may take a ∈M0, b ∈M1−M2, c ∈M2−M1 such that PM1(a, b), fM1(a) = fM1(b) = d0,

PM2(a, c), fM2(c) = d1. This is also a counterexample of AP for incomplete (universal)

first order theories.

Assuming JEP , AL is equivalent to NMM :

Proposition 2.1.9. Suppose K satisfies JEP . Then it satisfies AL iff it satisfies NMM .

Proof. Let M ∈ K. If K satisfies AL, pick N ∈ K>∥M∥. By JEP there are N ′ ≥ M and

f : N → N ′. Then N ′ > M because ∥N ′∥ ≥ ∥N∥ > ∥M∥.

If K satisfies NMM , let µ be an infinite cardinal. Applying NMM recursively, we

build ⟨Mi : i ≤ µ+⟩ increasing and continuous (see Definition 2.2.15) such that M0 := M .

Then ∥Mµ+∥ ≥ µ+.

10



2.2 GALOIS TYPES

From now on, we assume AP , JEP and NMM for a fixed K.

Unlike first-order logic, we work on semantic types more than syntactic types. A type

still consists of elements realizing it, a domain (a set or a model) and an ambient model.

We first state the definition in [Gro21, Chapter 5.1]:

Definition 2.2.1. 1. For M ≤ N0, M ≤ N1, a ∈ N0, b ∈ N1, we define (a,M,N0) ∼

(b,M,N1) iff there are N2 ≥ N0, f : N1 −→
M

N2 such that f(b) = a.

a ∈ N0 N2

M N1 ∋ b

f

2. We take ≡ to be the transitive closure of ∼.

3. The Galois type of a over M in N0, written as gtp(a/M,N0), is the ≡ equivalence

class of (a,M,N0) (symmetry is guaranteed by isomorphism axioms). We call M the

domain of the type and N the ambient model.

4. A type p = gtp(a/M,N) is algebraic when a ∈M .

5. Let M0 ≤ M1, p = gtp(a/M0, N0) and q = gtp(b/M1, N1). We say q extends p, or

q ⊇ p, if p = q ↾M := gtp(b/M0, N1).

As in Remark 2.1.7, we may require in the second half of Definition 2.2.1(1) that there

are N2, f : N1 −→
M

N2 and g : N0 −→
M

N2 such that f(b) = g(a). The above definition

also applies to (possibly infinite) tuples a and b (in which case “a ∈ M is replaced by

“′ ran(a) ⊆M” and similarly for b). We do not add the tuple sign if the context is clear.

Remark 2.2.2. The definition requires the second element in the triple (a,M,N0) to be a

model (K-substructure of N0), but it still makes sense if we replace M by any set A ⊆ N0.

There are several advantage of doing so:

1. It allows a more general discussion of types over sets as in first-order logic. In par-

ticular, Galois types over sets coincide with syntactic types in a complete first-order

theory.
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2. Non-splitting of types of (finite) sets is a key property in some AECs near ℵ0 when

models are always infinite in size (see [SV18a, Section 5]). Also, we can better adapt

the notion of tameness (see Definition 2.2.11).

3. It extends the definition of independence relations to include sets as domains (see

[Vas16a]). For clarity, we call the relation a nonforking relation if the types have model

domains and an independence relation if the types have set domains (unfortunately

there has been a confusion of terminology, for example [SV18b] used independence

relations in the multidimensional case even though the domains are models).

Moreover, under AP , the second clause of Definition 2.2.1 can be omitted. Note that

we can replace M by a set A ⊆ N0 ∩N1 below:

Proposition 2.2.3. Let (a,M,N0) ≡ (b,M,N1) then (a,M,N0) ∼ (b,M,N1).

Proof. By induction, it suffices to show that if (a,M,N0) ∼ (c,M,N2) ∼ (b,M,N1) then

(a,M,N0) ∼ (b,M,N1). By the definition of ∼, obtain

� N02 ≥ N2, f : N0 −→
M

N02, f(a) = c

� N12 ≥ N2, g : N1 −→
M

N12, g(b) = c.

By AP , obtain f ′ : N02 −→
N2

N01, g
′ : N12 −→

N2

N01 for some N01. Then f ′ ◦ f and g′ ◦ g

witness (a,M,N0) ∼ (b,M,N1) because f
′(f(a)) = f ′(c) = c = g′(c) = g′(g(b)).

a ∈ N0 N02

M N2 ∋ c N01

b ∈ N1 N12

f

f ′

g

g′

Under AP , types also enjoy monotonicity in the ambient model. Again we can replace

M by a set A ⊆ N below.

Proposition 2.2.4. Let M ≤ N1 ≤ N2 and a ∈ N1. Then gtp(a/M,N1) = gtp(a/M,N2).

12



Proof. Assume gtp(b/M,N) = gtp(a/M,N1). Then there are N ′ ≥ N , f : N1 −→
M

N ′ such

that f(a) = b. By AP , we can find N ′′ ≥ N ′, f̃ : N2 → N ′′ such that the following diagram

commutes.

N2 N ′′

a ∈ N1 N ′

M N ∋ b

f̃

f

Then f̃ ⊇ f which sends a to b, and so gtp(b/M,N) ⊆ gtp(a/M,N2).

Conversely, assume gtp(b/M,N) = gtp(a/M,N2). Then obtain N ′ ≥ N , f : N2 −→
M

N ′

such that f(a) = b. Then f ↾ N1 witnesses that gtp(b/M,N) ⊆ gtp(a/M,N1).

N2 N ′

a ∈ N1 f [N1]

M N ∋ b

f

f↾N1

Remark 2.2.5. Along with Löwenheim-Skolem axiom, when we write gtp(a/M,N) we

may assume ∥N∥ ≤ ∥M∥+ |l(a)|.

Now with Galois types defined, we would like to count the number of types and define

stability.

Definition 2.2.6. Let α be a ordinal at least 2, λ be an infinite cardinal, M ∈ K.

1. The collection of (< α)-ary types over M is given by

gS<α(M) := {gtp(a/M,N) : a ∈ N, l(a) < α,N ≥M}

2. K is (< α)-stable in λ if |gS<α(M)| = λ for all ∥M∥ = λ.

3. K is (< α) stable if there exists an infinite µ such that K is (< α)-stable in µ.

13



When we omit α, we mean α = 2.

Remark 2.2.7. � In the first clause, we may extend the definition to types over sets.

For sets of cardinality above LS(K), it does not matter because we will have a monster

model (see Section 2.4) and use Löwenheim-Skolem axiom. However, it will be useful

to count types over sets of cardinality below LS(K) (see [Vas16c, Remark 3.4] or

Chapter 4 Section 7).

� In the second clause, we may equivalently require |gS<α(M)| ≤ λ because there are

at least λ many algebraic types.

Type counting in AECs is generally difficult because the types may not be syntactic

or have finite character. Still, we have the usual upper bounds:

Proposition 2.2.8. Let λ ≥ |L(K)|, then I(K,λ) ≤ 2λ. That is, there are at most 2λ

non-isomorphic models in Kλ.

Proof. If M ̸∼= N ∈ Kλ, then for any enumerations m̄ = ⟨mi : i < λ⟩ of M , n̄ = ⟨ni : i < λ⟩

of N , m̄ ̸∼= n̄. There are λλ = 2λ many enumerations.

If m̄ ̸∼= n̄, there are two cases (constants are treated as a 0-ary function in the follow-

ing):

1. There is a function f ∈ L(K), a finite I ⊆ λ, j ∈ λ such that f(m̄I) = mj (see

Definition 2.2.11(1)) but f(n̄I) ̸= nj, or vice versa. There are at most |L(K)| ≤

LS(K) ≤ λ-many choices for f , λ<ω = λ-many for I and j. In total there are

2λ-many choices to decide the (in)equalities of the functions.

2. There is a predicate R ∈ L(K), a finite I ⊆ λ such that RM [m̄I ] but ¬RN [n̄I ], or

vice versa (here we assume that the first case does not occur and can substitute the

function values directly). There are at most |L(K)| ≤ LS(K) ≤ λ-many choices for R,

λ<ω = λ-many for I. In total there are 2λ-many choices for satisfaction of predicates.

Thus there are at most 2λ possibilities to cause m ̸∼= n.

We have showed I(K,λ) · 2λ ≤ 2λ, hence the result.
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Proposition 2.2.9. Let K be an AEC in a finitary language, α be an ordinal. For any

M ∈ K,

|gSα(M)| ≤ 2LS(K)+∥M∥+|α|

Proof. By adding constants to each element in M , it suffices to show that

|gSα(∅)| ≤ 2LS(K)+|α|

By Remark 2.2.5 we may assume the ambient models of the types in gSα(∅) to have size

λ := LS(K) + |α|. Two types are equal if the ambient models are isomorphic and an

isomorphism maps the realizations of the types from one to another. Thus to give an

upper bound to |gSα(∅)|, it suffices to count the number of non-isomorphic models (≤ 2λ

by Proposition 2.2.8), and then count the number of α-sequences in a model (λα ≤ λλ = 2λ).

In total there are at most 2λ many choices as desired.

Remark 2.2.10. � In general if K does not have AP , we can still repeat the above

proof by more book-keeping.

� If K has a (< µ)-ary language (or more generally K is a µ-AEC), then we can bound

I(K,λ) ≤ 2λ
<µ
, |gS<α(M)| ≤ 2(LS(K)+∥M∥+α)<µ

but we have no use of these results in

this paper.

Grossberg and VanDieren isolated a nice property of types, called tameness, in

[GV06b, Section 3] and later Boney defined a dual version called shortness in [Bon14b,

Definition 3.3]. These notions bring an AEC closer to a complete first-order theory.

Definition 2.2.11. Let κ be an infinite cardinal.

1. Let p = gtp(a/M,N) where a = ⟨ai : i < α⟩ may be infinite, I ⊆ α, M0 ≤ M . We

write p ↾M0 := gtp(a/M0, N), aI = ⟨ai : i ∈ I⟩ and pI := gtp(aI/M,N).

2. K is (< κ)-tame for (< α)-types if for any M ∈ K, any p ̸= q ∈ gS<α(M), there is

N ≤M , ∥N∥ < κ with p ↾ N ̸= q ↾ N . We omit (< α) if α = 2.

3. K is (< κ)-short if for any α ≥ 2, M ∈ K, p ̸= q ∈ gS<α(M), there is I ⊆ α, |I| < κ

with pI ̸= qI .
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4. κ-tame means (< κ+)-tame. Similarly for shortness.

Remark 2.2.12. � We should check that the first clause is well-defined (using the fact

that f [M ] =M implies f [M0] =M0; f(a) = b implies f(aI) = bI).

� As usual, we can require tameness and shortness to apply to types over sets.

� It is possible to define finer versions of tameness and shortness (see [Bal09, Chapter

11]), but we have no use of them here.

� (< κ)-short implies (< κ)-tame for (< κ)-types
(
using the fact that gtp(a/M,N0) ̸=

gtp(b/M,N1) implies gtp(aM/∅, N0) ̸= gtp(aM/∅, N1)
)
.

� Fortunately the natural examples of AECs all have tameness (even ℵ0 or ℵ1-tame).

Complete first-order theories are < ℵ0-tame. Readers may consult [BV15b, Section

3.2] for more examples (and counterexamples).

A notion that is related to stability is the order property: there are several versions

and one has to be careful with the quantifiers involved.

Definition 2.2.13. Let µ be an infinite cardinal, α ≥ 2 and β ≥ 1 be ordinals.

1. K has β-order property of length µ if there exists some ⟨ai : i < µ⟩ ⊆ M ∈ K such

that l(ai) = β, and for i0 < i1 < µ, j0 < j1 < µ, gtp(ai0ai1/∅,M) ̸= gtp(aj1aj0/∅,M).

2. K has (< α)-order property of length µ if there is a β < α witnessing (1).

3. K has (< α)-order property if for all µ, K has (< α)-order property of length µ. In

other words, if we fix µ, we can find a suitable βµ witnessing (1).

4. K satisfies no (< α)-order property (N(< α)-OP ) if (3) fails. In other words, for

each β < α, there is an upper bound to the length of β-order property. We omit

(< α) if α = 2.

Remark 2.2.14. If K has (< α)-order property, we can fix β < α such that K has β-order

property.
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Definition 2.2.15. K has weak order property of length κ if there are M ∈ K<κ, N ≥M ,

⟨ai, bi : i < κ⟩ ⊆ N , p ̸= q ∈ gS<κ(M) such that

1. If i ≤ j < κ, then gtp(aibj/M,N) = p.

2. If j < i < κ, then gtp(aibj/M,N) = q.

Notice that we fix the sequences to be of length κ and the type-lengths and the domain

to be < κ. The reason is that such property (along with other hypotheses) is already enough

to deduce symmetry in nonforking relations (see Chapter 5 Section 5).

2.3 SATURATED AND UNIVERSAL MODELS

From this section onwards, we will frequently use resolutions and chain arguments.

Definition 2.3.1. LetM ∈ K, ∥M∥ = λ ≥ LS(K). A resolution ofM is a chain of models

⟨Mi : i < λ⟩ such that M =
⋃

i<λMi, Mi ≤ M , ∥Mi∥ ≤ |i| + LS(K). Unless otherwise

specified, we assume the chain is

� increasing : For all i < λ, Mi < Mi+1; and

� continuous : for any limit ordinal δ < λ,
⋃

i<δMi =Mδ.

As in first-order logic, a (Galois-)saturated model is a model which realizes all (Galois)

types over small domains.

Definition 2.3.2. Let λ > LS(K). M ∈ K is λ-saturated if for any N ≤ M , |N | < λ,

p ∈ S(N), then M realizes p. M is saturated if it is ∥M∥-saturated.

Related properties of saturated include universal and model homogeneous.

Definition 2.3.3. Let λ > LS(K), N ≤M ∈ K.

1. M is λ-universal if for any M ′ ∈ K<λ, there is f : M ′ → M . M is universal if it is

∥M∥+-universal.

2. M is universal over N if for any N ′ ≥ N , ∥N ′∥ ≤ ∥M∥, there is f : N ′ −→
N
M .
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3. M is λ-model homogeneous if it is universal over any M ′ ≤M with ∥M ′∥ < λ. M is

model homogeneous if it is ∥M∥-model homogeneous.

Notice that when we omit the parameter λ in (1) and (2), we allow models of the same

size. For (3), we consider models of smaller sizes. We can weaken the definition of model

homogeneous by restricting ∥N ′∥ < ∥M∥:

Proposition 2.3.4. The following are equivalent:

� M is model homogeneous.

� For any N ≤ M with ∥N∥ < ∥M∥, any N ′ ≥ N with ∥N ′∥ < ∥M∥, there is

f : N ′ −→
N
M .

Of course we cannot simply replace ∥M∥ by ∥M∥+ in the original definition of model

homogeneous, because we may takeM ′ =M and someM ′′ > M ′ that cannot be embedded

to M fixing M ′.

Proof. We prove the backward direction. Let ∥M∥ = λ > LS(K). We only need to consider

the case where ∥N ′∥ = ∥M∥. Take a resolution of N ′ = ⟨Ni : i < λ⟩ with N0 = N . We

build an increasing continuous chain of embeddings ⟨fi : Ni −→
N

M | i ≤ λ⟩. The desired

embedding will be fλ.

Suppose fi : Ni −→
N

M is defined, we build fi+1. Let Pi be the image of Ni, and Pi+1

be the isomorphic copy of Ni+1 witnessed by f ′
i ⊇ fi, which fixes N . By universality, there

is g : Pi+1 −→
N
M . Define fi+1 := g ◦ f ′

i : Ni+1 −→
N
M .

N ′ M

Ni+1 Pi+1

Ni Pi

N

f ′
i

∼=
g

fi
∼=
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At first glance, the difference between λ-universal and λ-model homogeneous is that

the latter always specifies a common model smaller than λ. We show that under JEP ,

λ-model homogeneous is a stronger condition.

Proposition 2.3.5. If M ∈ K is λ-model homogeneous, then M is also λ-universal.

Proof. Let N ∈ K<λ. Pick M0 ≤ M with ∥M0∥ = ∥N∥. By JEP , there are N ′ ≥ M0 and

f : N → N ′ such that ∥N ′∥ = ∥N∥ < λ. By model homogeneity, there is g : N ′ −−→
M0

M .

Hence g ◦ f : N →M as desired.

M

N ′

N M0

g

f

Remark 2.3.6. The converse does not hold, namely we can consider the first-order theory

of dense linear orders. Since countable dense linear orders are isomorphic, Q × ω1 is ℵ1-

universal. But there is no embedding from Q×{−1, 0} fixing Q×{0}. Therefore one has to

be careful of embeddings with/without fixing a substructure. On the other hand, there are

two notions of uniqueness of limit models (Definition 2.3.9), where one fixes a base while

the other does not. They turn out to be equivalent under a monster model and tameness

(see Chapter 5 Section 8).

We now show a classical result of Shelah [She09a, II 1.14] that a model is saturated

iff it is model homogeneous. We adapt the proof in [Gro21, Chapter 5.2] which is more

diagrammatic. It only uses AP .

Proposition 2.3.7. Let λ > LS(K), M ∈ K. M is λ-saturated iff it is λ-model homoge-

neous.

Proof. ⇐: Let N ≤ M with ∥N∥ < ∥M∥. Let p = gtp(a/N,N ′) ∈ S(N). By Löwenheim-

Skolem axiom, we may assume ∥N ′∥ = ∥N∥. By model homogeneity, there is f : N ′ −→
N
M .

Then f(a) ∈M realizes p.

⇒: Let N ≤M , N ≤ N ′ both of size µ < λ. Enumerate N ′ = ⟨ai : i < µ⟩. We define
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� ⟨N i
0 ≤ N i

1 ∈ Kµ, fi : N
i
0 −→

N
M : i ≤ µ⟩ increasing and continuous

� N0
0 := N , N0

1 := N ′, f0 := idN

� ai ∈ N i+1
0

If done, fµ : Nµ
0 −→

N
M with N ′ ≤ Nµ

0 . We explain the construction of the successor stage:

1. Let M i
0 := fi[N

i
0] ≤M . Since N i

0 ≤ N i
1, we can extend fi to g : N

i
1
∼=N M i

1 ≥M i
0. By

λ-saturation of M , there is bi ∈ M realizing gtp(ai/M
i
0,M

i
1). By Löwenheim-Skolem

axiom, obtain M i+1
0 ≤M such that ∥M i+1

0 ∥ = µ and {b} ∪M i
0 ⊆M i+1

0 .

ai ∈ N i
1 M i

1 M

M i+1
0 ∋ bi

N i
0 M i

0

g

∼=

fi
∼=

2. Since bi realizes gtp(ai/M
i
0,M

i
1) (and AP ), there are M i+1

1 ∈ Kµ and h : M i
1 −−→

M i
0

M i+1
1 ≥M i+1

0 with h(g(ai)) = b.

M i+1
1

ai ∈ N i
1 M i

1 M

M i+1
0 ∋ bi

N i
0 M i

0

g

∼=

h

fi
∼=

3. Since h ◦ g : N i
2 −→

N
M i+1

1 , we can extend it to an isomorphism ĥ ◦ g : N i+1
2

∼=N M i+1
1

where N i+1
2 ≥ N i+1

1 . Define fi+1 to be the restriction of ĥ ◦ g with codomain M i+1
0 .

Call its domain N i+1
0 which contains ai because b ∈M i+1

0 .
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N i+1
1 M i+1

1

ai ∈ N i
1 M i

1 M

ai ∈ N i+1
0 M i+1

0 ∋ bi

N i
0 M i

0

ĥ◦g
∼=

g

∼=

h

fi+1

∼=

fi
∼=

Remark 2.3.8. In the proof we fixed N and built ⟨M i
0 : i < µ⟩ inside M such that

M i+1
0 realizes a specific type over M i

0. Therefore, the same construction can take place if

M =
⋃

i<µM
i such that M0 := N and M i+1 realizes all types of M i.

A weaker version of saturated models is called limit models.

Definition 2.3.9. Let λ ≥ LS(K), N ≤ M ∈ Kλ, δ < λ+ be a limit ordinal. M is (λ, δ)-

limit over N if there is ⟨Mi ∈ Kλ : i ≤ δ⟩, M0 = N , Mδ = M and Mi+1 is universal over

Mi for all i.

Sometimes we may not be able to construct a saturated model in a specific cardinality,

but under stability assumption, limit models exist.

Proposition 2.3.10. Let K be λ-stable, N ∈ Kλ, δ < λ+. There is a (λ, δ)-limit model

M over N .

Proof. It suffices to show that there is a universal model M over N in Kλ. We define

⟨Mi ∈ Kλ : i < λ⟩, with M0 = N , Mi+1 realizing all types over Mi (which is possible by

stability). Then M :=Mλ is universal over N by Remark 2.3.8 (replace µ there by λ).

While saturated models of the same size are isomorphic by a back-and-forth argument,

a similar version can be said for limit models (over the same model) of the same length.

Proposition 2.3.11. Let δ < λ+. Let M1,M2 be (λ, δ)-limit models over N , witnessed by

⟨M l
i : i ≤ δ⟩, l = 1, 2. Then there are ⟨fi :M1

2i −→
N
M2

2i+1 : i < δ⟩ and ⟨gi :M2
2i+1 −→

N
M1

2i+2 :

i < δ⟩ such that
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� Both fi, gi are increasing and continuous.

� fi
−1 ⊆ gi and gi

−1 ⊆ fi+1 (where we restrict the codomains of fi and gi to be isomor-

phic to their domains).

� fλ :M1 ∼=N M2 and gλ = fλ
−1

Proof. The last point is guaranteed by the first two points. So it suffices to define the

successor stages. We assume fi, gi are defined and continue to build fi+1. The case for gi+1

will be symmetric.

Consider gi : M
2
2i+1

∼=N gi[M
2
2i+1] ≤ M1

2i+2, we can build an isomorphic copy of M1
2i+2

over M2
2i+1. Namely, we extend gi

−1 to h :M1
2i+2

∼=N M for some M ≥M2
2i+1. As M

2
2i+3 is

universal over M2
2i+1, there is k : M −−−→

M2
2i+1

M2
2i+3. Define fi+1 := k ◦ h : M1

2i+2 −→
N

M2
2i+3,

which extends gi
−1 because h does so and k does not change M2

2i+1.

M2
2i+3

M1
2i+2 M

gi[M
2
2i+1] M2

2i+1

M1
2i+1

fi+1

h k

gi
∼=

In the above proof we require the subscripts of M1 and M2 to keep increasing under

fi and gi, but it is just for convenience (we could have required gi : M
2
2i+1 −→

N
M1

2i+1 for

example). Also, the construction only depends on the cofinality of δ, so we can state a

slightly stronger version:

Proposition 2.3.12. Let δ1, δ2 < λ+ with cf(δ1) = cf(δ2). Let M l be (λ, δl)-limit models

over N for l = 1, 2. Then M1 ∼=N M2.

Proof. For l = 1, 2, obtain witnesses of limit models ⟨M l
i : i ≤ δl⟩ and reduce the chain to

⟨M l
i : i ≤ cf(δl)⟩. Then apply the previous proof.
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2.4 MONSTER MODEL

In the definition of a Galois type, say p = gtp(a/M,N), we need to specify the bigger

model N which contains both a and M . It can get quite tedious to keep track of the bigger

models all the time when we discuss many types in a proof. The same can be said for the

ambient models in nonforking/independence relations. When we have a monster model, it

saves us a lot of book-keeping and shows the idea of the proof more clearly.

Definition 2.4.1. A monster model C ∈ K is a sufficiently saturated and universal model

such that every model M ∈ K considered in a proof satisfies ∥M∥ < ∥C∥.

If we need to prove a statement Pµ for a proper class of cardinals µ, we simply build

a proper class of monster models of increasing saturation. Then to prove a specific Pµ, we

work in a saturated and universal enough monster model.

The existence of monster models is guaranteed by AP + JEP + NMM , which we

always assume in this paper. We state a relevant result:

Proposition 2.4.2. Assume K satisfy AP . The following are equivalent:

1. For every κ > LS(K), there is a κ-saturated and κ-universal model.

2. K satisfies JEP +NMM .

Proof. ⇐: Pick any M0 ∈ K2κ , we extend M0 to a κ-saturated model: use Proposition

2.2.9 and AP recursively to define

� ⟨Mi ∈ K2κ : 2 ≤ i ≤ κ+⟩ increasing and continuous.

� For 2 ≤ i ≤ κ, for N ≤Mi with |N | < κ, Mi+1 realizes all types in S(N).

We show that Mκ+ is κ-saturated. Pick any N ≤ Mκ+ of size less than κ. As

cf(κ+) ≥ κ, we can find i < κ+ such that N ≤ Mi (using coherence axiom). But types in

S(N) are already realized in Mi+1 ≤Mκ+ .

By Proposition 2.3.7, Mκ+ is κ-model homogeneous. By Proposition 2.3.5, it is also

κ-universal.
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⇒: Let M1,M2 ∈ K<κ for some κ. Pick a κ-saturated and κ-universal model C. Then

there are gi : Mi → C for i = 1, 2. Fix a ∈ C − g1[M1]. By Löwenheim-Skolem axiom, we

can find N ∈ K<κ such that N ≤ C, {a} ∪ g1[M1] ∪ g2[M2] ⊆ N , which witnesses JEP .

Since a ∈ g1[M1], g1[M1] < N . Extend g1 to an isomorphism g′1 of codomain N . Then

g′1
−1[N ] is a proper extension of M1.

In the right-to-left direction, we could have replaced 2κ and κ+ by some λ = λ<κ

(which guarantees cf(λ) ≥ κ so we can still proceed with the cofinality argument).

If we do not assume AP , we need to be careful of the definition of saturation (whether

an element realizes a type by ∼ or by ≡ as in Definition 2.2.1). Also, the left-to-right

direction of the proof of Proposition 2.3.7 breaks down if we do not assume AP . An

alternative is to replace “saturated” by “model homogeneous” in Definition 2.4.1. We stick

to “saturated” because we will assume AP and the notion is closer to the first-order version.

When we work in a monster model, a good practice is to verify whether every

notion makes sense inside a monster model. For example, types work fine because

AP already implies the equality of types over different ambient models, which come

from a two-dimensional amalgam. If we want to consider multidimensional amalgama-

tions/independence relations, AP (over single models) is not sufficient (see [SV18b] or

Chapter 6). Either one works harder (perhaps with non-ZFC axioms) to derive a higher

dimensional AP , or one simply assumes stronger forms of amalgamation in place of the

usual AP .

2.5 DIRECTED AND COHERENT SYSTEMS

When building a resolution of a model M , say ⟨Mi : i < ∥M∥⟩, we use Löwenheim-

Skolem axiom to get models of increasing sizes. One can also break down a model into

small models of the same size, via a directed system. Readers can also consult [She09a, II

1.23] and [Gro21, Chapter 2 Theorem 2.7].

Definition 2.5.1. Let ⟨I,≤⟩ be a preorder. It is directed if for any r, s ∈ I, there is t ∈ I

with t ≥ r and t ≥ s.

Proposition 2.5.2. Let M ≤ N ∈ K. There is a directed system ⟨I,≤⟩ and ⟨Mi : i ∈ I⟩
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such that

1. Mi ∈ KLS(K) for all i ∈ I.

2. If i ≤ j in I, then Mi ≤Mj ≤ N .

3. M =
⋃

i∈I Mi

Conversely, if ⟨I,≤⟩, and ⟨Mi : i ∈ I⟩ satisfy the above points, then M ∈ K and M ≤ N .

Proof. For the forward direction, let ⟨Ai : i ∈ I⟩ list the finite subsets of M and order

them by inclusion: i ≤I j iff Ai ⊆ Aj. We define Mi inductively on the cardinality of Ai.

When |Ai| = 1, apply Löwenheim-Skolem axiom to obtainMi ∈ KLS(K),Mi ≤M ,Mi ⊇ Ai.

When |Ai| > 1, we do the same with the additional requirement thatMi ⊇
⋃
{Mj : j <I i}.

Mi is still in KLS(K) because there are finitely many j <I i. Coherence guaranteesMj ≤Mi

for j < i. M ⊆
⋃
{Mi : i ∈ I} because each a ∈ M is inside the singleton {a}, which is

listed as some Ai ⊆Mi.

For the reverse direction, we prove by induction. If |I| is finite, thenM =Mmax(I) ≤ N

and is in KLS(K). If |I| = ℵ0, then we can write I = ω (perhaps with a different ordering

than the usual one). Obtain a function f : ω → I such that f(0) = 0 and f(i) ≥I f(i− 1)

and f(i) ≥I i for i ≥ 1. Then ⟨Mf(i) : i < ω⟩ is an increasing chain and the chain axioms

guarantee M ∈ KLS(K), M ≤ N . Also Mi ≤Mf(i) ≤M .

Inductively assume the reverse direction is true for |I| < ℵα where α ≥ 1. Let |I| = ℵα.

Build ⟨Ik : k < ωα⟩ such that

� |Ik| < ℵα

� Ik is increasing and continuous in k

� Ik is directed suborder of I

� I =
⋃

k<ωα
Ik

The construction is possible, for example, by applying first-order Löwenheim-Skolem The-

orem to ⟨I,≤⟩. By inductive hypothesis, Mk :=
⋃

i∈Ik Mi ∈ K and Mk ≤ N . When
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k < k′ < ωα, the same argument (by taking N = Mk′) gives Mk ≤ Mk′ . Hence

⟨Mk : k < ωα⟩ is increasing and continuous. By chain axioms, M ′ :=
⋃

k<ωα
Mk ∈ K

and M ′ ≤ N . It remains to check M =M ′: both are the union of Mi over all i ∈ I.

Remark 2.5.3.

1. Since for any κ ≥ LS(K), ⟨K≥κ,≤K⟩ is still an AEC with LS(⟨K≥κ,≤K⟩) = κ, we

could have broken down M into a directed system of models of size κ instead.

2. The proposition also shows that KLS(K) determines K≥LS(K). In particular, M ≤

N ∈ K≥LS(K) iff there are directed systems ⟨Mi : i ∈ I⟩ and ⟨Nj : j ∈ J⟩ for M,N

respectively such that for any Mi there is some Nj ≥Mi.

In first-order theories, we can take the union of a chain of types, which is still consistent

by compactness. In AECs, as types are not syntactic, we need to build coherent systems

to extend types beyond the limit stage (for successor stage, we can simply use AP ). We

follow the formulation in [Bon14a, Section 5]. See also [Bal09, Chapter 11] but the arrows

there point in backward directions.

Definition 2.5.4. Let α be an ordinal, ⟨Mi : i < α⟩ and p = ⟨pi ∈ gS(Mi) : i < α⟩ be

increasing. We say p is coherent when

� For each i < α, there are some ai and Ni such that pi = gtp(ai/Mi, Ni).

� There are ⟨fi,j : Ni −→
Mi

Nj | i < j < α⟩ with fi,j(ai) = aj for i < j < α.

� For i < j < k < α, fj,k ◦ fi,j = fi,k.

We say ⟨ai, fi,j : i < j < α⟩ is a coherent system witnessing the coherence of p.

We first show that a type extension generates a coherent system.

Proposition 2.5.5. If there is pα ∈ gS(Mα) extending all pi ∈ gS(Mi) where Mα ≥⋃
i<αMi, then it generates a coherent system ⟨fi,j : i < j ≤ α⟩ for p ∪ {pα}.

Proof. Let pi = gtp(ai/Mi, Ni) for i < α. Recursively build ⟨gi, N ′
i : i < α⟩ such that
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1. N ′
i is increasing in i (perhaps not continuous)

2. aα ∈ N ′
i for all i < α.

3. gi : Ni
∼=Mi

N ′
i , g(ai) = aα

N ′
0 N ′

1 N ′
2 N ′′

γ N ′
γ

aα ∈ Nα N0 ∋ a0 N1 ∋ a1 N2 ∋ a2 Nγ ∋ aγ

Mα M0 M1 M2 Mγ

⋃
g0 ∼= g1 ∼= g2 ∼= gγ ∼=

For base stage and successor stage, we use type equality of aα and ai. Expand Ni so

that gi is an isomorphism. For limit stage, let γ be a limit ordinal. We define N ′′
γ :=

⋃
i<γ N

′
i

and apply type equality to aα ∈ N ′′
γ and aγ ∈ Nγ. Expand Nγ so that gγ is an isomorphism.

We can read ⟨fi,j : i < j ≤ α⟩ from the diagram: for i < j < α, let fi,j := gj
−1 ◦gi.

Remark 2.5.6. If we also want fi,α or even fi,j for j < i, it suffices to replace Nα and all

N ′
i in the above proof by

⋃
i<αN

′
i . Then expand each Ni to maintain gi be isomorphisms.

It is always possible to extend an omega chain of types even without using coherent

systems:

Proposition 2.5.7. Let ⟨pi ∈ gS(Mi) : i < ω⟩ be increasing. Then there is pω ∈

gS(
⋃

i<ωMi) extending all pi. Moreover, we can define ⟨fi,j : i < j ≤ ω⟩ to give a co-

herent system.

Proof. Let Mω :=
⋃

i<ωMi. We build the following (part (b)’s are optional):

N ′
2 N ′

3 N ′
ω

N ′
1 = N01 N12 N23 Nω ∋ aω

a0 ∈ N ′
0 = N0 a1 ∈ N1 a2 ∈ N2 a3 ∈ N3

M0 M1 M2 M3 Mω

g2 g3 ∼=

g0 h12
g1

h23 ⋃
gi↾Mi
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1. N ′
0 := N0

2. (a) By type equality obtain g1 : N1 −−→
M0

N01 with N01 ≥ N ′
0 and g1(a1) = a0. Set

N ′
1 := N01, g0 := id : N ′

0 → N ′
1.

(b) Expand N1 so that g1 is an isomorphism.

For i ≥ 1,

3. (a) By type equality obtain hi,i+1 : Ni −→
Mi

Ni,i+1 with Ni,i+1 ≥ Ni+1 and hi,i+1(ai) =

ai+1.

(b) Replace Ni+1 by Ni,i+1.

4. (a) By AP , obtain gi+1 : Ni,i+1 → N ′
i+1 with N ′

i+1 ≥ N ′
i and gi ↾ Ni = gi+1 ◦ hi,i+1 ↾

Ni.

(b) Expand Ni,i+1(= Ni+1) so that gi+1 is an isomorphism.

5. Let N ′
ω :=

⋃
i<ωN

′
i . Define

⋃
i<ω gi ↾ Mi : Mω → N ′

ω. Extend the embedding to an

isomorphism Nω
∼= N ′

ω. Let aω := (
⋃

i<ω gi ↾Mi)
−1(a0) ∈ Nω.

We verify that
⋃

i<ω gi ↾ Mi : is well-defined and pω := gtp(aω/Mω, Nω) is the desired

extension. Since the diagram commutes, g0 ↾ M0 = g1 ↾ M0. For i ≥ 1, gi+1 ◦ hi,i+1 ↾ Ni =

gi ↾ Ni by (4) and Ni ≥ Mi, so it suffices to check hi,i+1 fixes Mi, which is true by (3).

Chasing the diagram via the northwest and southeast routes from each Mi, we see that

pω ⊇ pi.

By Proposition 2.5.5 and the remark that follows, we can derive ⟨fi,j : i < j ≤ ω⟩.

Alternatively, we could have included part (b)’s in the above steps, and set

� fi,j := hi,j for 1 ≤ i < j < ω.

� f0,j := gj
−1 for 0 < j < ω.

� fi,ω := (
⋃

i<ω gi ↾Mi)
−1 ◦ gi for i < ω.

which gives a similar diagram as in the previous proposition.
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Remark 2.5.8. � The proof in [Bal09, Theorem 11.1] works in C, and define gi to be i-

many compositions of automorphisms of C. There one should be careful of restricting

gi to Mi before taking the union. Here we do not use any monster model to avoid

sending embeddings to automorphisms of C and then restricting them to smaller

models.

� We could have combined the last statement of the proposition and the next result to

find pω, but here the coherent system comes after pω is obtained.

Beyond omega stage, we need coherent systems to extend types.

Proposition 2.5.9. Let p be given as in Definition 2.5.4. Then there is pα ∈ gS(Mα)

extending all pi for i < α. We can also extend the coherent system to the α-stage.

We call ⟨aα, fi,α : i < α⟩ the direct limit (or more accurately the directed colimit) of

the system.

Proof. If α is a successor, then we can apply AP to get aα ∈ Nα ≥ Mα and fα−1,α :

Nα−1 −−−→
Mα−1

Nα which sends aα−1 to aα. Then pα := gtp(aα/Mα, Nα) extends pα−1 which

extends the rest of the types. For i < α− 1, we can define fi,α := fα−1,α ◦ fi,α−1.

aα−1 ∈ Nα−1 Nα ∋ aα

Mα−1 Mα

fα−1,α

If α is a limit, there are two cases: Mα =
⋃

i<αMi or Mα >
⋃

i<αMi. In the first case,

we build

� ⟨N ′
i : i < α⟩ increasing, N ′

0 := N0, N
′ :=

⋃
i<αN

′
i .

� ⟨fi,0 : Ni
∼= N ′

i : i < α⟩. Write f0,i := fi,0
−1 which extends fj,i ◦ f0,j coherently for

any 0 < j < i.

N ′
0 N ′

1 N ′
2 N ′

i N ′
i+1

N0 N1 N2 Ni Ni+1

M0 M1 M2 Mi Mi+1

f0,i ∼= f0,i+1 ∼=
f0,1 f1,2

f1,0 ∼= f2,0 ∼=
fi,i+1
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Suppose stage i is finished, then we have fi,0 : Ni
∼= N ′

i . Since N
′
i
∼= Ni

∼= fi,i+1[Ni] ≤

Ni+1, we can extend this isomorphism to f0,i+1 : N
′
i+1

∼= Ni+1. As fj,i ◦ f0,j is extended by

f0,i for j < i and fi,i+1 ◦ f0,i = f0,i+1 ↾ N ′
i+1, we obtain fj,i+1 ◦ f0,j = fi,i+1 ◦ (fj,i ◦ f0,j) is

extended by f0,i+1. Coherence is also guaranteed by fi,i+1 ◦ f0,i = f0,i+1 ↾ N ′
i+1.

Suppose stage j is finished for each j < i where i < α is a limit ordinal. Consider

fj,i ◦ f0,j : N ′
j
∼= fj,i[Nj] ≤ Ni for j < i, we check that it is increasing in j. Let k < j < i,

we have

fk,i ◦ f0,k ↾ N ′
k = (fj,i ◦ fk,j) ◦ f0,k ↾ N ′

k by coherence of the original system

= fj,i ◦ (fk,j ◦ f0,k) ↾ N ′
k

= fj,i ◦ f0,j ↾ N ′
k by coherence in inductive hypothesis

Therefore the following is well-defined:

k :=
⋃
j<i

(fj,i ◦ f0,j) :
⋃
j<i

N ′
j
∼=

⋃
j<i

fj,i[Nj] ≤ Ni

Extend this isomorphism to f0,i : N ′
i
∼= Ni, where N ′

i ≥
⋃

j<iN
′
j. This completes the

recursive construction.

N ′
k N ′

j

⋃
j<iN

′
j N ′

i N ′

Nk Nj Ni Nα ∋ aα

Mk Mj Mi Mα

f0,k f0,j
k f0,i

⋃
f0,α

fk,j

fk,i

fj,i
f

Consider f :=
⋃

i<α fi,0 ↾Mi :Mα → N ′. As in the limit step above, f is well-defined.

Extend f to an isomorphism fα,0 : Nα → N ′. Write f0,α := fα,0
−1 and aα := f0,α(a0). The

type pα := gtp(aα/Mα, Nα) extends all pi because we can chase the diagram towards N ′.

In the second case, reindex Mα to Mα+1 and define new Mα :=
⋃

i<αMi. Then apply

the first case (to obtain Nα and aα) and then the successor case.

Remark 2.5.10. � In [Bal09, Theorem 11.3(1)], since the arrows are backward there,

one can skip to the last two paragraphs of the above proof. Here we have a forward
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coherent system and need to make sure that the backward direction constructed is

also coherent (even when working in C).

� If we are given a chain of types ⟨pi : i < δ⟩ where δ > ω, it is not clear that the

chain is witnessed by a coherent system. In other words, we do not know if pω is

generated by the coherent system ⟨ai, fi,j : i < j < ω⟩ constructed in Proposition

2.5.7. If we have a chain of non-forking types and the nonforking relation satisfies

continuity and uniqueness, then we can guarantee pγ is generated by the coherent

system ⟨ai, fi,j : i < j < γ⟩ where γ is a limit ordinal [Bon14a, Proposition 5.2]. In

Chapter 5 we make use of this idea to generalize superstability results by assuming

continuity of nonsplitting (nonsplitting is used to construct a nonforking relation).
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CHAPTER 3

HANF NUMBER OF THE FIRST STABILITY CARDINAL IN AECS

ABSTRACT

We show that ℶ(2LS(K))+ is the lower bound to the Hanf numbers for the length of

the order property and for stability in stable abstract elementary classes (AECs). Our

examples satisfy the joint embedding property, no maximal model, (< ℵ0)-tameness

but not necessarily the amalgamation property. We also define variations on the order

and syntactic order properties by allowing the index set to be linearly ordered rather

than well-ordered. Combining with Shelah’s stability theorem, we deduce that our

examples can have the order property up to any µ < ℶ(2LS(K))+ . Boney conjectured

that the joint embedding property is needed for two type-counting lemmas. We solved

the conjecture by showing it is independent of ZFC. Using Galois Morleyization, we

give syntactic proofs to known stability results assuming a monster model.

3.1 INTRODUCTION

Semantic order properties (Definition 3.3.2) in abstract elementary classes (AECs)

are defined in terms of (semantic) Galois types instead of formulas. They are analogs to

syntactic order properties in first-order and infinitary logics. In [She72], Shelah showed

that in Lλ+,ω the (syntactic) order property of length ℶ(2λ)+ implies the order property

of arbitrary length. In [GS86], Grossberg and Shelah introduced the Hanf number of the

order property of Lλ+,ω and later [GS98, Theorem 2.8] gave a lower bound as ℶλ+ . These

bound the Hanf number of order property between ℶλ+ and ℶ(2λ)+ . However, the example

for the lower bound does not readily generalize to (semantic) order properties of AECs.

Shelah [She99, Claim 4.6] hinted that the upper bound of the order property in AECs is

ℶ(2LS(K))+ but it was not known whether it is tight. We present examples (Corollary 3.6.8)

that ℶ(2LS(K))+ is exact. Our examples satisfy the joint embedding property, no maximal

model and (< ℵ0)-tameness but the amalgamation property fails. It is open whether the

bound can be lowered when one assumes the amalgamation property.

Vasey [Vas16c] extended Shelah [She71], Grossberg and Lessmann’s [GL02] results to
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AECs and showed that assuming the amalgamation property and tameness, the first stabil-

ity cardinal is bounded above by ℶ(2LS(K))+ . It is open whether this bound can be lowered

under the amalgamation property. Our examples, which do not satisfy the amalgamation

property, show that the lower bound in general is at least ℶ(2LS(K))+ . From instability, we

can apply Vasey’s techniques (which are based on [She09b, V.A.]) to derive the order prop-

erty. This provides an alternative way other than finding the witnesses directly. It is open

whether the amalgamation property can lower the bound for the first stability cardinal.

Vasey’s result above relies on one direction of [Bon17, Theorem 3.1], which does not

use the joint embedding property. The other direction involves lemmas that assume the

joint embedding property, which Boney suspected to be necessary. As a side product of our

construction, we show in Corollary 3.4.4 that the need for the joint embedding property

is independent of ZFC; and we find an example and a counterexample under different set

theoretic assumptions.

In Section 2, we state our notations and definitions. We also give a shorter proof

to Boney’s result to motivate Corollary 3.4.4. In Section 3, we review results concerning

stability and the order property. We give more details for the proof of [She99, Claim 4.6].

In Section 4, we construct our main examples in Proposition 3.4.1 which set a lower bound

to stability and a variation of the order property for stable AECs. The variation of the

order property is slightly more general by allowing the index set to be linear ordered rather

than well-ordered. We will also show Corollary 3.4.4 as a side product of our construction.

In Section 5, we apply the same variation to the syntactic order property which can be

combined with Galois Morleyization. We give analogs to Vasey’s results with our variation

on the order property. In Section 6, we write down the details of Vasey’s observation

[Vas16c, Fact 4.10] that Shelah’s results in [She09b, V.A.] can be applied to AECs under

Galois Morleyization. It allows us to deduce (Corollary 3.6.8) the order property up to

ℶ(2LS(K))+ in our examples in Proposition 3.4.1, without finding explicit witnesses. We

also apply such technique to bound the first stability cardinal under extra hypotheses. In

Section 7, we use Galois Morleyization to recover common stability results where types can

be over sets under LS(K). Vasey in [Vas16c, Section 5] has done similarly for coheir while

we will work on splitting instead. In particular we prove Theorem 3.2.10 syntactically which
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is needed for Vasey’s upper bound to the first stability cardinal, under the amalgamation

property and tameness.

This paper was written while the author was working on a Ph.D. under the direction of

Rami Grossberg at Carnegie Mellon University and we would like to thank Prof. Grossberg

for his guidance and assistance in my research in general and in this work in particular.

We also thank John Baldwin, Hanif Cheung, Marcos Mazari-Armida and Wentao Yang for

useful comments.

3.2 PRELIMINARIES

We assume some familiarity with AECs, for example [Bal09, Chapter 4]. We will use

κ, λ, µ, χ to denote cardinals, α, β, γ to denote ordinals, n for natural numbers. We define

κ− to be the predecessor cardinal (if it exists) or κ itself. When we write α−n, we assume

α = β + n for some ordinal β.

Let K = ⟨K,≤K⟩ be an AEC. If the context is clear, we write ≤ in place of ≤K.

We abbreviate by AP the amalgamation property, by JEP the joint embedding property

and by NMM no maximal model. For M ∈ K, write |M | the universe of M and ∥M∥

the cardinality of M . For the set of Galois types (orbital types) of length (< α), we

denote them by gS<α(·) where the argument can be a set A in some model M ∈ K. In

general gS<α(A) :=
⋃
{gS<α(A;M) : M ∈ K, |M | ⊇ A} (under AP , the choice of M does

not matter). K is (< α)-stable in λ if for any set A in some model M ∈ K, |A| ≤ λ,

then |gS<α(A;M)| ≤ λ. We omit “(< α)” if α = 2, while we omit “in λ” if there exists

such a λ ≥ LS(K). Similarly K is α-stable in λ if for any set A in some model M ∈ K,

|gSα(A)| ≤ λ. Tameness will be defined in Definition 3.5.1. We allow stability and tameness

under LS(K), especially in Section 3.7.

Given a ∀∃ theory T and a set of L(T )-types Γ, EC(T,Γ) is the class of models of T

such that Γ is not realized by any elements. If we order EC(T,Γ) by L-substructures, it

forms an AEC with LS(K) = |L(T )|. δ(λ, κ) is the least ordinal δ such that: for any T,Γ

with |L(T )| ≤ λ, |Γ| ≤ κ, {P,<} ⊆ L(T ) where P is a unary predicate, < is a linear order

on P , if there is a model M ∈ EC(T,Γ) whose (PM , <M) has order type ≥ δ, then there

is a model N ∈ EC(T,Γ) whose (P,<) is not well-ordered.
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Given a theory T , a set of L(T )-types Γ and a reduct L′ of L(T ), PC(T,Γ, L′) is the

class of L′-reducts of models of EC(T,Γ).

Recall the classical theorem: notice in the proof that X can be a linear order while

Y ′ can be its suborder.

Theorem 3.2.1 (Erdős-Rado Theorem). Let λ be an infinite cardinal. For n < ω,

ℶn(λ)
+ → (λ+)n+1

λ

In other words, for any |X| ≥ ℶn(λ)
+, any f : [X]n+1 → λ, there is X ′ ⊆ X such that

|X ′| ≥ λ+ and f ↾ [X ′]n+1 is constant.

Proof. We adapt the proof in [Mar02, Theorem 5.1.4] because it does not require the set

X to be well-ordered. We prove by induction: When n = 0, the statement is λ+ → (λ+)1λ.

Let X be of size ≥ λ+. We need to color its elements with λ-many colors. By pigeonhole

principle, it is possible to find X ′ ⊆ X of size ≥ λ+ such that f ↾ X ′ is constant.

Assume the statement is true for n − 1. We need to show ℶn(λ)
+ → (λ+)n+1

λ . Let

X be of size ℶn(λ)
+, f : [X]n+1 → λ. For x ∈ X, define fx : [X − {x}]n → λ by

fx(Y ) := f(Y ∪ {x}). We build ⟨Xα : α < ℶn−1(λ)
+⟩ increasing and continuous subsets of

X such that for α < ℶn(λ)
+, |Xα| = ℶn(λ). For the base step, take any X0 ⊆ X of size

ℶn(λ). Suppose Xα is constructed, we build Xα+1 satisfying:

1. Xα ⊆ Xα+1 ⊆ X

2. |Xα+1| = ℶn(λ)

3. For any Y ⊆ Xα of size ℶn−1(λ), any x ∈ X − Y , there is x′ ∈ Xα+1 − Y such that

fx ↾ [Y ]n = fx′ ↾ [Y ]n.

The above is possible by a counting argument: the number of possible Y is

|Xα|ℶn−1(λ) = ℶn(λ)
ℶn−1(λ) = (2ℶn−1(λ))ℶn−1(λ) = 2ℶn−1(λ) = ℶn(λ).

Given Y , the number of possible h : [Y ]n → λ is bounded by

λℶn−1(λ) = 2ℶn−1(λ) = ℶn(λ)
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Therefore, it suffices to add ℶn(λ) · ℶn(λ) = ℶn(λ)-many witnesses from X to Xα. Define

X ′ =
⋃
{Xα : α < ℶn−1(λ)

+}. Notice that |X ′| = ℶn(λ) < |X|. For any Y ⊆ X ′ of size

ℶn−1(λ), by a cofinality argument Y ⊆ Xα for some α < ℶn−1(λ)
+. So for any x ∈ X − Y ,

there is x′ ∈ Xα+1 − Y ⊆ X ′ − Y such that fx ↾ [Y ]n = fx′ ↾ [Y ]n.

Pick any x ∈ X − X ′ and build Y = {yα : α < ℶn−1(λ)
+} ⊆ X ′ such that fyα ↾

[{yβ : β < α}]n = fx ↾ [{yβ : β < α}]n (y0 ∈ X ′ can be any element). By inductive

hypothesis on Y and fx, we can find Y ′ ⊆ Y of size ≥ λ+ such that fx ↾ [Y ′]n is constant.

We check that Y ′ is as desired: let A ∈ [Y ′]n+1 and write A = {yα1 , . . . , yαn+1} where

α1 < · · · < αn+1 < ℶn−1(λ)
+.

f(A) = fyαn+1
(A− {yαn+1}) = fx(A− {yαn+1})

which is constant because fx is constant on [Y ′]n ∋ A− {yαn+1}.

The following Theorem 3.2.2 and Theorem 3.2.10 are only used in the proof of Corol-

lary 3.6.6(1). We will streamline Boney’s proof of Lemma 3.2.9 by omitting the ambient

models (otherwise it would involve a lot of bookkeeping and direct limits). We will clarify

the relationship between Lemma 3.2.9 and Theorem 3.2.2 and show that JEP in Theorem

3.2.2 is not needed. If we work in a monster model C, we can also allow stability over sets

(of size < LS(K)), but we keep the original formulation to state Remark 3.2.6 more clearly.

Theorem 3.2.2. Let K be an AEC and λ ≥ LS(K). Suppose K has λ-AP and is stable

in λ. For any ordinal α ≥ 1 with λ|α| = λ, K is α-stable in λ.

The requirement λ|α| = λ cannot be improved: let λ|α| > λ, take K be the well-

orderings of type at most λ and ≤K by initial segments. Then it is stable in λ because

there are only λ-many elements in the unique maximal model (which witnesses AP ). It is

not α-stable because each element has different types, so the number of α-types is exactly

λ|α| > λ.

We will prove the theorem through a series of lemmas. We may assume α to be

a cardinal κ = |α|. Denote gS1
λ := sup{| gS1(M)| : M ∈ K, ∥M∥ = λ} and similarly

gSκ
λ := sup{| gSκ(M)| :M ∈ K, ∥M∥ = λ}.
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Lemma 3.2.3. Suppose κ ≥ λ, then (gS1
λ)

κ = gSκ
λ = 2κ.

Proof. 2κ ≤ (gS1
λ)

κ ≤ (2λ)κ = 2κ. Pick any ∥M∥ = λ and two distinct elements {a, b} from

|M |. Form binary sequences from {a, b} of length κ, which shows 2κ ≤ gSκ
λ ≤ 2λ+κ = 2κ.

Lemma 3.2.4. [Bon17, Proposition 2.7] Suppose κ ≤ λ. If in addition K has λ-JEP and

cf(gSκ
λ) ≤ λ, then there is M ∈ K, ∥M∥ = λ such that | gSκ(M)| = gSκ

λ.

Proof. Pick ⟨Mi : i < µ⟩ (not necessarily increasing) witnessing µ := cf(gSκ
λ) ≤ λ. By

λ-AP and λ-JEP , obtain M of size λ such that M ≥ Mi for all Mi. | gSκ(M)| ≥

supi<µ | gSκ(Mi)| = gSκ
λ.

Lemma 3.2.5. [Bon17, Theorem 3.2] Suppose κ ≤ λ. If in addition K has λ-JEP , then

(gS1
λ)

κ ≤ gSκ
λ.

Proof. GivenM ∈ K of size λ. We show that | gSκ(M)| ≥ | gS1(M)|κ, which does not use λ-

JEP . By λ-AP , pick N ≥M (perhaps of size greater than λ) such that N realizes gS(M),

say by ⟨ai : i < | gS(M)|⟩. Form sequences of length κ from the ai, there are | gS(M)|κ-many

sequences. They realize distinct types in gSκ(M) by checking each coordinate.

Suppose cf(gS1
λ) ≤ κ, then cf(gS1

λ) ≤ λ. Substitute κ = 1 in Lemma 3.2.4 (which

uses λ-JEP ), there is M∗ ∈ Kλ such that | gS1(M∗)| = gS1
λ. Thus (gS

1
λ)

κ = | gS1(M∗)|κ ≤

| gSκ(M∗)| ≤ gSκ
λ.

Now suppose cf(gS1
λ) > κ, then a cofinality argument shows the second equality below:

(gS1
λ)

κ :=(sup{| gS1(M)| :M ∈ K, ∥M∥ = λ})κ

=sup{| gS1(M)|κ :M ∈ K, ∥M∥ = λ}

≤ sup{| gSκ(M)| :M ∈ K, ∥M∥ = λ} =: gSκ
λ

Remark 3.2.6. After [Bon17, Proposition 2.7], Boney suggested that λ-JEP might be

necessary. We will show in Corollary 3.4.4 that the need of λ-JEP is independent of ZFC

for the above two lemmas.
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Question 3.2.7. In [Bon17, Proposition 2.7], there is an alternative hypothesis to Lemma

3.2.4 where cf(gSκ
λ) ≤ λ is replaced by a stronger assumption I(K,λ) ≤ λ. Would λ-JEP

be necessary in this case or is it again independent of ZFC? An answer would shed light

on the relationship between stability and the number of nonisomorphic models.

Lemma 3.2.8. [Bon17, Theorem 3.5] Suppose κ ≤ λ, then (gS1
λ)

κ ≥ gSκ
λ.

Proof. First we describe the proof strategy: for a fixed model M , we show that gSκ(M) is

bounded above by (gS1
λ)

κ. To do so, we build a gS1
λ-branching tree of models of height κ and

list the possible 1-types of each model. For each κ-type in gSκ(M), we map it injectively

to a branch of the tree (which is a sequence in (gS1
λ)

κ), according to the 1-types of the

elements from that sequence.

Let µ := gS1
λ. Fix an arbitrary M ∈ K with ∥M∥ = λ. Write gSκ(M) = ⟨pk : k < χ⟩

where pk are distinct. Fix āk := {aαk : α < κ} ⊨ pk. Construct a tree of models ⟨Mν ∈ Kλ :

ν ∈ µ<κ⟩ as follows: M⟨⟩ := M , take union at limit stages. Suppose Mν is built for some

ν ∈ µ<κ. Enumerate without repetition gS1(Mν) = ⟨qνi : i < χν⟩ for some χν ≤ µ. For

i < χν , define Mν⌢i ∈ Kλ with Mν⌢i ≥ Mν and containing some cνi ⊨ qνi . For χν ≤ i < µ

(if there is any), give a default value to Mν⌢i := Mν . Now we map each pk ∈ gSκ(M) to

ηk ∈ µκ as follows: suppose ν := ηk ↾ α has been defined for some α < κ, we set ηk[α] to

be the minimum i < χν (which is the same as requiring i < µ) such that aαk realizes qνi .

In other words, we decide the α-th element of the branch based on the type of the α-th

element of āk over the current node (model).

It remains to check that the map is injective. Let k < χ, we build ⟨fα : α ≤ κ⟩

increasing and continuous such that fα maps aβk to cηk↾βηk[β]
for all β ≤ α while fixing |M |.

Take f−1 := idM and we handle the successor case: suppose fα has been constructed. There

is g : aαk 7→ cηk↾αηk[α]
fixing |Mηk↾α| ⊇

{
cηk↾βηk[β]

: β < α
}
by type equality. Let fα+1 := g ◦fα. Now

fκ witnesses that āk and ⟨cηk↾αηk[α]
: α < κ⟩ realize the same type over M . Since the latter

sequence only depends on the coordinates of ηk, our map pk 7→ ηk is injective. Therefore,

| gSκ(M)| ≤ µκ. Since M is arbitrary, gSκ
λ ≤ µκ = (gS1

λ)
κ.

Lemma 3.2.9. [Bon17, Theorem 3.1] Let K be an AEC with λ-AP and λ-JEP . Let κ ≥ 1

be a cardinal. Then (gS1
λ)

κ = gSκ
λ where λ-JEP is used in the “≤” direction.
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Proof. Combine Lemma 3.2.3, Lemma 3.2.5 and Lemma 3.2.8.

Proof of Theorem 3.2.2. Let κ = |α|. By Lemma 3.2.9, λ = λκ = (gS1
λ)

κ ≥ gSκ
λ which

shows that K is κ-stable in λ. By reordering the index κ, K is α-stable in λ.

Theorem 3.2.10. [GV06b, Corollary 6,4] Let µ be an infinite cardinal and K be an AEC

with AP . If K is µ-tame and stable in µ, then K is stable in all λ = λµ.

The original proof proceeds semantically and we will give a syntactic proof in Section

3.7, allowing stability over sets which can be of size < LS(K).

3.3 STABILITY AND NO ORDER PROPERTY

To find the upper bound of the first stability cardinal in stable complete first-order

theories, one possible way is to establish:

Fact 3.3.1 (Shelah). Let T be a complete first-order theory. The following are equivalent:

1. T is stable.

2. For all λ = λ|T |, T is stable in λ.

3. T has no (syntactic) order property of length ω.

2|T | is an upper bound for the first stability cardinal. Notice that in showing (3),

compactness is used to stretch the order property to arbitrary length. In AECs, we can use

the Hanf number to bound the (Galois) order property length. The following definition is

based on [She99, Definition 4.3] and [Vas16c, Definition 4.3]:

Definition 3.3.2. Let µ be an infinite cardinal, α ≥ 2 and β ≥ 1 be ordinals.

1. K has the β-order property of length µ if there exists some ⟨ai : i < µ⟩ ⊆M ∈ K such

that l(ai) = β, and for i0 < i1 < µ, j0 < j1 < µ, gtp(ai0ai1/∅,M) ̸= gtp(aj1aj0/∅,M).

2. K has the (< α)-order property of length µ if there is a β < α witnessing (1).

3. K has the (< α)-order property if for all µ, K has the (< α)-order property of length

µ. In other words, if we fix µ, we can find a suitable βµ witnessing (1).
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4. K has the no (< α)-order property if (3) fails. In other words, for each β < α, there

is an upper bound to the length of the β-order property. We omit (< α) if α = ω.

The above definition works fine if one wants an abstract generalization of the order

property from the first-order version, in which case the length can be fixed at ω. However,

in AECs, it is hard to construct long well-ordered sets without breaking stability or raising

LS(K). We propose the following definition instead:

Definition 3.3.3. In Definition 3.3.2, we replace all occurences of “order property” by

“order property*” if we also allow sequences indexed by linear orders instead of well-

orderings. For example in (1), we say K has the β-order property* of length µ if there

exist some linear order I, some ⟨ai : i ∈ I⟩ ⊆ M ∈ K such that |I| = µ, l(ai) = β, and

for i0 < i1 in I, j0 < j1 in I, gtp(ai0ai1/∅,M) ̸= gtp(aj1aj0/∅,M). When µ is omitted, we

mean for all µ, there is a linear order I of cardinality µ witnessing the β-order property*

of length µ.

In the following proposition, item (1) applies Morley’s method [Mor65b] (see also

[Bal09, Theorem A.3(2)]). The statement we use is from [She99, Claim 4.6] which only

hinted at the proof of the Hanf number for arbitrarily large models [She90, VII.5]. We add

more details and explain how to adapt that proof. The proof of item (3) adapts the proof

from [BGKV16, Fact 5.13].

Proposition 3.3.4. Let K be an AEC, β ≥ 2 be an ordinal.

1. If for all µ < ℶ(2<(LS(K)++|β|))+, K has the (< β)-order property of length µ, then K

has the (< β)-order property (and the (< β)-order property*).

2. If for all µ < ℶ(2<(LS(K)++|β|))+, K, K has the (< β)-order property* of length µ, then

K has the (< β)-order property* (and (< β)-order property).

3. If K is (< β)-stable (in some λ ≥ LS(K) + |β|), then there is µ < ℶ(2<(LS(K)++|β|))+

such that K has no (< β)-order property* (and thus no (< β)-order property) of

length µ.
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Proof sketch. 1. We adapt the usual Hanf number argument. Suppose K has the (< β)-

order property and we fix γ < β such that K has the γ-order property. By She-

lah’s Presentation Theorem, we may write K = PC(T,Γ1,L(K)) for some first-order

theory T in L ⊇ L(K) and some sets of L-types Γ1. Now we refer to the con-

struction of [She90, VII Theorem 5.3] or [Gro21, Chapter 2 Theorem 6.35]. For each

α < (2LS(K)+|γ|)+, instead of defining FB(α) to be someM ∈ K of size ℶα, we demand

it to be the witness of the γ-order property of length ℶα (we can also add another

function FB
1 (α, ·) to enumerate the elements of FB(α)). At the end of the construc-

tion (which uses Erdős-Rado Theorem), we obtain an L-indiscernible sequence (of γ-

tuples) ⟨ai : i < ω⟩ such that for n < ω, i1 < i2 < · · · < in < ω, the first-order type of

ai1 . . . ain is realized by some d1 . . . dn that witness the order property. This induces an

L-isomorphism between EM(ai1 . . . ain)
∼= EM(d1 . . . dn). Its reduct to L(K) is also

an isomorphism between EM(ai1 . . . ain) ↾ L(K) ∼= EM(d1 . . . dn) ↾ L(K). Since the

right-hand-side witnesses the order property in K, so is the left-hand-side. The same

argument applies when the indiscernible sequence is stretched to arbitrary length (or

any linear order).

2. The same proof of (1) goes through because Erdős-Rado Theorem applies to linear

orders (actually any sets) besides well-orderings.

3. Otherwise by (1)(2), K has the (< β)-order property*. For any infinite cardinal λ ≥

LS(K)+ |β|, let Iλ be a linear order of size > λ such that it has a dense suborder Jλ of

size λ. We stretch the indiscernible ⟨ai : i < ω⟩ in (2) to be indexed by Iλ. Pick i < i′

in Iλ, we can find k in Jλ such that i < j < i′. Then gtp(aiaj/∅) ̸= gtp(ai′aj/∅) are

distinct by the order property, which means gtp(ai/aj) ̸= gtp(ai′/aj). This shows that

K is (< β)-unstable in λ. As λ is arbitrary, K is (< β)-unstable above LS(K) + |β|.

Remark 3.3.5. � If we have a specific K in mind, we may replace (2LS(K))+ by

δ(LS(K), κ) where κ := |Γ1| ≤ 2LS(K) in Shelah’s Presentation Theorem.

� We used Galois types over the empty set in proving (2). The same proof goes through
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if we require the domain of the types to be some fixed (nonempty) model.

3.4 LOWER BOUND FOR STABILITY AND NO ORDER PROPERTY*

From Proposition 3.3.4, we saw that a stable AEC cannot have the order property*

of length µ for some µ < ℶ(2LS(K))+ . Our goal is to show that this is also a lower bound for

no order property* as well as stability.

Proposition 3.4.1. Let λ be an infinite cardinal and α be an ordinal with λ ≤ α < (2λ)+.

Then there is a stable AEC K such that LS(K) = λ, K has the order property* of length

up to ℶα(λ) and is unstable anywhere below ℶα(λ). Moreover, K has JEP , NMM and

(< ℵ0)-tameness but not AP .

The proof of Proposition 3.4.1 will come after Corollary 3.4.4 and use Lemma 3.4.2

below.

Lemma 3.4.2. [She90, VII Theorem 5.5(6)] Let λ be an infinite cardinal and α be an

ordinal with λ ≤ α < (2λ)+. There is a stable AEC K1 such that LS(K1) = λ and for all

M ∈ K1, M is well-ordered of order type at most α. Moreover, K1 has AP , JEP and is

(< ℵ0)-tame.

Proof. Let L1 := {<,Pi : i < λ} where Pi are unary predicates. T1 requires < to be a linear

order. For β < α, pick distinct subsets Sβ ⊆ λ. Given an element x, we define its type by

the set of indices i such that Pi(x). We require that each element is characterized by its

type and the only possible types are among {Sβ : β < α}. If β < α and x, y have types Sβ

and Sα respectively, then we stipulate that x < y. These will be coded in the collection of

types Γ1.

More precisely, for β < γ < α, S ⊆ λ,

pβ,γ(x, y) :={¬(x < y)} ∪ {Pi(x) : i ∈ Sβ} ∪ {¬Pi(x) : i ̸∈ Sβ}

∪ {Pi(y) : i ∈ Sγ} ∪ {¬Pi(y) : i ̸∈ Sγ}

pS(x) :={Pi(x) : i ∈ S} ∪ {¬Pi(x) : i ̸∈ S}

Γ1 :={pβ,γ(x, y) : β < γ < α} ∪ {pS′ : S ′ ⊆ λ such that for β < α, S ′ ̸= Sβ}

∪ {x ̸= y ∧ Pi(x) ↔ Pi(y) : i < λ}
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Let K1 := EC(T1,Γ1) ordered by substructures. Notice that |L(T1)| = λ and Γ1 = 2λ.

By replacing K1 by (K1)≥λ, we may assume LS(K1) = λ. Then M1 = α is the maximal

model (every model can be extended to an isomorphic copy of it) where for β ∈M1, i < λ,

PM1
i (β) iff i ∈ Sβ. Hence K1 satisfies AP , JEP (but not NMM). As K1 has the maximal

model of size |α| ≤ 2λ, K1 is trivially stable in ≥ (2λ)+. It is (< ℵ0)-tame because types

are decided by the Pi’s they belong to.

Remark 3.4.3. By [She90, VII Theorem 5.5(2)], for any λ and κ ≤ 2λ, δ(λ, κ) ≤ (2λ)+,

so the threshold (2λ)+ cannot be improved. If we restrict 1 ≤ κ < 2λ, then for α < λ+,

we can still define K1 to be well-orderings of type at most α, where models are ordered by

initial segments. Then we get a lower bound δ(λ, κ) ≥ λ+. But the above proof does not

go through because it requires |Γ| = 2λ.

Using Lemma 3.4.2, we are able to answer Boney’s conjecture in Remark 3.2.6. We

will complete the proof of Proposition 3.4.1 after the proof of Corollary 3.4.4.

Corollary 3.4.4. Under GCH, the λ-JEP assumption in Lemma 3.2.4 and Lemma 3.2.5

is not necessary. If 2ℵ0 = ℵω1 and λ = ℵ0, then λ-JEP is necessary in Lemma 3.2.4. If

2ℵ0 = ℵ1 =: λ and 2ℵ1 = ℵω2, then λ-JEP is necessary in Lemma 3.2.5.

Proof. By Lemma 3.2.3, we may assume κ < λ. Suppose K is κ-stable in λ, then Lemma

3.2.4 and Lemma 3.2.5 are always true: for all ∥M∥ = λ, gSκ
λ = λ = | gSκ(M)|. Also, by

taking sequences of length κ from |M | (which give the algebraic types), we have gSκ
λ ≥

| gSκ
λ(M)| ≥ λκ ≥ (gS1

λ)
κ where the last inequality is by stability.

Therefore, we may further assume κ-instability in λ, witnessed by M . Suppose GCH

holds, then | gSκ(M)| ≥ λ+ = 2λ = 2λ+κ ≥ gSκ
λ ≥ | gSκ(M)|. Also, gSκ

λ ≥ | gSκ(M)| ≥ λ+ =

2λ = (2λ)κ ≥ (gS1
λ)

κ. Hence it is consistent that the lemmas are always true (regardless of

λ-JEP or cf(gSκ
λ)).

We show that Lemma 3.2.4 can be false: let λ = ℵ0, κ = 1 and suppose 2ℵ0 = ℵω1

(which is consistent by Easton Theorem, see [Jec03, Theorem 15.18]). Define L1, T1 as in

Lemma 3.4.2, pick ℵω many distinct subsets of ℵ0, say {Sβ : β < ℵω}. We allow β < γ < ℵω
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when constructing pβ,γ. Now for n < ω, define Γn
1 to be the same as Γ1 except that α is

replaced by ℵn. Define Kn := EC(T1,Γ
n
1 ) and K be the disjoint union of all Kn (adding

ℵ0-many predicates and stipulate that no two elements belong to different predicates —

this destroys ℵ0-JEP ). Notice that K is still a EC class where the language has size ℵ0

and whose models omit 2ℵ0-many types. For any M ∈ K, M ∈ Kn for some n < ω. Since

the unique maximal model in Kn has size ℵn, | gS(M)| ≤ ℵn < ℵω = supn<ω ℵn = gS1
ℵ0

where the last equality is due to the fact that distinct two elements in a model satisfy

distinct subsets of {Pi : i < ℵ0}. Hence gS1
ℵ0

(and similarly all gS1
ℵn
, n < ω) is not attained

by any model. cf(gS1
ℵ0
) = ℵ0 which satisfies the hypothesis.

We show that Lemma 3.2.5 can also be false: let λ = ℵ1, κ = ℵ0 and suppose 2ℵ0 = ℵ1

and 2ℵ1 = ℵω2 (which is consistent by Easton Theorem). This time we pick ℵω many distinct

subsets from ℵ1 rather than from ℵ0. FormK as above which is an EC class whose language

has size ℵ1 and whose models omit 2ℵ1-many types. Now (gS1
λ)

κ = (gS1
ℵ1
)ℵ0 = ℵω

ℵ0 > ℵω.

On the other hand, gSκ
λ = gSℵ0

ℵ1
≤ supn<ω sup{| gSℵ0(M)| : M ∈ (Kn)ℵ1} ≤ supn<ω ℵn

ℵ0 =

supn<ω(2
ℵ0 · ℵn) = supn<ω ℵ1 · ℵn = ℵω < (gS1

λ)
κ where the second equality is a speical case

of the Hausdorff formula [Jec03, Equation 5.22].

Proof of Proposition 3.4.1. Fix α as in Lemma 3.4.2, we use K1 to build K as follows: let

L := L1 ∪ {E,Q,R, f, g, c} where E,Q are binary predicates, R is a ternary predicate, f

is a unary function, g is a symmetric binary function and c is a constant. Thus we have

|L| = λ. A model in K = (K0,K1,K2) has three sorts (M0,M1,M2). M1 is in K1, M2 will

take care of NMM while M0 is the iterated power sets of M1. In details, we require:

1. M1 ∈ EC(T1,Γ1) as in Lemma 3.4.2. We identify it as an ordinal ≤ α.

2. M2 is an infinite model of the theory of pure equality.

3. If xEy, then x is in M0 ∪M1 while y is in M0. E also satisfies the extensionality

axiom.

4. The first argument of Q is in M1. We write Qi(·) := Q(i, ·) and abbreviate by Qi the

elements x in M0 with Q(i, x). For limit ordinal σ in M1, we require Qσ =
⋃

i<σQi.
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5. f is the rank function from M0 to M1 such that each x is sent to the smallest i with

Qi(x). If x ∈ y, then f(x) < f(y).

6. R, g and c code the total order of M0: we define R(β, x, y) and g(x, y) as follows:

(a) β in M1, x, y in M0

(b) If f(x) ̸= f(y), then we say x is less than y when x has a smaller rank than y.

(c) If f(x) = f(y) = 0, then g(x, y) is the <-least element in the symmetric differ-

ence of x, y. R(0, x, y) if g(x, y)Ey, in which case we say x is less than y.

(d) If f(x) = f(y) = β > 0, then g(x, y) is the least element in the symmetric

difference of x, y. R(β, x, y) if g(x, y)Ey, in which case we say x is less than y.

(e) c is the default value for g(x, y) when x, y are in M1 or M2, or when x, y in M0

are equal or have different ranks.

(If we think of subsets as sequences, we are orderingM0 by rank, and then by lexicographical

order of each rank.)

We order (M0,M1,M2) ≤K (N0, N1, N2) iff for i ≤ 2, Mi, Ni ∈ Ki and Mi ⊆ Ni.

Notice that we can describe K as some EC(T,Γ) where T is a ∀∃ theory, |L(T )| = λ and

|Γ| = 2λ. Also, LS(K) = λ because LS(K1) = λ and we can close any set in M0 to a model

by adding witnesses for f, g in (5),(6) ω-many times. Therefore K is an AEC.

The maximal model in (K0,K1) is M∗ := (Vα(α), α), where for β < α, QM∗

β :=

V1+β(α). M
∗ witnesses that K have JEP . K is (< ℵ0)-tame because elements are deter-

mined either by the predicates Pi; or their ranks and their own elements. With K2, we

know that K has NMM . Since M∗ has size ℶα(λ), (K0,K1) is trivially stable in ≥ ℶα(λ).

As K2 is trivially stable everywhere, K is stable in ≥ ℶα(λ). We now show instability in

< ℶα(λ) and the order property of lengths up to ℶα(λ).

For instability, (P(λ), λ, ω) witnesses that K is unstable between [λ, 2λ). Consider

the maximal model M∗ above, for each β < α, |QM∗

β | = ℶ1+β(λ). By item (6) above,

QM∗

β can distinguish all elements in QM∗

β+1, so (K0,K1), and hence K is unstable in[
ℶ1+β(λ),ℶ1+β+1(λ)

)
. Therefore, we have instability in

[
λ,ℶα(λ)

)
.
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For the order property*, we apply the order in (6) to Vα(α) of the maximal model.

In details: let a less than b while c less than d. If a, b is mapped to d, c respectively,

then f(d) = f(a) ≤ f(b) = f(c) ≤ f(d). It cannot happen to rank 0 because their

elements are well-ordered in M1. Since a is less than b, g(a, b) ∈ b. Then by mapping

g(d, c)(= g(c, d)) ∈ c which shows that d is less than c, contradiction. As |Vα(α)| = ℶα(λ),

we have the order property* of length ℶα(λ).

(K0,K1) does not have AP : Pick an element x from (Vα(α), α) which contains ≥ λ+

elements. Close x to a substructure N of size λ, then there is yEx in (Vα(α), α) but y is

not in N . N can be included in (Vα(α), α) such that x is mapped to (x − {y}). Suppose

the following amalgam exists:

x ∈ (Vα(α), α) x ∈ W

x ∈ N x− {y} ∈ (Vα(α), α)

t

Without loss of generality, we may assume the top dotted arrow is identity (hence we

can write the image of x to be x itself). Since (Vα(α), α) is maximal, W = (Vα(α), α).

Therefore, t ∈ Aut((Vα(α), α)). By an induction argument, t must be the identity (which

boils down to the fact that α, the maximal model in K1, is rigid). From the right dotted

arrow, x− {y} would be mapped to x, which is a contradiction.

Remark 3.4.5. 1. One way to save AP is to redefine ≤K by the E-transitive closure,

but it raises LS(K) to Vα−1(λ). In this case, instability and the order property*

length are up to 2LS(K).

2. Our total order is ill-founded: α, α − {0}, α − {0, 1}, . . . form an infinite descending

sequence in QM∗
0 . It is not clear how to extract a witness to the order property of

length > 2λ. We will see in Corollary 3.6.8 that we can refine our example to have

the order property at least up to ℶα−3(λ).

Corollary 3.4.6. 1. For stable AECs, the Hanf number for the order property* length

is exactly ℶ(2LS(K))+.
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2. The Hanf number for stability is at least ℶ(2LS(K))+. In other words, let λ ≥ ℵ0 and

µ < ℶ(2λ)+, there is a stable AEC K such that LS(K) = λ and the first stability

cardinal is greater than µ.

Proof. Combine Proposition 3.4.1 and Proposition 3.3.4 and range α in [λ, (2λ)+).

In the next two sections, we develop the machinery to show that the lower bound in

(2) is tight, based on the arguments in [Vas16c]. Then we conclude: our example witnesses

that the bound for the order property is also tight.

3.5 GALOIS MORLEYIZATION AND SYNTACTIC ORDER PROPERTY

Galois Morleyization is a way to capture tameness syntactically by adding infinitary

predicates. First recall the definition of tameness:

Definition 3.5.1. Let κ be an infinite cardinal.

1. Let p = gtp(a/A,N) where a = ⟨ai : i < α⟩ may be infinite, I ⊆ α, A0 ⊆ A. We

write l(p) := l(a), p ↾ A0 := gtp(a/A0, N), aI = ⟨ai : i ∈ I⟩ and pI := gtp(aI/A,N).

2. K is (< κ)-tame for (< α)-types if for any subset A in some model of K, any

p ̸= q ∈ gS<α(A), there is A0 ⊆ A, |A0| < κ with p ↾ A0 ̸= q ↾ A0. We omit (< α) if

α = 2.

3. K is (< κ)-short if for any α ≥ 2, any subset A in some model of K, p ̸= q ∈ gS<α(A),

there is I ⊆ α, |I| < κ with pI ̸= qI .

4. κ-tame means (< κ+)-tame. Similarly for shortness.

Now we construct Galois Morleyization:

Definition 3.5.2. [Vas16c, Definitions 3.3, 3.13] Let κ be an infinite cardinal and K be

an AEC in a (finitary) language L. The (< κ)-Galois Morleyization of K is a class K̂ of

structures in a language L̂ such that:

1. L̂ is a (< κ)-ary language. For convenience we may require L ⊆ L̂.
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2. For each p ∈ gS<κ(∅), we add a predicate Rp of length l(p) to L̂.

3. For each M ∈ K, we define M̂ ∈ K̂ with |M | = |M̂ |. For p ∈ gS<κ(M), a ∈ |M̂ |l(p),

M̂ ⊨ Rp[a] iff a ⊨ p in K. Extend the definition to quantifier-free formulas of L̂κ,κ.

4. The (< κ)-syntactic type of a ∈ |M̂ |<κ over A ⊆ |M̂ | is defined by tpqf-L̂κ,κ
(a/A; M̂),

namely the quantifier-free formulas of L̂κ,κ over A that a satisfies. We will abbreviate

it by tpκ(a/A; M̂).

5. For M̂, N̂ ∈ K̂, we order M̂ ≤K̂ N̂ iff M ≤K N . We will omit the subscripts.

Remark 3.5.3. 1. If we allow AECs to have infinitary languages, we can view K̂ as an

AEC.

2. The above is well-defined even for AECs without AP , but readers can assume the

existence of a monster model C for convenience.

3. |L̂| = |L|+ |gS<κ(∅)| ≤ 2<(κ+LS(K)+).

The following justifies the definition of Galois Morleyization in tame AECs:

Proposition 3.5.4. [Vas16c, Corollary 3.18(2)] Let K be an AEC and K̂ be its (< κ)-

Galois Morleyization. For each p = gtp(b/A;M) ∈ gS(A), define pκ := tpκ(b/A; M̂) to be

its (< κ)-syntactic version. Then K is (< κ)-tame iff p 7→ pκ is a 1-1 correspondence.

Proof. ⇒: The map is well-defined because Galois types are finer than syntactic types. It

is a surjection by construction. Suppose p ̸= q ∈ gS(A), by (< κ)-tameness we may assume

the domain A has size < κ. Let b ⊨ p and b′ ⊨ q. Then bA and b′A satisfy different types

in gS<κ(∅), say r and s repsectively. Thus bA ⊨ Rr ∧ ¬Rs while b
′A ⊨ Rs ∧ ¬Rr.

⇐: Suppose p = gtp(b/A;M) ̸= q = gtp(b′/A;M ′). Then pκ ̸= qκ and we can

find r ∈ gS<κ(∅) and (a suitable enumeration of) A0 ⊆ A such that M ⊨ Rr[b;A0] but

M ′ ⊨ ¬Rr[b
′;A0]. This means bA0 ⊨ r while b′A0 ̸⊨ r. Hence gtp(b/A0;M) ̸= gtp(b′/A0;M

′)

witnessing (< κ)-tameness.

Remark 3.5.5. There is a stronger version assuming (< κ)-shortness in [Vas16c, Corollary

3.18(1)] but we have no use of it here.
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We now define an infinitary version of the syntactic order property:

Definition 3.5.6. Let 2 ≤ α ≤ κ and 1 ≤ β < κ be ordinals.

1. [Vas16c, Definition 4.2] In Definition 3.3.2, we replace all occurences of “order prop-

erty” by “syntactic order property” while requiring the condition in (1) there be:

there exist some ⟨ai : i < µ⟩ ⊆ M̂ ∈ K̂ and some quantifier-free L̂κ,κ formula ϕ(x, y)

such that l(ai) = β, and for i, j < µ, i < j iff M̂ ⊨ ϕ[ai, aj].

2. As in Definition 3.3.3, we define syntactic order property* if in (1) we allow the index

set to be a linear order I with |I| = µ, instead of being a well-ordering µ.

The following links the (Galois) order property in K with the syntactic order property

in K̂.

Proposition 3.5.7. Let κ be an infinite cardinal and K̂ be (< κ)-Galois Morleyization

of K. Let 1 ≤ β < κ be an ordinal and M ∈ K. Let λ, µ be infinite cardinals and

χ := |gSβ+β(∅)|.

1. [Vas16c, Proposition 4.4]

(a) If M̂ has the syntactic the β-order property of length µ, then M has the β-order

property of length µ.

(b) If M has the β-order property of length µ for some µ ≥ (2λ+χ)+, then M̂ has

the syntactic β-order property of length λ+.

2. (a) If M̂ has the syntactic β-order property* of length µ, then M has the β-order

property* of length µ.

(b) If M has the β-order property* of length µ for some µ ≥ (2λ+χ)+, then M̂ has

the syntactic β-order property* of length λ+.

3. The following are equivalent:

(a) K has the β-order property.

(b) K has the β-order property*.
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(c) K̂ has the syntactic β-order property.

(d) K̂ has the syntactic β-order property*.

Proof. 1. (a) is true because Galois types are finer than syntactic types. For (b): suppose

⟨ai : i < µ⟩ witnesses the β-order property. By Erdős-Rado Theorem, we have

µ → (λ+)22χ . Apply this to (i < j) 7→ gtp(aiaj/∅;M) and then on (j < i) 7→

gtp(ajai/∅;M). We can find ⟨bi : i < λ+⟩ subsequence of ⟨ai : i < µ⟩, p ̸= q ∈

gSβ+β(∅) such that for i < j < λ, gtp(bibj/∅;M) = p and gtp(bjbi/∅;M) = q. We

may choose Rp (or Rq) to witness the β-syntactic order property.

2. The same proof goes through, because Erdős-Rado Theorem applies to linear orders

too.

3. (1) gives (a)⇔(c) while (2) gives (b)⇔(d). (a)⇔(b) is by Proposition 3.3.4(1),(2).

Definition 3.5.8. Let κ be an infinite cardinal, 2 ≤ α ≤ κ and 1 ≤ β < κ be ordinals, K̂

be the (< κ)-Galois Morleyization of K. Then

1. For µ ≥ LS(K) + |β|, K̂ is β-syntactically stable in µ if

|{pκ : p ∈ gSβ(A;M), A ⊆ |M |, |A| ≤ µ,M ∈ K}| ≤ µ.

2. For µ ≥ LS(K) + |α|, K̂ is (< α)-syntactically stable in µ if

|{pκ : p ∈ gS<α(A;M), A ⊆ |M |, |A| ≤ µ,M ∈ K}| ≤ µ.

Corollary 3.5.9. Let β ≥ 1 be an ordinal and µ ≥ LS(K) + |β| be a cardinal.

1. [Vas16c, Fact 4.9] If K has the β-order property, then K is not β-stable in µ. If also

β < κ, then K̂ is not β-(syntactically) stable in µ.

2. The same conclusion holds when K has the β-order property*.

Proof. By Proposition 3.5.7, either assumption gives the syntactic β-order property. This

implies β-syntactic instability in µ, using the proof of Proposition 3.3.4 (in particular

replace FB(α) by a witness of the syntactic β-order property of length ℶα).
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3.6 SHELAH’S STABILITY THEOREM

We will connect syntactic stability with no syntactic order property. The original

result due to Shelah was in a more general context but only proof sketches were given.

Vasey [Vas16c, Fact 4.10] applied it to AECs without a complete proof so we write out

all the details. We will also remove the requirement that the order property length be a

successor (which was hinted in [She09b, Exercise 1.22]).

Theorem 3.6.1. [She09b, V.A. Theorem 1.19] Let χ ≥ 2<(κ+LS(K)+), µ be an infinite

cardinal such that µ = µχ + 22
<χ
. Suppose K̂ does not have the (< κ)-syntactic order

property of length χ, then K̂ is (< κ)-syntactically stable in µ.

The proof will be given after Lemma 3.6.5. Before that we state some relevant defini-

tions and lemmas.

Definition 3.6.2. Let κ be an infinite cardinal, Π be a set of quantifier-free formulas of

L̂κ,κ over A, and pκ be a (< κ)-syntactic type over A. We say pκ splits over Π if there are

ϕ(x; b),¬ϕ(x; c) ∈ pκ such that for any M̂ containing b, c and the parameters from Π, any

ψ(y; d) ∈ Π with l(y) = l(b) = l(c), we have M̂ ⊨ ψ[b; d] ⇔ M̂ ⊨ ψ[c; d] (the choice of M̂

does not matter because its interpretation of Rp is external).

If we require the witnesses ϕ(x; b),¬ϕ(x; c) to be from a fixed formula ϕ(x; y), then we

say pκ ϕ-splits over Π.

Lemma 3.6.3. [She09b, V.A. Fact 1.10(4)] Using the above notation,

|{pκ ↾ ϕ : pκ does not ϕ-split over Π}| ≤ 22
|Π|

|{pκ : pκ does not split over Π}| ≤ 22
|Π|·χ

where χ := |L̂|<κ =
(
| gS<κ(∅)|

)<κ ≤ 2<(κ+LS(K)+) is the size of the set of quantifier-free

formulas of L̂κ,κ.

Proof. We count the number of combinations to build a pκ ↾ ϕ that does not ϕ-split over

Π. Partition the parameters of ϕ by their Π-type. Namely, b, c are equivalent iff for any

M̂ containing b, c and the parameters from Π, any ψ(y; d) ∈ Π with l(y) = l(b) = l(c), we

have M̂ ⊨ ψ[b; d] ⇔ M̂ ⊨ ψ[c; d]. Then there are 2|Π|-many classes. Within each class, say
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containing b, it remains to choose whether ϕ(x; b) or ¬ϕ(x; b) is in pκ ↾ ϕ. Hence we have

22
|Π|
-many choices.

The second part follows from the observation that a (< κ)-syntactic type pκ is deter-

mined by its restrictions pκ ↾ ϕ where ϕ is a quantifier-free formula of L̂κ,κ.

Definition 3.6.4. A set A is (< χ)-compact if for any M̂ containing A, any cardinal

λ < χ, any quantifier-free formulas {ϕi(x) : i < λ} in L̂κ,κ with parameters from A, if

M̂ ⊨
∧

i<λ ϕi[b] for some b ∈ M̂ , then M̂ ⊨
∧

i<λ ϕi[a] for some a ∈ A.

Lemma 3.6.5. [She09b, V.A. Theorem 1.12] Let χ be an infinite cardinal, A be (< χ)-

compact with A ⊆ |M̂ |, ϕ(x; y) be a quantifier-free formula in L̂κ,κ. Either

1. For any m ∈ |M̂ |, there is a set Π ⊆ {ϕ(x; a) : a ∈ [A]<κ} such that |Π| < χ and

tpκ(m/A; M̂) ↾ ϕ does not ϕ-split over Π; or

2. A ⊆ |M̂ | witnesses the (< κ)-syntactic order property of length χ.

Proof. Suppose (1) does not hold, then we can pick m ∈ |M̂ | such that tpκ(m/A; M̂) ↾ ϕ

splits over any Π with |Π| < χ. Thus we can recursively build

1. ⟨mi, bi, ci : i < χ⟩ inside A.

2. For j < χ, M̂ ⊨ ϕ[m; bj] ↔ ¬ϕ[m; cj]

3. For i < j < χ, M̂ ⊨ ϕ[mi; bj] ↔ ϕ[mi; cj].

4. For j < χ, mj ⊨
∧

i≤j

(
ϕ(x; bi) ↔ ¬ϕ(x; ci)

)
.

The construction is possible by the definition of ϕ-splitting and by (< χ)-compactness of

A. The sequence ⟨mibici : i < χ⟩ witnesses the (< κ)-syntactic order property of length χ

via the formula ϕ(x; y) ↔ ϕ(x; z).

Proof of Theorem 3.6.1. Let A be a set of size µ. As in Lemma 3.6.3, χ bounds the number

of quantifier-free formulas of L̂κ,κ. Also µ = µ<χ, so we may assume A is (< χ)-compact

(see Definition 3.6.4). Since Lemma 3.6.5(2) fails, (1) must hold for each quantifier-free

formula ϕ of L̂κ,κ.
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Now we count the number of (< κ)-syntactic types. Each type pκ is determined by its

restrictions {pκ ↾ ϕ : ϕ is a quantifier-free formula in L̂κ,κ}. Since µ = µχ, we may assume

pκ = pκ ↾ ϕ for a fixed ϕ (this is where we need µ = µχ instead of µ = µ<χ). By Lemma

3.6.5(1), we can find some Πpκ of size < χ such that pκ does not ϕ-split over Πpκ . There are

[A]<χ = µ<χ-many ways to choose Πpκ . For each fixed Π = Πpκ , Lemma 3.6.3 gives at most

22
|Π|

= 22
<χ
-many choices for pκ. So in total there are µ<χ + 22

<χ
= µ-many choices.

Corollary 3.6.6. Let K be a stable AEC.

1. [Vas16c, Theorem 4.13] If K is (< κ)-tame, has AP and is stable in some cardinal

≥ κ−, then the first stability cardinal is bounded above by ℶ(2<(κ+LS(K)+))+.

2. If K is (< κ)-tame and does not have (< κ)-order property of length χ := 2<(κ+LS(K)+).

then the first stability cardinal is bounded above by 22
<χ
.

3. If K is LS(K)-tame and does not have LS(K)-order property of length 2LS(K), then

the first stability cardinal is bounded above by ℶ3(LS(K)).

4. Let |D(T )| := | gS<ω(∅)|. If K is (< ℵ0)-tame and does not have (< ω)-order property

of length |D(T )|, then the first stability cardinal is bounded above by ℶ2(|D(T )|).

Proof. We prove (1): Since K is (< κ)-tame, by Proposition 3.5.4 (< κ)-syntactic stability

in K̂ is equivalent to (< κ)-stability in K. Also, by the contrapositive of Proposition

3.5.7(1)(a), no (< κ)-order property of length χ in K implies no (< κ)-syntactic order

property in K̂ of length χ.

Let K be stable in some λ ≥ κ−. Since it is (< κ)-tame, Theorem 3.2.10 gives stability

in ℶλ+(λ) and Theorem 3.2.2 gives (< κ)-stability in ℶλ+(λ). By Proposition 3.3.4(3), there

is χ < ℶ(2<(κ+LS(K)+))+ such that K does not have (< κ)-order property of length χ. We may

assume χ ≥ 2<(κ+LS(K)+). By the first paragraph and Theorem 3.6.1, K is (< κ)-stable in

22
<χ
< ℶ(2<(κ+LS(K)+))+ .

Remark 3.6.7. In particular (4) misses the actual lower bound by ℶ2 [She90, III Theorem

5.15].

We now show the promised result in Remark 3.4.5:
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Corollary 3.6.8. Let λ be an infinite cardinal and γ be an ordinal with λ ≤ γ < (2λ)+.

Then there is a stable AEC K such that LS(K) = λ, K has the order property of length up

to ℶγ(λ). Moreover, K has JEP , NMM , (< ℵ0)-tameness but not AP .

Proof. Let χ := ℶγ(λ). We use the example in Proposition 3.4.1 with α = γ + 3. Suppose

K has no (< ω)-order property of length χ. Since K is (< ℵ0)-tame, by Proposition

3.5.4 (< ω)-syntactic stability in K̂ is equivalent to (< ω)-stability in K. Also, by the

contrapositive of Proposition 3.5.7(1)(a), no (< ω)-order property of length χ in K implies

no (< ω)-syntactic order property in K̂ of length χ. Since χ ≥ 2<ℵ0 , by Theorem 3.6.1, K

is (< ω)-stable in all µ = µχ + 22
<χ
. In particular, it is (< ω)-stable in ℶ2(χ) = ℶα−1(λ) =

ℶα−1(λ), contradicting the fact that M∗ ∈ K is unstable in any cardinal < ℶα(λ).

Remark 3.6.9. In our example, where exactly is the witness to the (< ω)-order property

of ℶγ(λ)? Tracing the proofs, the key is the recursive construction in Lemma 3.6.5, where

a long splitting chain is utilized. Fix a cardinal χ ≤ ℶα−1(λ). For our K, we do not even

need the bi and can simply set ⟨ci,mi : i < χ⟩ such that all elements are distinct and

mi contains exactly {cj : j ≤ i}. Then ⟨cimi : i < χ⟩ witnesses the 2-order property of

length χ, via the formula ϕ(x1y1;x2y2) := x1Ey2. Therefore, we have an explicit example

of the order property up to length ℶα−1(λ) (the subscript cannot go further because most

elements on the top rank do not belong to any other elements).

We can conclude:

Corollary 3.6.10. 1. For stable AECs, the Hanf number for the order property length

is exactly ℶ(2LS(K))+.

2. For stable AECs, the Hanf number for the order property* length is exactly ℶ(2LS(K))+.

3. The Hanf number for stability is at least ℶ(2LS(K))+. In other words, let λ ≥ ℵ0 and

µ < ℶ(2λ)+, there is a stable AEC K such that LS(K) = λ and the first stability

cardinal is greater than µ.

4. With LS(K)-tameness and AP , the Hanf number for stability is at most ℶ(2LS(K))+.

In other words, if K is a stable AEC with AP and LS(K)-tameness, then the first

stability cardinal is at most ℶ(2LS(K))+.
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Proof. 1. Lower bound is by Corollary 3.6.8 and upper bound is by Proposition 3.3.4(3).

2. Lower bound is by Proposition 3.4.1 and upper bound is by Proposition 3.3.4(3).

3. By Proposition 3.4.1.

4. By Corollary 3.6.6(1).

We finish this section with the following question: are the bounds in (3) and (4)

optimal?

3.7 SYNTACTIC SPLITTING

We will give a syntactic proof to Theorem 3.2.10 using Galois Morleyization. The

advantage is that types are syntactic and can be over sets of size less than LS(K); the

disadvantage is that we have extra assumptions.

Assumption 3.7.1. We assume the existence of a monster model C (AP+JEP+NMM),

where each set is inside some model in K and each (set) embedding/isomorphism is

extended by a K-embedding/isomorphism. We also assume AP over set bases: if

A ⊆ |M1| ∩ |M2| and M1,M2 interpret A in the same way, then there are M3 ≥ M2

and f :M1 −→
A
M3.

Definition 3.7.2. Let µ be an infinite cardinal, A,B be sets in some models of K.

1. B is universal over A if A ⊂ B and for any |B′| ≤ |B|, B′ ⊇ A, there is f : B′ −→
A
B.

We write A ⊂u B.

2. B is µ-universal over A if B′ in (1) must have size ≤ µ.

3. B is µ-homogeneous if it is < µ-universal over any C ⊂ B of size < µ.

4. Let A ⊆ B ∈ K, p ∈ gS(B). We say p µ-splits over A if there exists A ⊆ B1, B2 ⊆ B,

∥B1∥ = µ, f : B1
∼=A B2 with f(p) ↾ B2 ̸= p ↾ B2.

[She09a, II 1.16(1)(a)] shows that universal models of size µ exist if K is stable in

µ ≥ LS(K) (and has µ-AP , µ-NMM). We prove universal sets exist:
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Proposition 3.7.3. 1. For any A, if K is stable in |A|, there is |B| = |A|, B ⊃u A.

2. For any infinite λ, µ and any |A| ≤ λ. If λ<µ = λ, then there is a µ-homogeneous

B ⊃ A of size λ.

Proof. 1. Let µ := |A|. Build ⟨Bi : i < µ⟩ increasing and continuous such that B0 := A,

Bi+1 ⊨ gS(Bi). For any A′ ⊇ A, |A′| ≤ µ. We may assume |A′ − A| = µ and write

A′ = A ∪ {ai : i < µ}. Define Ai := A ∪ {aj : j ≤ i} and ⟨fi : Ai −→
A
Bi : i ≤ µ⟩

increasing and continuous partial embeddings such that fi(ai) ∈ Bi. Set f−1 := idA

and suppose fi has been constructed, obtain Ã′, an isomorphic copy of A′ over ran(fi)

and denote by ãi+1 the copy of ai+1. Now Bi+1 ⊨ gS(Bi) ⊇ gS(ran(fi)) so it realizes

the type of ãi+1 over ran(fi), say by bi+1. By AP there is g : ãi+1 7→ bi+1 fixing

ran(fi). Define fi+1(ai+1) := bi+1.

A′ Ã′ B

ai+1 ãi+1 bi+1

Ai ran(fi)

A

∼=
fi+1

g

fi

2. By an exhaustive argument, we can build a (set) saturated B ⊃ A. We check that

it is µ-homogeneous. Let C ⊂ B, C ′ ⊇ C both of size < µ, the argument from the

previous item applies because B is saturated and |C ′| < µ.

We notice a correspondence between µ-Galois splitting and (< µ+)-syntactic splitting

(see Definition 3.6.2); a similar treatment for coheir has already been done in [Vas16c,

Section 5]). We write q µ-syn-splits over A to mean q (< µ+)-syntactically splits over the

quantifier-free formulas of L̂µ+,µ+ over A.

Proposition 3.7.4. Let µ be an infinite cardinal, K̂ be the (< µ+)-Galois Morleyization

of K. For any A ⊆ B ∈ K, p ∈ gS(B), p µ-splits over A iff pµ+ µ-syn-splits over A.
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Proof. Suppose d ⊨ p µ-splits over A, obtain witness f : B1
∼=A B2 as above. Enumerate

A = a and Bi as bi. Since f(p) ↾ B2 ̸= p ↾ B2, r1 := gtp(f(d)b2/∅) ̸= gtp(db2/∅), so

Ĉ ⊨ Rr1 [db1] ∧ Rr1 [f(d)b2] ∧ ¬Rr1 [db2]. b1 and b2 have the same syntactic type over a

because of f . Therefore, pµ+ = tpµ+(d/B) ⊇ tpµ+(d/B1 ∪B2) µ-syn-splits over A.

Conversely, suppose pµ+ µ-syn-splits over A. There are ϕ(x; b1),¬ϕ(x; b2) in pµ+ such

that b1, b2 have the same syntactic type over a. Pick d ⊨ pµ+ , then Ĉ ⊨ ϕ[d; b1] ∧ ¬ϕ[d; b2],

gtp(db1/∅) ̸= gtp(db2/∅) (actually ϕ might tell the exact Galois type of db1). On the other

hand, let r = gtp(b1a/∅) and consider Rr(x; a). As b1, b2 have the same syntactic type over

A, Ĉ ⊨ Rr[b1; a] ∧Rr[b2; a], which means gtp(b2a/∅) = r. Thus there is f : b1 ∼=a b2.

In the above proof, we did not use tameness simply because (< µ+)-Galois Morleyiza-

tion is already large enough to code all types over domains of size µ.

Corollary 3.7.5. Let µ be an infinite cardinal and K be µ-tame. Let A ⊆ B with |A| ≤ µ.

Then any p ∈ S(B) (≥ µ)-splits over A iff it µ-splits over A.

Proof. We adopt the previous proof: suppose d ⊨ p (≥ µ)-splits over A, obtain witness

f : B1
∼=A B2 as above. Enumerate A = a and Bi as bi. Since f(p) ↾ B2 ̸= p ↾ B2,

gtp(f(d)b2/∅) ̸= gtp(db2/∅). By Proposition 3.5.4, there is a quantifier-free formula ϕ in

L̂µ+,µ+ so that Ĉ ⊨ ϕ[db1]∧ϕ[f(d)b2]∧¬ϕ[db2]. b1 and b2 have the same syntactic type over

a because of f . Therefore, pµ+ = tpµ+(d/B) ⊇ tpµ+(d/B1 ∪ B2) µ-syn-splits over A. This

implies p µ-splits over A by the second paragraph of the previous proof.

We now prove a series of results syntactically. The original proofs in [Van06, Theorems

I 4.10,4.12], [GV06b, Section 6] are semantic.

Lemma 3.7.6. Let µ be an infinite cardinal and K be µ-tame. For any B ⊆ C both of size

≥ µ and p ∈ gS(C), we have pµ+ ↾ B = (p ↾ B)µ+.

Proof. Let d ⊨ p,

pµ+ ↾ B = tpµ+(d/C) ↾ B

= tpµ+(d/B)

= (p ↾ B)µ+ because d ⊨ p ↾ B
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Lemma 3.7.7. Let µ be an infinite cardinal, A ⊂u B ⊆ C all of size µ and p, q ∈ gS(C).

Suppose p, q do not µ-split over A and p ↾ B = q ↾ B. Then p = q. We can allow

|B|, |C| ≥ µ if we assume µ-tameness.

Proof. We comment the case |C| > µ in square brackets. Let K̂ be the (< µ+)-Galois

Morleyization of K. Since p, q do not µ-split over A, Proposition 3.7.4 shows that pµ+ , qµ+

do not µ-syn-split over A [use µ-tameness and Corollary 3.7.5]. Suppose pµ+ ̸= qµ+ , [by

µ-tameness] there is d ⊆ C of size µ, ϕ(x; y) such that ϕ(x; d) ∈ pµ+ − qµ+ . As B ⊃u A, we

may pick b ⊨ tpµ+(d/A). By non-syn-splitting, ϕ(x; b) ∈ pµ+ − qµ+ contradicting pµ+ ↾ B =

qµ+ ↾ B [use Proposition 3.5.4 and Lemma 3.7.6].

Extension also holds but it is applicable to µ-sized models.

Lemma 3.7.8. Let µ be an infinite cardinal, A ⊂u B ⊆ C all of size µ. Let p ∈ gS(B) do

not µ-split over A. Then there is q ∈ gS(C) extending p and does not µ-split over A. Also,

if p is non-algebraic, we can have q non-algebraic.

Proof. Let K̂ be the (< µ+)-Galois Morleyization of K. First we decide whether ±ϕ(x; c) ∈

qµ+ for each quantifier-free formula in L̂µ+,µ+ over C. Since A ⊂u B, there is a copy C ′ ⊂ B

of C. We want q does not µ-split over A, by Proposition 3.7.4 we must set ϕ(x; c) ∈ qµ+

iff ϕ(x; bc) ∈ pµ+ where bc ∈ C ′ and bc ⊨ tpµ+(c/A). Such qµ+ is realized because pµ+ , and

thus pµ+ ↾ C ′ ∼=A qµ+ is realized where C ′ ⊂ B is the copy of C.

If p is non-algebraic and we can modify the argument above by extending C to a copy

of B. Then pµ+ is realized/algebraic iff qµ+ is.

p q

B C ∋ c

bc ∈ C ′

A

∼=
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Lemma 3.7.9. Let µ be an infinite cardinal, K be µ-tame and stable in µ. For any |A| ≤ µ,

A ⊂u C,

χ := |{p ∈ gS(C) : p does not ≥ µ-split over A}| ≤ µ

Proof. Pick B of size µ with A ⊂u B ⊆ C. By Corollary 3.7.5, Lemma 3.7.7 and Lemma

3.7.8, χ = |{p ∈ gS(B) : p does not µ-split over A}| ≤ | gS(B)| ≤ µ.

The following originates from [She99, Claim 3.3] and is extended to longer types in

[GV06b, Fact 4.6].

Lemma 3.7.10. Let µ be an infinite cardinal and K be stable in µ. For any p ∈ gS(B),

there is A ⊆ B of size µ such that p does not µ-splits over A.

Proof. Suppose the lemma is false, we can find d ⊨ p ∈ gS(B), B of size > µ such that p µ-

splits over all A of size µ. Let K̂ be the (< µ+)-Galois Morleyization of K. By Proposition

3.7.4, pµ+ µ-syn-splits over all A of size µ. Pick any A0 ⊂ B of size µ and choose minimum

κ ≤ µ with 2κ > µ. By assumption we can build ⟨aη⌢0, aη⌢1, ϕη, fη : η ∈ 2<κ − {⟨⟩}⟩ and

⟨Aα : α < κ⟩ such that

1. ⟨Aα : α < κ⟩ is increasing and continuous. For α < κ, Aα ⊂ B has size µ.

2. For η ∈ 2<κ, aη ∈ Al(η), fη : aη⌢0 7→ aη⌢1 and fη fixes Al(η).

3. For η ∈ 2<κ, ϕη(x; aη⌢0),¬ϕη(x; aη⌢1) ∈ pµ+

A2 ϕ0(x; a00) ϕ0(x; a01) ϕ1(x; a10) ϕ1(x; a11)

A1 a0 a1

f0

A1

f1

A1

f⟨⟩

A0

For ν ∈ 2κ, define qν := {ϕη(x; aη⌢i) : η ∈ 2<κ, η⌢i ⊑ ν; i = 1, 2} ∪ {¬ϕη(x; aη⌢1) :

η ∈ 2<κ, η⌢0 ⊑ ν}. ⟨qν : ν ∈ 2κ⟩ are obviously pairwise contradictory. It remains

to show each of them is realized. For any ν ∈ 2κ, define gν to be the composition of
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⟨f ν[α]
ν↾α : α < κ⟩ where each f 0

η := id and f 1
η := fη. gν is well-defined because for η ∈

2<κ, fη fixes Al(η). Extend gν to an isomorphism containing d. Inductively we can show

gν(d) ⊨ qν : let α < κ. If ν[α] = 0, then item (3) in the construction guarantees g(p+µ ) ⊇

gν({ϕν↾α(x; aν↾α⌢0),¬ϕν↾α(x; aν↾α⌢1)}) = {ϕν↾α(x; aν↾α⌢0),¬ϕν↾α(x; aν↾α⌢1}). If ν[α] = 1,

then g(p+µ ) ⊇ gν({ϕν↾α(x; aν↾α⌢0)}) = {ϕν↾α(x; aν↾α⌢1)}.

Proof of Theorem 3.2.10. Let C be of size λ. By an exhaustive argument, we may extend

C to be µ+-saturated. Let A ⊂ C of size µ. By Proposition 3.7.3(1) and (2), we can build

B of size µ such that A ⊂u B ⊂ C. Thus Lemma 3.7.9 applies. Also by Lemma 3.7.10,

each p ∈ gS(C) does not µ-split over some Ap ⊂ C of size µ. There are at most λµ of such

Ap. Thus

|gS(C)| =
∣∣⋃{p ∈ gS(C) : p does not µ-split over Ap}

∣∣ ≤ λµ · µ = λ

Corollary 3.7.11. If K is stable in some λ < LS(K). Then the first stability cardinal

≥ LS(K) is bounded above by 2LS(K).

Proof. Apply Theorem 3.2.10 to (2LS(K))λ = 2LS(K).

Our final application is the upward transfer of stability. The original proof of (1)

below uses weak tameness (tameness over saturated models). [Vas16b, Lemma 5.5] proves

a stronger version of (2) with chain local character instead of set local character, but we

do not assume the former here.

Proposition 3.7.12. Let µ < λ be infinite cardinals. Assume K is µ-tame and stable in

µ.

1. [BKV06, Theorem 4.5] K is also stable in µ+.

2. If in addition cf(λ) > µ and K is stable in unbounded many cardinals below λ, then

it is stable in λ.
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Proof. 1. Suppose |A| = µ+ has µ++ many types ⟨pα : α < µ++⟩. Write A =
⋃

i<µ+ Ai

increasing and continuous, with |Ai| = µ. We may assume Ai+1 ⊨ gS(Ai) by the

following: define another chain ⟨A′
i : i ≤ µ+⟩ increasing and continuous such that

|A′
i+1| = |Ai+1| = µ and A′

i+1 ⊃u Ai ∪ A′
i (using Proposition 3.7.3(1)). Replace A by

A′
µ+ .

By Lemma 3.7.10 and cf µ++ > µ+, we may assume all pα does not µ-split over A0.

By stability in µ and pigeonhole principle, we may assume all pα has the same type

over A1. Together with Lemma 3.7.7, all pα are equal, contradiction.

2. We consider limit cardinal λ. Pick a cofinal sequence ⟨λi : i < cf(λ)⟩ to λ such

that K is stable in all λ. Repeat the same argument as (1) but with |A| = λ and

A =
⋃

i<cf(λ)Ai.
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CHAPTER 4

AXIOMATIZING AECS AND APPLICATIONS

ABSTRACT

For any abstract elementary class (AEC) K with λ = LS(K), the following holds:

1. K has an axiomatization in L(2λ)+,λ+ , allowing game quantification. If K has

arbitrarily large models, the λ-amalgamation property and is categorical both

in λ and λ+, then it has an axiomatization in Lλ+,λ+ with game quantification.

These extend Kueker’s [Kue08] result which assumes finite character and λ = ℵ0.

2. If K is universal and categorical in λ, then it is axiomatizable in Lλ+,λ+ .

3. Shelah’s celebrated presentation theorem asserts that for any AEC K there is

a first-order theory in an expansion of L(K), and a set Γ of 2λ many T -types

such that K = PC(T,Γ,L(K)). We provide a better bound on |Γ| in terms of

I2(λ,K).

4. We present additional applications which extend, simplify and generalize results

of Shelah [She87, She01] and Shelah-Vasey [SV18a]. Some of our main results

generalize to µ-AECs.

4.1 INTRODUCTION

In the proof of Shelah’s presentation theorem [She09a, I Lemma 1.9], functions are

added to capture isomorphism axioms and Löwenheim-Skolem axiom. [SV21, Theorem 2.1]

claimed that any abstract elementary class (AEC) K can be axiomatized by an Lℶ2(λ)+3,λ+

sentence where λ is the Löwenheim-Skolem number, and such an axiomatization is in L(K).

Let χ := λ + I2(λ,K), where I2(λ,K) is the number of pairs (M,N) that are noni-

somorphic where M,N ∈ Kλ and M ≤K N . In Main Theorem 4.3.7, we will axiomatize

an AEC K by a sentence σK in Lχ+,λ+ , allowing game quantification. As χ ≤ 2λ, we have

that σK is in L(2λ)+,λ+ , improving Shelah and Villaveces’ result. Modulo the use of game

quantification, our result is optimal for uncountable λ as it is known that there is an AEC

that cannot be axiomatized by an L∞,λ sentence [Hen19]. Under extra assumptions, we

can axiomatize an AEC by a sentence in Lλ+,λ+ (Proposition 4.3.10 and Theorem 4.3.12).
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By slightly modifying σK, we can encode the K-substructure relation (Proposition 4.3.16

and Proposition 4.3.18) by a formula σ≤ in Lχ+,λ+ . As above, we can improve the results

under extra assumptions (Corollary 4.3.20).

As an application of our axiomatization of AECs, we derive a variation on the presen-

tation theorem, where any AEC is a PCχ class (Theorem 4.4.1) and game quantification is

not used. Our presentation theorem is stronger than Shelah’s as the bound of |Γ| in some

cases is smaller than 2LS(K). It also lowers the threshold of the existence theorem from suc-

cessive categoricity (Theorem 4.4.8). The axiomatization strategy is also applicable to the

µ-AEC analogs, giving a stronger presentation theorem (Theorem 4.5.6) than [BGL+16,

Theorem 3.2].

In the following, we provide two tables. The first table summarizes the known results in

literature. The definition of L(ω) can be found in [Kue08, Definition 1.12] and Lχ+,λ+(ω ·ω)

is defined in Definition 4.2.6. The second table summarizes the main results in this paper.

We write AL = arbitrarily large models, AP = amalgamation property, JEP = joint

embedding property, NMM = no maximal models. Monster model means AP + JEP +

NMM . The entries of the second table link to the related theorems (see Observation 4.3.15

for cases where we do not assume λ-categoricity).
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Known results

Assumptions on K K is References

None axiomatizable in L
(22λ

+
)+++,λ+

[SV21, Theorem 2.1]

None PCλ,2λ [She87, Lemma 1.8]

None reducts of a theory in L′
χ+,λ+ [BB16, Theorem 3.2.3]

where L′ ⊇ L

λ = ℵ0, ℵ0-AP , stable in ℵ0, PCℵ0 [SV18a, Theorem 4.2]

I(ℵ0,K) ≤ ℵ0

λ = ℵ0 closed under ≡∞,ω1 [Kue08, Theorem 2.5]

λ = ℵ0, ∃κ = κℵ0(I(κ,K) ≤ κ) axiomatizable in L∞,ω1 [Kue08, Theorem 2.11]

λ = ℵ0, ∃κ = κℵ0(I(< κ,K) ≤ κ) axiomatizable in Lκ+,ω1
[Kue08, Theorem 2.11]

Finitary, λ = ℵ0 closed under ≡∞,ω [Kue08, Theorem 3.4]

Finitary closed under ≡∞,ω [Joh10, Theorem 3.7]

Finitary, λ = ℵ0 axiomatizable in L(ω) [Kue08, Theorem 3.7]

Finitary, λ = ℵ0, ∃κ(I(κ,K) ≤ κ) axiomatizable in L∞,ω [Kue08, Theorem 3.10]

Finitary, ∃κ = κ<λ(I(κ,K) ≤ κ) axiomatizable in L∞,λ [Joh10, Theorem 3.10]

Finitary, λ = ℵ0, axiomatizable in Lκ+,ω [Kue08, Theorem 3.10]

∃κ(I(< κ,K) ≤ κ)

Finitary, ∃κ = κ<λ(I(< κ,K) ≤ κ) axiomatizable in Lκ+,λ [Joh10, Theorem 3.10]

λ = ℵ0, ∃κ(I(κ,K) = 1) K≥κ is closed under ≡∞,ω [Kue08, Theorem 5.1]

Finitary, λ = ℵ0, ∃κ(I(κ,K) = 1) K≥κ axiomatizable in Lω1,ω [Kue08, Theorem 5.2]

λ = ℵ0, ∃κ = κℵ0(I(κ,K) = 1) Models in K≥κ are L∞,ω1-equivalent [Kue08, Theorem 5.3a]

Previous row + monster model K≥κ axiomatizable in L(2ω)+,ω1
[Kue08, Theorem 5.3c]

λ > ℵ0 K is closed under ≡∞,λ+ [Kue08, Theorem 7.2]

Monster model, λ > ℵ0, K≥κ axiomatizable in L2κ+,κ+ [Kue08, Theorem 7.4]

∃κ(I(κ,K) = 1 ∧ cf(κ) > λ)

Finitary, monster model, K≥κ axiomatizable in L∞,λ [Joh10, Theorem 3.11]

∃κ(I(κ,K) = 1 ∧ cf(κ) > λ)
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New results

Assumptions on K Axiomatization in K is

None Lχ+,λ+(ω · ω) PCχ

Universal class, I(λ,K) ≤ λ Lλ+,λ+ PCλ

AL, λ-AP , I(λ,K) ≤ λ, I(λ+,K) = 1 Lλ+,λ+(ω · ω) PCλ

2λ < 2λ
+
, AL, I(λ,K) = 1, I(λ+,K) = 1 Lλ+,λ+(ω · ω) PCλ

λ-AP , I(λ,K) ≤ λ, I(λ+,K) = 1 Lλ+,λ+(ω · ω) PCλ

stable in λ

2λ < 2λ
+
, I(λ,K) = 1, I(λ+,K) = 1, Lλ+,λ+(ω · ω) PCλ

stable in λ

Note that the last row is a significant improvement of [SV18a, Theorem 4.2], using

much simpler and general methods while covering the case when λ is uncountable. We

highlight the differences between our result and [BB16, Theorem 3.2.3]:

1. They expand the base vocabulary to τ ∗ by adding new predicates of arity λ, and their

theory T ∗ in the expanded language is more semantic and longer; our axiomatization

keeps the original language L(K) and is purely syntactic.

2. Their relational presentation theorem characterizes K as reducts of models of T ∗, K-

substructure as reducts of τ ∗-substructure; our axiomatization is simply in Lχ+,λ+(ω ·

ω) and we pin down the formula that determines K-substructure.

3. Their expanded language τ ∗ has size χ; our axiomatization uses the original language

so has size ≤ λ (but both approaches require taking χ-conjunctions). We expand the

language to size χ only when we derive a variation on Shelah’s presentation theorem.

4. In [BB16, Theorem 3.2.3], they do not require types to be omitted because their theory

T ∗ is in the infinitary logic. We omit types in our variation to Shelah’s presentation

theorem so as to represent K as a first-order PC class.

Our approach in this paper was inspired by Villaveces’ question of the complexity of

the example in Proposition 3.4.1, which has high instability but low complexity γ = 1.
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Also, Grossberg suggested in May 2021 that [SV21] could have a significant improvement.

This motivated us to look for a simpler axiomatization of an AEC, without using trees or

other combinatorial machinery in [SV21, Theorem 2.4]. At the cost of game quantification,

we lower the complexity of junctions in their paper from ℶ2(λ)
+3 to χ+.

This paper was written while the author was working on a Ph.D. under the direction of

Rami Grossberg at Carnegie Mellon University and we would like to thank Prof. Grossberg

for his guidance and assistance in my research in general and in this work in particular.

4.2 PRELIMINARIES

Let L be a finitary language, λ1 ≥ λ2 be infinite cardinals. We write Lλ1,λ2 the set of

formulas generated by L, allowing < λ2 free variables and < λ2 quantifiers, in addition to

conjunctions and disjunctions of < λ1 subformulas. Given an L-structure M , we write |M |

the universe of M and ∥M∥ the cardinality of M .

Definition 4.2.1. Let L ⊆ L′ be two languages (they can be infinitary), T be an L′-theory

and Γ be a set of L′-types. Let µ be a regular cardinal. If L,L′ are (< µ)-ary, we define

ECµ(T,Γ) := {M :M is an L′-structure,M ⊨ T ,M omits Γ}

PCµ(T,Γ, L) := {M ↾ L :M is an L′-structure,M ⊨ T ,M omits Γ}

When µ = ℵ0, we omit the superscript ℵ0.

Let λ, χ be infinite cardinals, and assume |T | ≤ λ and |Γ| ≤ χ. If K = ECµ(T,Γ),

we call K an ECµ
λ,χ class. If K = PCµ(T,Γ, L), we call K a PCµ

λ,χ class. We omit the

superscript ℵ0 when µ = ℵ0. We omit λ, χ if the sizes of T and Γ are not specified. PCλ

stands for PCλ,λ.

Definition 4.2.2. Let L be a finitary language. An abstract elementary classK = ⟨K,≤K⟩

in L satisfies the following axioms:

1. K is a class of L-structures and ≤K is a partial order on K ×K.

2. For M1,M2 ∈ K, M1 ≤K M2 implies M1 ⊆M2 (as L-substructures).

3. Isomorphism axioms:
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(a) If M ∈ K, N is an L-structure, M ∼= N , then N ∈ K.

(b) Let M1,M2, N1, N2 ∈ K. If f : M1
∼= M2, g : N1

∼= N2, g ⊇ f and M1 ≤K N1,

then M2 ≤K N2.

4. Coherence: Let M1,M2,M3 ∈ K. If M1 ≤K M3, M2 ≤K M3 and M1 ⊆ M2, then

M1 ≤K M2.

5. Löwenheim-Skolem axiom: There exists an infinite cardinal λ ≥ |L(K)| such that:

for any M ∈ K, A ⊆ |M |, there is some N ∈ K with A ⊆ |N |, N ≤K M and

∥N∥ ≤ λ+ |A|. We call the minimum such λ the Löwenheim-Skolem number LS(K).

6. Chain axioms: Let α be an ordinal and ⟨Mi : i < α⟩ ⊆ K such that for i < j < α,

Mi ≤K Mj.

(a) Then M :=
⋃

i<αMi is in K and for all i < α, Mi ≤K M .

(b) Let N ∈ K. If in addition for all i < α, Mi ≤K N , then M ≤K N .

Let λ ≥ LS(K) be a cardinal. We define Kλ := {M ∈ K : ∥M∥ = λ} and Kλ := ⟨Kλ,≤K↾

Kλ ×Kλ⟩. When the context is clear, we omit the subscript of ≤K and write ≤. We will

only consider K≥LS(K) in place of K, which is still an AEC.

Definition 4.2.3. 1. Let I be an index set. A directed system ⟨Mi : i ∈ I⟩ ⊆ K indexed

by I satisfies the following: for any i, j ∈ I, there is k ∈ I such that Mi ≤ Mk and

Mj ≤Mk.

2. Let µ be an infinite cardinal. A µ-directed system ⟨Mi : i ∈ I⟩ ⊆ K indexed by I

satisfies the following: for any J ⊆ I of size < µ, there is k ∈ I such that for all

j ∈ J , Mj ≤Mk, (thus a system is directed iff it is ℵ0-directed.)

Fact 4.2.4. [She09a, I Observation 1.6] Let ⟨Mi : i ∈ I⟩ ⊆ K be a directed system. Then

1. M :=
⋃

i∈I Mi ∈ K

2. For all i ∈ I, Mi ≤M .

3. Let N ∈ K. If in addition for all i ∈ I, Mi ≤ N , then M ≤ N .
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Fact 4.2.5. [She09a, II Claim 1.8(2)] If M ≤ N in K, then there are index sets I1 and I2,

directed systems ⟨Mi : i ∈ I1⟩ and ⟨Ni : i ∈ I2⟩ of union M , N respectively, I1 ⊆ I2 and

Mi = Ni for all i ∈ I1.

Definition 4.2.6. Let L be a language, λ, χ be infinite cardinals and δ be an ordinal.

Lλ,χ(δ) extends Lλ,χ by allowing δ-game quantification: if ϕ is a formula in Lλ,χ(δ) with

free variables (xα, yα)α<δ and l(xα), l(yα) < χ, then (∀xα∃yα)α<δ ϕ is a formula in Lλ,χ(δ).

An L-structureM satisfies (∀xα∃yα)α<δ ϕ if Player II has a winning strategy in the following

game of δ rounds: in the α-th round, Player I chooses some tuple aα ⊆ M of length l(xα)

and Player II responds by choosing some tuple bα ⊆ M of length l(yα). Player II wins if

M ⊨ ϕ[aα, bα]α<δ where for α < δ, xα is substituted by aα and yα is substituted by bα.

If δ above is finite, then Lλ,χ(δ) = Lλ,χ. The use of game quantifiers in AECs can be

found in [Kue08, Theorems 2.9, 3.7] which handle the case LS(K) = ℵ0. Our version is

consistent with L(ω) there and is called a closed game quantifier in [Kol85, Chapter X.2].

4.3 ENCODING AN AEC

In this section, we fix an AEC K in a language L.

Definition 4.3.1. 1. Let λ ≥ LS(K). I(λ,K) := |{M/∼= :M ∈ Kλ}|.

2. Let M1 ≤ N1, M2 ≤ N2. We write (M1, N1) ∼= (M2, N2) if there exists f : N1
∼= N2

such that f ↾M1 :M1
∼= M2.

3. Let λ ≥ LS(K). I2(λ,K) := |{(M,N)/∼= :M ≤ N in Kλ}|.

Example 4.3.2. Depending on λ and K, I(λ,K) and I2(λ,K) may not be the same:

1. If K is the class of the Lω1,ω theory ∀x
∨

i<ω(x = ci) where ci are constants, then

I(ℵ0,K) = I2(ℵ0,K) = 1.

2. If K is the class of the first-order theory of pure equality, then I(λ,K) = 1 but

I2(λ,K) = λ for any infinite λ.
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3. (The following argument is due to the referee.) If K is the class of the first-order

theory of dense linear orders without endpoints, then I(ℵ0,K) = 1 but I2(ℵ0,K) =

2ℵ0 . To see the latter, fix M = Q and countably many cuts of Q. Those cuts form a

countable order with respect to the usual ordering. We require a countable elementary

extension N to add either a single realization or infinitely many realizations to each

cut. Hence there are 2ℵ0 such N . Since an order automorphism of Q extends uniquely

to an automorphism of the reals, pairs of the form (Q, N) are not isomorphic.

Proposition 4.3.3. I(λ,K) ≤ I2(λ,K) ≤ 2λ.

Proof. For any M ≤ N1 and M ≤ N2 in K, if N1 ̸∼= N2, then (M,N1) ̸∼= (M,N2) by

definition, hence the first inequality. Using the fact that I(λ,K) ≤ 2λ, we can bound

I2(λ,K) ≤ λλ · I(λ,K) ≤ 2λ.

Question 4.3.4. Assuming stability or categoricity, is it possible to obtain a better bound

than Proposition 4.3.3?

Until the end of this section, we write λ := LS(K).

Observation 4.3.5. List the representatives of {M/∼= : M ∈ Kλ} by ⟨Mi : i < I(λ,K)⟩

and those of {(M,N)/∼= : M ≤ N in Kλ} by ⟨(Mj, Nj) : j < I2(λ,K)⟩. For i < I(λ,K),

let ϕi(x) be an Lλ+,λ+ formula that encodes the isomorphism type of Mi with a fixed

enumeration of the universe |Mi| = {mi
k : k < λ}. For variables x = ⟨xk : k < λ⟩,

ϕi(x) :=
∧

{θ(xα0 , . . . , xαs−1) :Mi ⊨ θ[m
i
α0
, . . . ,mi

αs−1
], s < ω, α0, . . . , αs−1 < λ,

θ is an atomic L-formula or its negation with s free variables}

Namely for any L-structure N and any a ∈ |N | of length λ, if N ⊨ ϕi[a] then a ∼= Mi (with

the fixed enumeration).

Similarly, for j < I2(λ,K), let ψj(x, y) be an Lλ+,λ+ formula that encodes the iso-

morphism type of (Mj, Nj) with fixed enumerations, where |Mj| = ⟨mj
k : k < λ⟩,
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|Nj| = {nj
k : k < λ}. For variables x = ⟨xk : k < λ⟩ and y = ⟨yk : k < λ⟩,

ψj(x; y) :=
∧

{θ(xα0 , . . . , xαs−1 ; yβ0 , . . . , yβt−1) : Nj ⊨ θ[m
j
α0
, . . . ,mj

αs−1
;nj

β0
, . . . , nj

βt−1
],

s < ω, t < ω, α0, . . . , αs−1, β0, . . . , βt−1 < λ,

θ is an atomic L-formula or its negation with s+ t free variables}

Namely for any L-structure N and any a, b ∈ |N | both of length λ, if N ⊨ ψj[a, b] then

a ∼= Mj, b ∼= Nj (with the fixed enumerations) and ran(a) ⊆ ran(b).

It is also possible to encode the re-enumerations of the isomorphism types in ϕi and

ψj, but we will do that directly in the sentence σK in Main Theorem 4.3.7 and σ≤ in

Proposition 4.3.18(1), so as to be more consistent with the format of Theorem 4.4.1.

Definition 4.3.6. Let α, β < λ+, a = ⟨ai : i < α⟩ and b = ⟨bi : i < β⟩. a ⊆ b stands for

ran(a) ⊆ ran(b), which can be expressed by the Lλ+,λ+ formula∧
i<α

∨
j<β

ai = bj

a ≈ b stands for ran(a) = ran(b), which can be expressed by the Lλ+,λ+ formula(∧
i<α

∨
j<β

ai = bj

)
∧
( ∧

j<β

∨
i<α

bj = ai

)
Main Theorem 4.3.7. K is axiomatizable by an L(λ+I2(λ,K))+,λ+(ω · ω) sentence σK. In

other words, for any L-structure M , M ∈ K iff M ⊨ σK.

Proof. The following variables (xα, yα)α<ω·ω are all of length λ.

σK := (∀xα∃yα)α<ω·ω
∧

α<ω·ω

[
(xα ⊆ yα) ∧ ∃zα

(
(yα ≈ zα) ∧

∨
i<I(λ,K)

ϕi(zα)
)
∧

∧
β<α<ω·ω

∃uβ,α∃vβ,α
(
(yβ ≈ uβ,α) ∧ (yα ≈ vβ,α) ∧

∨
j<I2(λ,K)

ψj(uβ,α, vβ,α)
)]

In words, σK stipulates the iterated use of Löwenheim-Skolem and coherence axioms (ω ·ω)

many times.

Suppose M ∈ K, we show that Player II can win the associated game in σK. In the

α-th round, Player I provides some xα of length λ. By Löwenheim-Skolem axiom, pick any
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yα ≤ M of size λ such that ran(xα) ∪
⋃

β<α ran(yβ) ⊆ ran(yα). By inductive hypothesis,

for β < α, we have yβ ≤M . By coherence axiom, yβ ≤ yα as desired.

Suppose M ⊨ σK. By Fact 4.2.4(1), it suffices to build a directed system ⟨Ma ∈ Kλ :

a ∈ I⟩ of union M . We choose I to be the set of finite tuples a in M . Let a, b be finite

tuples in M , we pre-order a ≤I b iff ran(a) ⊆ ran(b). We will inductively build all Ma in ω

stages. At stage n we handle finite tuples of length n+ 1.

� Stage 0: apply σK to each singleton s inM and substitute x0 = s. We obtain y0 =Ms

which is a K-structure. Only the 0-th round of the game is used for each singleton.

� Inductive hypothesis: for some n < ω, Ma has been constructed for each l(a) ≤ n+1

with the following requirements:

1. For some k < ω and some singleton s, Ma is the union
⋃

α<1+ω·k yα where yα

comes from the game of s (i.e. x0 = s; the “1+” is to handle the k = 0 case).

2. Let a, b both of length ≤ n+ 1. If ran(b) ⊆ ran(a), then Mb ≤Ma.

Before we move onto the inductive step, we show that given Ma and Mb constructed

in previous stages, we can find M∗ such that M∗ ≥ Ma and M∗ ≥ Mb. By inductive

hypothesis, there is a singleton s in M , ms < ω such that Ma is the union
⋃

α<1+ω·ms
yα

from the game of s. Similarly, we can find some singleton t in M and mt < ω such that

Mb is the union
⋃

α<1+ω·mt
yα from the game of t. Using ω more rounds in the games of s

and of t, we recursively build ⟨Nk : k < ω⟩ ⊆-increasing such that

1. ⟨N2l : l < ω⟩ and ⟨N2l+1 : l < ω⟩ are both ≤K-increasing.

2. N−1 :=Ma and N0 :=Mb.

3. If k = 2l + 1, then use the (1 + ω · ms + l)-th round in the game of s to obtain

y1+ω·ms+l = Nk from x1+ω·ms+l = Nk−1. Notice that if ms > 0, N−1 ≤ N1 by the

second chain axiom.

4. If k = 2l + 2, then use the (1 + ω · mt + l)-th round in the game of t to obtain

y1+ω·mt+l = Nk from x1+ω·mt+l = Nk−1. Notice that if mt > 0, N0 ≤ N2 by the second
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chain axiom.

⋃
α<1+ω·ms

yα x1+ω·ms y1+ω·ms x1+ω·ms+1 y1+ω·ms+1

Ma = N−1 N1 N3 · · ·

Mb = N0 N2 N4 · · ·

⋃
α<1+ω·mt

yα x1+ω·mt y1+ω·mt x1+ω·mt+1 y1+ω·mt+1

In the above diagram, a solid arrow stands for K-substructure while a dashed arrow stands

for L-substructure. The first row represents the game of s while the last row represents the

game of t. Each vertical column contains identical K-structures.

Define M∗ :=
⋃

k<ωNk. By requirements (1), (2) and chain axioms, M∗ ≥ Ma and

M∗ ≥Mb. Also, s has used the first ω ·(ms+1) rounds while t has used the first ω ·(mt+1)

rounds. This finishes the construction of M∗.

� Stage n + 1: Now for tuples c of length n + 2, we build Mc. Break down c as the

union of two tuples of length ≤ n+1 (there might be more than one way), say a and

b. As above assume Ma is generated by some singleton s and Mb by some singleton

t. Then we can find M∗ with M∗ ≥ Ma, M
∗ ≥ Mb and M

∗ is the union of bounded

many yα’s of the game of some singleton s. We cannot immediately define Mc :=M∗

because M∗ depends on the choice of the decomposition a, b. Since there are finitely

many possible decompositions of a finite tuple c, we can continue the game of s and

extend M∗ to Mc which includes all M∗ from other decompositions of c (Mc might

not be unique but it is a K-superstructure to all those Ma with ran(a) ⊆ ran(c); Mc

is also generated by other games of singletons but we just need one representative s

for Mc).

After the construction is completed, ⟨Ma ∈ Kλ : a ∈ I⟩ is directed by our inductive step.

Their union is M because for each element u in M , u ∈M{u}.

Remark 4.3.8. Our theorem generalizes [Kue08, Theorems 2.9, 3.7] which use the ω-game

quantification. Modulo the (ω · ω)-game quantification, our result also generalizes [Kue08,

Theorems 5.3, 7.4] which assumes a monster model and categoricity in a higher cardinal.
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We will encode the K-substructure relation in Proposition 4.3.18. Before that we

investigate possible improvements of Main Theorem 4.3.7. The following questions were

suggested by Grossberg:

Question 4.3.9. Is it possible to axiomatize an AECK in Lλ+,λ+ instead of L(λ+I2(λ,K))+,λ+

(with or without game quantification), assuming

1. stability?

2. categoricity in λ and λ+?

For (2), Grossberg also suggested that [MAV18] should allow improvements of Main

Theorem 4.3.7. Indeed it is possible when K is a universal class. A partial converse can be

found in [MAV18, Theorem 3.5].

Proposition 4.3.10. If K is a universal class, then it is axiomatizable by an L(λ+I(λ,K))+,λ+

sentence σK. In particular if K is categorical in λ, then it is axiomatizable by an Lλ+,λ+

sentence.

Proof. Since models are ordered by L-substructures, we can avoid game quantification and

replace the ψj’s by subset relations when defining σK in Main Theorem 4.3.7. Namely,

σK := ∀a ∃ma

(
a ⊆ ma ∧

∨
i<I(λ,K)

ϕi(ma)
)
∧

∀mb ∀mc

[( ∨
i<I(λ,K)

ϕi(mb) ∧
∨

j<I(λ,K)

ϕj(mc)
)

→ ∃md

( ∨
k<I(λ,K)

ϕk(md) ∧ (mb ⊆ md) ∧ (mc ⊆ md)
)]

We also have some approximations to Question 4.3.9(2), using game quantification.

In the following we abbreviate amalgamation property as AP and arbitrarily large models

as AL.

Fact 4.3.11. 1. If K has AL, λ-AP , is categorical in λ+, then it is stable in λ. Hence

for any M ∈ Kλ, there is N ∈ Kλ which is a (λ, ω)-limit model over M .
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2. Let K have λ-AP and M1,M2,M3 ∈ Kλ. If M1 ≤M2 and M3 is a (λ, ω)-limit model

over M2, then M3 is also a (λ, ω)-limit model over M1.

3. Let M,N,N ′ ∈ Kλ. If N,N
′ are both (λ, ω)-limit models over M , then N ∼=M N ′.

Theorem 4.3.12. If K has AL, λ-AP and is categorical in λ and λ+, then it is axioma-

tizable by an Lλ+,λ+(ω · ω) sentence σ. AL can be replaced by stability in λ.

Proof. By Fact 4.3.11(1), fix M,N ∈ Kλ such that N is (λ, ω)-limit over M . Let ϕ(x) code

the isomorphism type of M and ψ(x, y) code the isomorphism type of (M,N). From the

proof of Main Theorem 4.3.7, it suffices to replace
∨

i<I(λ,K) ϕi and
∨

j<I2(λ,K) ψj there by

some λ-junctions. Since K is λ-categorical, we can replace the first disjunction by ϕ. We

also replace the second disjunction by a coherence formula involving ψ. Finally we add a

disjunction to σK specifying models of size λ:

σ := ∃w
(
ϕ(w) ∧ ∀x(x ⊆ w)

)
∨
{

(∀xα∃yα)α<ω·ω
∧

α<ω·ω

[
(xα ⊆ yα) ∧ ∃zα

(
(yα ≈ zα) ∧ ϕ(zα)

)
∧

∧
β<α<ω·ω

∃uβ,α∃vβ,α∃w∃z(
(uβ,α ⊆ vβ,α) ∧ (yβ ≈ uβ,α) ∧ (yα ≈ vβ,α) ∧ (w ≈ z) ∧ ψ(uβ,α, w) ∧ ψ(vβ,α, z))

)]}
Suppose M∗ is an L-structure and M∗ ⊨ σ. By coherence, the last line of σ implies

yβ ≤ yα. Then either M∗ ∈ Kλ or it can build a directed system ⟨Mα ∈ Kλ : α ∈ I⟩ of

union M∗ as in Main Theorem 4.3.7. By Fact 4.2.4(1) M∗ ∈ K.

Suppose M∗ ∈ Kλ, then it satisfies the first disjunct of σ. Otherwise M∗ ∈ K>λ. We

need to verify that for any M1,M2 ∈ Kλ, if M1 ≤ M2 ≤ M∗ then there is M3 ≤ M∗ such

that (M1,M3) ∼= (M2,M3) ∼= (M,N). By AL and categoricity in λ+, M∗ is λ+-saturated,

so we can build M3 ∈ Kλ which is (λ, ω)-limit over M2.

M3 N ′ N

M2

M1 M

∼= ∼=

(λ,ω)
(λ,ω)

∼=

(λ,ω)
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By Fact 4.3.11(2), M3 is (λ, ω)-limit to both M1. Since K is categorical in λ, M1
∼= M and

we can extend this isomorphism to M3
∼= N ′ for some N ′ ≥ M . Then N ′ is a (λ, ω)-limit

overM . By Fact 4.3.11(3), N ′ ∼=M N so (M1,M3) ∼= (M,N). Similarly (M2,M3) ∼= (M,N).

Therefore, M∗ ⊨ σ as desired.

Using a well-known result of Shelah, we can replace the assumption by AP by a

set-theoretic one.

Fact 4.3.13. [She87, Theorem 3.5] Assume 2λ < 2λ
+
. If I(λ,K) = 1 and 1 ≤ I(λ+,K) <

2λ
+
, then K has λ-AP .

Corollary 4.3.14. Assume 2λ < 2λ
+
. If K has AL and is categorical in λ and λ+, then it

is axiomatizable by an Lλ+,λ+(ω · ω) sentence σ′. AL can be replaced by stability in λ.

Proof. Combine Fact 4.3.13 and Theorem 4.3.12.

In other words, under WGCH Question 4.3.9 has a positive answer when we assume

both (1) and (2) of the hypotheses there and use game quantification.

Observation 4.3.15. 1. As in Proposition 4.3.10, we can replace categoricity in λ by

I(λ,K) ≤ λ. We keep the original format of the theorem statements to better answer

Question 4.3.9.

2. Let κ ≥ λ+. In Theorem 4.3.12, if we replace categoricity in λ+ by κ, and further

assume (< κ)-AP , then models in Kκ are saturated [Vas17d, Corollary 4.11(3)]. The

same argument allows us to axiomatize K≥κ by an Lλ+,λ+(ω · ω) sentence. If κ is

regular, then we can replace AL by stability in [λ, κ).

3. John Baldwin pointed out that [She99] can reduce the successive categoricity assump-

tion to a single categoricity. Indeed, assuming AP and categoricity in a successor

above H2 (the second Hanf number), we have categoricity in H2 and AL. Thus we

can axiomatize K≥H2 by a sentence in LH+
2 ,H+

2
(ω · ω).

4. Marcos Mazari-Armida observed that [She01] provides another variation on Corollary

4.3.14: if we assume categoricity in λ, λ+, λ++ as well as 2λ < 2λ
+
< 2λ

++
, then
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we have stability in λ and λ-AP . Hence we can axiomatize K by a sentence in

Lλ+,λ+(ω · ω).

We now encode theK-substructure relation. First we handle the case when the smaller

model has size λ. In [Vas18a, Section 6], the language is expanded by adding a new predicate

for the substructure relation. In [BB16, Theorem 3.2.3], I2(λ,K) many new predicates are

added. Here we explicitly define the predicates in L(λ+I2(λ,K))+,λ+(ω ·ω) without expanding

the language.

Proposition 4.3.16. There is an L(λ+I2(λ,K))+,λ+(ω · ω) formula σ≤(x) that encodes the

K-substructure relation: for any M ∈ K, a ⊆ |M | of size λ, M ⊨ σ≤[a] iff a ≤ M (the

enumeration of a does not matter).

Proof. Our definition σ≤(x) will be similar to that of σK:

σ≤(x) := (∀xα∃yα)α<ω·ω

(
∃u∃v(x ≈ u) ∧ (y0 ≈ v) ∧

∨
j<I2(λ,K)

ψj(u, v)
)
∧

∧
α<ω·ω

[
(xα ⊆ yα) ∧ ∃zα

(
(yα ≈ zα) ∧

∨
i<I(λ,K)

ϕi(zα)
)
∧

∧
β<α<ω·ω

∃uβ,α∃vβ,α
(
(yβ ≈ uβ,α) ∧ (yα ≈ vβ,α) ∧

∨
j<I2(λ,K)

ψj(uβ,α, vβ,α)
)]

The enumeration of a does not matter by our definition of ≈. If a ∈ Kλ and a ≤ M ,

then M ⊨ σ≤[a] by Löwenheim-Skolem and coherence axioms. In particular, given x0 in

σ≤[a], we choose y0 ≤ M that contains both x0 and a. Then coherence guarantees that

a ≤ y0. Conversely suppose a ⊆ |M | of size λ and M ⊨ σ≤[a]. As in Main Theorem

4.3.7, we can build a directed system ⟨Mα ∈ Kλ : α ∈ I⟩ of union M with the additional

requirement that for any α ∈ I, Mα ≥ a. By Fact 4.2.4(1)(2), M ∈ K and Mα ≤M for all

α ∈ I. By transitivity of ≤ , a ≤M as desired.

Remark 4.3.17. Using the terminology in [SV21, Theorem 2.1], we only used the first

two levels of the canonical tree because a K-substructure relation only concerns two levels.

The price to pay is game quantification.

Since our infinitary language only allows λ many free variables, it cannot directly

encode substructures of size greater than λ. We propose two solutions: the first solution
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is a substructure relation whose underlying language is the singleton {σ≤}. The second

solution involves relativizing σ≤ to a new predicate.

Proposition 4.3.18. Let M,N ∈ K and σ≤ be defined as in Proposition 4.3.16.

1. M ≤ N iff M ⊆{σ≤} N (if a ⊆ |M | is of size λ, then M ⊨ σ≤[a] iff N ⊨ σ≤[a]).

2. Let R be a new predicate where NR = |M | closed under permutations. M ≤ N iff

(N,R) ⊨ ∀b
(
σR
≤(b) → σ≤(b)

)
where σR

≤ is the relativized version of σ≤ inside R.

Namely,

σR
≤(x) := (∀xα∃yα)α<ω·ω

( ∧
α<ω·ω

R(xα)
)
→

{( ∧
α<ω·ω

R(yα)
)
∧(

∃u∃v(x ≈ u) ∧ (y0 ≈ v) ∧
∨

j<I2(λ,K)

ψj(u, v)
)
∧

∧
α<ω·ω

[
(xα ⊆ yα) ∧ ∃zα

(
(yα ≈ zα) ∧

∨
i<I(λ,K)

ϕi(zα)
)
∧

∧
β<α<ω·ω

∃uβ,α∃vβ,α
(
(yβ ≈ uβ,α) ∧ (yα ≈ vβ,α) ∧

∨
j<I2(λ,K)

ψj(uβ,α, vβ,α)
)]}

Proof. 1. If M ≤ N and let a ⊆ M . Using Proposition 4.3.16, if M ⊨ σ≤[a], then

a ≤ M ≤ N showing N ⊨ σ≤[a]. If N ⊨ σ≤[a], then a ≤ N . By coherence, a ≤ M

and so M ⊨ σ≤[a]. Conversely, build a directed system ⟨Mα ∈ Kλ : α ∈ I⟩ inside M

such that for all α ∈ I, Mα ≤ M . Then M ⊨ σ≤[Mα]. Since M ⊆{σ≤} N , we have

N ⊨ σ≤[Mα] and Mα ≤ N . The result follows from Fact 4.2.4(3).

2. If M ≤ N and N ⊨ σR
≤[b] for some b ⊆ |N |, we need to show that N ⊨ σ≤[b].

By assumption we can build a directed system of union M and have b ≤ M . By

transitivity of ≤ , b ≤ N and the conclusion follows. Conversely, by Fact 4.2.4(3), it

suffices to build a directed system ⟨Mα ∈ Kλ : α ∈ I⟩ of union M such that for all

α ∈ I,Mα ≤ N . Since (N,R) ⊨ ∀b
(
σR
≤(b) → σ≤(b)

)
, we can requireMα ≤M instead

of Mα ≤ N . Such construction is possible by Löwenheim-Skolem and coherence

axioms.
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Using game quantification, we derive a simple proof to [Kue08, Theorem 7.2], which

uses back-and-forth arguments. [Vas18a, Theorem 6.21] proved similarly by transfering the

AEC to its substructure expansion and translating results between ≡∞,λ+ and λ+ back-

and-forth systems.

Corollary 4.3.19. Let M,N be L-structures. If either M or N is in K and M ⪯L∞,λ+ (ω·ω)

N , then M ≤ N (and both are in K).

Proof. SinceM ⪯L∞,λ+ (ω·ω) N ,M ⊆L(λ+I2(λ,K))+,λ+ (ω·ω) N . In particularM ⊨ σK iff N ⊨ σK.

By Main Theorem 4.3.7, either M,N is in K implies both are in K. On the other hand,

the assumption implies M ⊆{σ≤} N . By Proposition 4.3.18(1), M ≤ N .

One can ask the same Question 4.3.9 for K-substructure relation instead of models of

K. The following are variations on Proposition 4.3.16:

Corollary 4.3.20. There is a formula σ≤(x) in Lλ+,λ+(ω · ω) that encodes the K-

substructure relation (for any M ∈ K, a ⊆ |M | of size λ, M ⊨ σ≤[a] iff a ≤M), assuming

one of the following:

1. K is a universal class, in which case σ≤(x) is in Lλ+,λ+ (categoricity is not needed).

2. K has AL, λ-AP and is categorical in λ, λ+ and we restrict the use of σ≤ to models

of size ≥ λ+. AL can be replaced by stability in λ.

3. 2λ < 2λ
+
, K has AL and is categorical in λ, λ+ and we restrict the use of σ≤ to

models of size ≥ λ+. AL can be replaced by stability in λ.

Proof. 1. σ≤(x) requires that x is closed under functions.

2. Combine the proofs of Theorem 4.3.12 and Proposition 4.3.16: from Proposition

4.3.16, it suffices to encode a ≤ b where both have length λ (then we can replace∨
j<I2(λ,K) ψj(a, b)). Fix M,N ∈ Kλ such that N is (λ, ω)-limit over M . Let ϕ(x)

code the isomorphism type of M and ψ(x, y) code the isomorphism type of (M,N).

From the proof of Theorem 4.3.12, ψ is the only isomorphism type of pairs inside a

λ+-saturated model. Thus a ≤ b can be encoded as

a ⊆ b ∧ ∃z0 ∃z1 ∃a′ ∃b′
(
(a ≈ a′) ∧ (b ≈ b′) ∧ (z0 ≈ z1) ∧ ψ(a′, z0) ∧ ψ(b′, z1)

)
.
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3. Combine (2) and Fact 4.3.13.

With the exact same proof as in Proposition 4.3.18, we can show:

Corollary 4.3.21. Let M,N ∈ K and σ≤ be defined as in Corollary 4.3.20.

1. M ≤ N iff M ⊆{σ≤} N (if a ⊆ |M | is of size λ, then M ⊨ σ≤[a] iff N ⊨ σ≤[a]).

2. Let R be a new predicate where NR = |M | closed under permutations. M ≤ N iff

(N,R) ⊨ ∀b
(
σR
≤(b) → σ≤(b)

)
where σR

≤ is the relativized version of σ≤ inside R.

4.4 A VARIATION ON SHELAH’S PRESENTATION THEOREM

We will give a variation to Shelah’s presentation theorem via our encoding of AECs.

The presentation theorem statement is adapted from [Bal09, Theorem 4.15] (see also

[Gro02, Theorem 3.4]).

Theorem 4.4.1. Let K be an AEC in L and with Löwenheim-Skolem number LS(K).

Define χ := LS(K) + I2(LS(K),K). There exists an expansion L′ ⊇ L of size χ, an

L′-theory T and a set of L′-types Γ of size χ such that

1. K = PC(T,Γ, L).

2. If M ′, N ′ ∈ EC(T,Γ) and M ′ ⊆L′ N ′, then M ′ ↾ L ≤K N ′ ↾ L.

3. If M ≤K N , there are L′-expansions of M,N to M ′, N ′ such that M ′ ⊆L′ N ′.

Remark 4.4.2. When I2(LS(K),K) < 2LS(K), our result is stronger than Shelah’s presen-

tation theorem as his encoding totally ignores the model theoretic complexity of K and is

using 2LS(K) many types in Γ.

Proof. We will adapt σK in Main Theorem 4.3.7 to the first-order language. For a tuple of

variables a and n < ω, we write an to emphasize a has length n. For k < n, we write an(k)

the k-th coordinate of an.

As in the original presentation theorem, expand L to L′ which includes {fn
k : k <

LS(K), n < ω} where for each n < ω, k < LS(K), fn
k is an n-ary function. For n < ω,
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we will require that {fn
k : k < LS(K)} maps an n-tuple to a K-structure of size LS(K)

containing that tuple. This will be achieved by

σn := ∀an
∧
l<n

∨
k<LS(K)

(
fn
k (a

n) = an(l)
)
∧

∨
i<I(λ,K)

ϕi

(
{fn

k (a
n) : k < LS(K)}

)
In the above definition, although ϕi’s have LS(K) many free variables, it is just an LS(K)-

conjunction of (negation of) atomic formulas with n free variables (from an). So each ϕi is

inside L′
LS(K)+,ω.

Also, we want to require that the K-structures generated are directed with respect

to the tuple input. However, {fn
k : k < LS(K), n < ω} might not be compatible with the

enumerations of pairs of models, say Mj ≤ Nj. Hence we expand L′ further to include

{gm,l
k , hm,l

k : k < LS(K),m + l < ω} where for m + l < ω, k < LS(K), gm,l
k and hm,l

k are

(m + l)-ary functions and correctly enumerate a pair of models. The following will take

care of the re-enumerations of {fn
k : k < LS(K)} for each n < ω.

σm,n,l := ∀bm ∀cn ∀dl
[
ran(bm) ∪ ran(cn) ⊆ ran(dl) →(

{fm
k (bm) : k < LS(K)} ≈ {gm,l

k (bm; dl) : k < LS(K)}∧

{f l
k(d

l) : k < LS(K)} ≈ {hm,l
k (bm; dl) : k < LS(K)}∧

{fn
k (c

n) : k < LS(K)} ≈ {gn,lk (cn; dl) : k < LS(K)}∧

{f l
k(d

l) : k < LS(K)} ≈ {hn,lk (cn; dl) : k < LS(K)}∧∨
i<I2(LS(K),K)

ψi

(
{gm,l

k (bm; dl) : k < LS(K)}, {hm,l
k (bm; dl) : k < LS(K)}

)
∧

∨
j<I2(LS(K),K)

ψj

(
{gn,lk (cn; dl) : k < LS(K)}, {hn,lk (cn; dl) : k < LS(K)}

))]
Similar to the case of σn, the formulas ϕi, ψj and the connective ≈ are simply LS(K)-

junctions of (negation of) atomic formulas, which are inside L′
LS(K)+,ω.

To convert {σn : n < ω} ∪ {σm,n,l : m,n, l < ω} into first-order sentences, we use

Chang’s presentation theorem (see [Gro21, Chapter 1 Theorem 8.16]) which adds χ-many

new predicates to L′ to represent the χ-conjunctions and disjunctions, and χ-many L′-types

to omit. This gives our final T , Γ and L′.

It remains to check the three items in the theorem statement.
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1. K ⊆ PC(T,Γ, L) by Löwenheim-Skolem and coherence axioms. LetM ∈ PC(T,Γ, L)

and M ′ ∈ EC(T,Γ) such that M ′ ↾ L = M . Then M ′ ↾ L is the union of a

directed system of K-structures of size LS(K). By Fact 4.2.4(1) M ∈ K. Hence

PC(T,Γ, L) ⊆ K.

2. By Fact 4.2.4(3).

3. By Fact 4.2.5.

Another question raised by Grossberg is the following:

Question 4.4.3. Is it possible to lower the bound of |Γ| below LS(K) + I2(LS(K),K) in

general? What if we also assume tameness or stability?

Remark 4.4.4. 1. In the above proof, we did not use σ≤ because {fn
k : k < LS(K), n <

ω} already plays its role. We could have done the same in Proposition 4.3.18 but the

approach via σ≤ is cleaner and does not add new function symbols.

2. One might want to encode
∨

i<I2(λ,K) ψi etc by omitting types without raising |T |

above LS(K). However, it amounts to list all pairs of isomorphism types that are

not any of the ψi’s. This will raise |Γ| to 2LS(K) which is equivalent to the original

presentation theorem.

3. In [BB16, Theorem 3.2.3], new predicates are essentially added for our ϕi and ψj.

Also, the requirement in [BB16, Definition 3.2.1(4)] encodes our {σm,n,l : m,n, l < ω}

to build a directed system, but our version is purely syntactic and more direct. We

used Chang’s representation theorem to bring down the infinitary logic to first-order

with omitting types. In [BB16], their theory T ∗ is still in the infinitary logic and thus

does not need to omit types.

We derive the known results in the following corollary. Item (1) appeared for the first

time in [Gro21] while (2) and (3) were undoubtedly known to Chang [Cha68].

Corollary 4.4.5. Let K be an AEC and χ := LS(K) + I2(LS(K),K).
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1. K is a PCχ(= PCχ,1) class.

2. The Hanf number of K is bounded above by ℶδ(χ,1).

3. If χ = ℵ0 or χ is a strong limit with cf(χ) = ℵ0, then the Hanf number of K is

bounded above by ℶχ+.

Proof. 1. Combine Theorem 4.4.1 and Shelah’s 1-type coding [She90, VII Lemma

5.1(4)].

2. Combine (1) and [She90, VII Theorem 5.3].

3. Combine (2) and the fact that δ(χ, 1) = χ+ [She90, VII Theorem 5.5(5)].

We finish this section with one more application.

Definition 4.4.6. Let K be an AEC. K< := {⟨|M |, |N |⟩ : N < M} is a class of structures

whose language consists of a single unary predicate.

In 1994, motivated by [She87, Theorem 3.8], Grossberg suggested the following con-

jecture (see Problem (5) in [She01, Introduction]):

Conjecture 4.4.7. Let K be an AEC, λ ≥ LS(K). If I(λ,K) = I(λ+,K) = 1, then

Kλ++ ̸= ∅.

[She87, Theorem 3.8] has two additional hypotheses:

1. Both K and K< are PCλ; and

2. δ(λ, 1) = λ+.

Much of [She01] is dedicated to the special cases of Grossberg’s conjecture under various

strong assumptions (including non-ZFC axioms).

Here we delete hypothesis (1) above and work in ZFC. In addition to hypothesis (2),

we assume that λ ≥ LS(K) + I2(LS(K),K).
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Theorem 4.4.8. Let K be an AEC, χ := LS(K)+ I2(LS(K),K), λ ≥ χ with δ(λ, 1) = λ+.

If K is categorical in λ and λ+, then K has a model of cardinality λ++.

Remark 4.4.9. Our theorem applies to the case LS(K) = ℵ1, λ = ℶω while [She87,

Theorem 3.8] cannot handle uncountable L(K) or LS(K).

Proof. We check that hypothesis (1) above is satisfied. Since λ ≥ χ, it suffices to show

that both K and K< are PCχ classes. K is a PCχ class by Corollary 4.4.5. To show that

K< is also a PCχ class, we will use the proof of Theorem 4.4.1, add a new predicate R in

L′ and encode Proposition 4.3.18(2) by the new functions {fn
k : k < LS(K), n < ω} (to

lighten the notation, we omit the encoding of re-enumerations, but it is the same strategy

as in Theorem 4.4.1). At the end, we will only leave R in the reduct of the language.

The details are as follows: we expand the language L to L′ which includes a new

predicate R and the functions {fn
k : k < LS(K), n < ω} as in Theorem 4.4.1. For n < ω,

we abbreviate {fn
k : k < LS(K)} as f̄n and require that it maps an n-tuple to a model of

size LS(K) containing the tuple. This can be achieved by

σn := ∀an
∧
l<n

∨
k<LS(K)

(
fn
k (a

n) = an(l)
)
∧

∨
i<I(λ,K)

ϕi

(
f̄n(an)

)
We also require that given an n-tuple inside R, the model generated is within R:

σn
R := ∀an ⊆ R

(
f̄n(an) ⊆ R

)
Next, we want to require that the models generated are directed with respect to the tuple

input. For m,n, l < ω,

σm,n,l := ∀bm ∀cn ∀dl
[
ran(bm) ∪ ran(cn) ⊆ ran(dl) →( ∨

i<I2(λ,K)

ψi

(
f̄m(bm), f̄ l(dl)

)
∧

∨
j<I2(λ,K)

ψj

(
f̄n(cn), f̄ l(dl)

)]
The final requirement is that R is a proper subset of the model:

σp := ∃x(¬R(x))

Notice that for m,n, l < ω, the sentences σn, σn
R, σ

m,n,l are χ-junctions of (negation of)

atomic formulas, so we can use Chang’s presentation theorem to convert them to first-

order formulas, by adding χ-many new predicates to L′ to represent the χ-conjunctions

and disjunctions, and χ-many L′-types to omit. This gives our T , Γ and L′.
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We check that K< = PC(T,Γ, {R}). If ⟨|M |, |N |⟩ is in K<, then N < M are in K.

Expand the language to L′ and define RM := N . Inside N , build a directed system of

K-substructures of size LS(K), indexed by the finite tuples of N . This determines f̄n ↾ Rn

for n < ω. Now inside M , we extend the directed system to be indexed by the finite

tuples of M . This determines f̄n completely for n < ω. Also, M satisfies σn, σn
R and σm,n,l

for m,n, l < ω. Hence M under the expanded language is in EC(T,Γ) and its reduct to

{R} is in PC(T,Γ, {R}). Conversely, if M ∈ PC(T,Γ, {R}), expand M to M ′ such that

M ′ ∈ EC(T,Γ) and define N ′ := RM ′
. By {σn, σn

R, σ
m,n,l : m,n, l < ω}, N ′ ↾ L is the union

of the directed system of K-structures of size LS(K). By Fact 4.2.4(1), N ′ ↾ L ∈ K. By

{σn, σm,n,l : m,n, l < ω}, the directed system can be extended to union M ′ ↾ L. By Fact

4.2.4(1) again, M ′ ↾ L ∈ K. By Fact 4.2.4(2), each K-structure of the directed system

is a K-substructure M ′ ↾ L. But then the models of the original system that generates

N ′ ↾ L are all K-substructures of M ′ ↾ L. By Fact 4.2.4(3), N ′ ↾ L ≤ M ′ ↾ L. By σp,

N ′ ↾ L < M ′ ↾ L. In other words, ⟨|M ′|, |N ′|⟩ = ⟨|M |, RM⟩ =M ∈ K<.

As in Section 3, we can add extra assumptions to improve our results:

Corollary 4.4.10. 1. If K is a universal class, then χ := LS(K) + I2(LS(K),K) in

Theorem 4.4.1, Corollary 4.4.5 and Theorem 4.4.8 can be replaced by χ := LS(K).

2. If K is categorical in LS(K) and LS(K)+, has AL and either

(a) K has LS(K)-AP ; or

(b) 2LS(K) < 2LS(K)+

then K and K< are both PCLS(K) classes when restricted to models of size ≥ LS(K)+.

In either case, AL can be replaced by stability in LS(K).

3. In (2), K can be made to a PCLS(K) class.

Proof sketch. 1. Combine the proof of Theorem 4.4.1, Corollary 4.4.5 and Theorem 4.4.8

with Proposition 4.3.10. The point is that we do not need to encode K-substructure

relation.
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2. In Theorem 4.3.12 and Corollary 4.3.14, we used coherence to encode a ≤ b in the

infinitary language: a ⊆ b and there is c which is (LS(K), ω)-limit over a and b. Thus

we can add two more sets of functions {dm,l
k , em,l

k : k < LS(K),m + l < ω} (which

represent c) in addition to the original {gm,l
k , hm,l

k : k < LS(K),m + l < ω} (which

represent a and b) in Theorem 4.4.1.

3. It remains to handle the case when the models are of size LS(K): add a disjunct to

the theory T in Theorem 4.4.1 which stipulates that the model is generated by an

element a1:

∃a1
(
∀x1

∨
k<LS(K)

(f 1
k (a

1) = x1) ∧ ϕ
(
{f 1

k (a
1) : k < LS(K)}

))
.

Remark 4.4.11. 1. Observation 4.3.15 also applies to the above corollary. If LS(K) =

ℵ0 in (3), then we obtain: if K is stable in ℵ0, has ℵ0-AP , I(ℵ0,K) ≤ ℵ0 and

I(ℵ1,K) = 1, then K is PCℵ0 . This special case (with the extra assumption of

categoricity in ℵ1) provides an alternative proof to [SV18a, Theorem 4.2] which uses

results from descriptive set theory.

2. We do not know if (3) also applies to K<, for a similar reason in Corollary

4.3.20(2),(3).

4.5 GENERALIZATION TO µ-AECS

Our strategy of encoding AECs is also applicable to µ-AECs.

Definition 4.5.1. [BGL+16, Definitions 2.1,3.1] Let L be a (< µ)-ary language. A µ-AEC

K = ⟨K,≤K⟩ in L satisfies the axioms (1)(2)(3)(4) in Definition 4.2.2 in addition to

a. Directed system axioms: if ⟨Mi ∈ K : i ∈ I⟩ is a µ-directed system, then M :=⋃
i∈I Mi ∈ K and for all i ∈ I, Mi ≤K M . If in addition N ∈ K with Mi ≤K N for

all i ∈ I, then M ≤K N .
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b. Löwenheim-Skolem axiom: there exists a cardinal λ = λ<µ ≥ |L(K)| + µ such that

for anyM ∈ K, A ⊆ |M |, there is N ≤K M such that A ⊆ |N | with ∥N∥ ≤ |A|<µ+λ.

We call the minimum such cardinal the Löwenheim-Skolem number LS(K).

The analogs of Main Theorem 4.3.7, Proposition 4.3.16 and Proposition 4.3.18 hold

in µ-AECs.

Proposition 4.5.2. Let K be a µ-AEC in L and λ := LS(K). K is axiomatizable by an

L(λ+I2(λ,K))+,λ+(µ · µ) sentence σK. In other words, for any L-structure M , M ∈ K iff

M ⊨ σK.

Proof. Similar to the proof in Main Theorem 4.3.7. The difference is that we allow the

iterated use of Löwenheim-Skolem and coherence axioms (µ · µ)-many times instead of

(ω · ω)-many. We give the details below:

As usual, list the isomorphism types {M/∼= :M ∈ Kλ} by ⟨Mi : i < I(λ,K)⟩ and those

of {(M,N)/∼= : M ≤ N in Kλ} by ⟨(Mj, Nj) : j < I2(λ,K)⟩. For i < I(λ,K), let ϕi(x) be

an Lλ+,λ+ formula that encodes the isomorphism type of Mi with a fixed enumeration of

the universe |M | = ⟨mi
k : k < λ⟩. For variables x = ⟨xk : k < λ⟩,

ϕi(x) :=
∧

{θ(xα0 , . . . , xαξ
) :Mi ⊨ θ[m

i
α0
, . . . ,mi

αξ
]; ξ < µ, α0, . . . , αξ < λ,

θ is an atomic L-formula or its negation with s free variables}

Notice that ϕi is a conjunction of λ<µ = λ many formulas so it is inside Lλ+,λ+ . Similarly

for j < I2(λ,K), let ψj(x, y) be an Lλ+,λ+ formula that encodes the isomorphism type of

(Mj, Nj) with fixed enumerations, where |Mj| = {mj
k : k < λ}, |Nj| = {nj

k : k < λ}. For

variables x = ⟨xk : k < λ⟩ and y = ⟨yk : k < λ⟩,

ψj(x; y) :=
∧

{θ(xα0 , . . . , xαξ
; yβ0 , . . . , yβξ′

) : Nj ⊨ θ[m
j
α0
, . . . ,mj

αξ
;nj

β0
, . . . , nj

βξ′
],

ξ, ξ′ < µ; α0, . . . , αξ, β0, . . . , βξ′ < λ,

θ is an atomic L-formula or its negation with ξ + ξ′ free variables}

ψj is also a conjunction of λ<µ = λ many formulas so it is inside Lλ+,λ+ . The axiomatization
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σK consists of two components (the variables all have length λ):

σK := (∀xα∃yα)α<µ·µ
∧

α<µ·µ

[
(xα ⊆ yα) ∧ ∃zα

(
(yα ≈ zα) ∧

∨
i<I(λ,K)

ϕi(zα)
)
∧

∧
β<α<µ·µ

∃uβ,α∃vβ,α
(
(yβ ≈ uβ,α) ∧ (yα ≈ vβ,α) ∧

∨
j<I2(λ,K)

ψj(uβ,α, vβ,α)
)]

Suppose M ∈ K, we show that Player II can win the associated game in σK. In the

α-th round, Player I provides some xα of length λ. By Löwenheim-Skolem axiom, pick any

yα ≤ M of size λ such that ran(xα) ∪
⋃

β<α ran(yβ) ⊆ ran(yα). By inductive hypothesis,

for β < α, we have yβ ≤M . By coherence axiom, yβ ≤ yα as desired.

Suppose M ⊨ σK. We will build a µ-directed system ⟨Ma ∈ Kλ : a ∈ I⟩ of union

M , with I being the set of tuples of length (< µ) in M , ordered by inclusion. By directed

system axioms,M ∈ K. In the proof of Main Theorem 4.3.7, we showed that givenMa and

Mb generated by the games of the singletons s and t, it is possible to find M∗ ≥ Ma,Mb

by extending those games by ω-many rounds. In the µ-AEC case, without the usual chain

axioms we do not know if M∗ ∈ K, so we extend those games by µ-many rounds instead

to obtain an increasing (but not necessarily continuous) chain ⟨Nk : k < µ⟩ and define

M∗ =
⋃

k<µNk ∈ K. A similar argument shows: let δ < µ and if for α < δ, Mα is

generated by the game of some tuple aα of length < µ, then we can extend the games by

µ-many rounds to obtain M∗ that extends all Mα. This allows us to get past the limit

stages which were absent in the original proof, and continue to build Ma for l(a) < µ.

Given a tuple c of length < µ, there are less than µ-many ways to decompose c into a union

of a singleton and a tuple of length < µ. Thus we can still combine all copies of M∗ from

the decompositions of Mc as in the original proof.

Proposition 4.5.3. Let K be a µ-AEC in L and λ := LS(K). There is a formula in

L(λ+I2(λ,K))+,λ+(µ · µ) that encodes the K-substructure relation: for any M ∈ K, a ⊆ |M |

of size λ, M ⊨ σ≤[a] iff a ≤M (the enumeration of a does not matter).

Proof. Define σ≤(x) as in Proposition 4.3.16 but replace ω · ω by µ · µ. The enumeration

of a does not matter by our definition of ≈. If a ∈ Kλ and a ≤ M , then M ⊨ σ≤[a]

by Löwenheim-Skolem and coherence axioms. Conversely suppose a ⊆ |M | of size λ and
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M ⊨ σ≤[a]. As in Proposition 4.5.2, we can build a µ-directed system ⟨Mα ∈ Kλ : α ∈ I⟩

of union M such that for any α ∈ I, Mα ≥ a. By directed system axioms, M ∈ K and

Mα ≤M for all α ∈ I. By transitivity of ≤ , a ≤M as desired.

Proposition 4.5.4. Let K be a µ-AEC in L and λ := LS(K). Let M,N ∈ K.

1. M ≤ N iff M ⊆{σ≤} N (if a ⊆ |M | is of size λ, then M ⊨ σ≤[a] iff N ⊨ σ≤[a]).

2. Let R be a new predicate where NR = |M | closed under permutations. M ≤ N iff

(N,R) ⊨ ∀b
(
σR
≤(b) → σ≤(b)

)
where σR

≤ is the relativized version of σ≤ inside R

(replace (ω · ω) by (µ · µ) in the definition of σR
≤ in Proposition 4.3.18).

Proof. Similar to the proof in Proposition 4.3.18. The difference is that instead of building

ℵ0-directed systems, we build µ-directed systems. We give details below:

1. If M ≤ N and let a ⊆ M . If M ⊨ σ≤[a], then a ≤ M ≤ N showing N ⊨ σ≤[a]. If

N ⊨ σ≤[a], then a ≤ N . By coherence, a ≤ M and so M ⊨ σ≤[a]. Conversely, build

a µ-directed system ⟨Mα ∈ Kλ : α ∈ I⟩ inside M such that for all α ∈ I, Mα ≤ M .

Then M ⊨ σ≤[Mα]. Since M ⊆{σ≤} N , we have N ⊨ σ≤[Mα] and Mα ≤ N . The

result follows from directed system axioms.

2. If M ≤ N and N ⊨ σR
≤[b] for some b ⊆ |N |, we need to show that N ⊨ σ≤[b]. By

assumption we can build a µ-directed system of union M and have b ≤ M . By

transitivity of ≤ , b ≤ N and the conclusion follows. Conversely, by directed system

axioms, it suffices to build a µ-directed system ⟨Mα ∈ Kλ : α ∈ I⟩ of union M such

that for all α ∈ I, Mα ≤ N . Since (N,R) ⊨ ∀b
(
σR
≤(b) → σ≤(b)

)
, we can require

Mα ≤ M instead of Mα ≤ N . Such construction is possible by Löwenheim-Skolem

and coherence axioms.

As an application of Proposition 4.5.2 and Proposition 4.5.4, we generalize Corollary

4.3.19:
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Corollary 4.5.5. Let K be a µ-AEC in L, λ := LS(K) and M,N be L-structures. If either

M or N is in K and M ⪯L∞,λ+ (µ·µ) N , then M ≤ N (and both are in K).

Proof. Same proof as in Corollary 4.3.19: SinceM ⪯L∞,λ+
N , M ⊆L(λ+I2(λ,K))+,λ+ (µ·µ) N . In

particular M ⊨ σK iff N ⊨ σK. By Proposition 4.5.2, either M,N is in K implies both are

in K. On the other hand, the assumption implies M ⊆{σ≤} N . By Proposition 4.5.4(1),

M ≤ N .

We now state the µ-AEC version of Theorem 4.4.1, which is a variation to [BGL+16,

Theorem 3.2].

Theorem 4.5.6. Let K be a µ-AEC in L and with Löwenheim-Skolem number LS(K).

Define χ := LS(K) + I2(LS(K),K). There exists a (< µ)-ary expansion L′ ⊇ L of size χ,

an L′-theory T and a set of L′-types Γ of size χ such that

1. K = PCµ(T,Γ, L).

2. If M ′, N ′ ∈ EC(T,Γ) and M ′ ⊆L′ N ′, then M ′ ↾ L ≤K N ′ ↾ L.

3. If M ≤K N , there are L′-expansions of M,N to M ′, N ′ such that M ′ ⊆L′ N ′.

Proof sketch. Repeat the same argument in Theorem 4.4.1 by replacing ω by µ, in partic-

ular:

1. Superscripts of f, g, h will be α, β, γ < µ instead of m,n, l < ω.

2. We require that the K-substructures generated by {fα
k : k < LS(K), α < ω} are

µ-directed instead of ℵ0-directed.

3. The sentences {σα : α < µ} ∪ {σα,β,γ : α, β, γ < µ} are in L′
χ+,µ.

4. For i < I(LS(K),K) and j < I2(LS(K),K), the formulas ϕi, ψj are still LS(K)-

conjunctions because LS(K)<µ = LS(K).

5. Chang’s presentation theorem generalizes to µ-AECs and converts a L′
χ+,µ theory of

size χ into a PCµ
χ .
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6. When checking the items of the theorem statement, notice that by definition of a

µ-AEC, directed system axioms (instead of chain axioms) are built-in. Meanwhile,

Fact 4.2.5 generalizes to µ-directed systems.

Unlike Corollary 4.4.5, the above result does not lead to the Hanf number computation

because the languages are not finitary while well-ordering is definable. In particular there

is no reasonable bound to the Hanf number of Lℵ1,ℵ1 [Dic75, Chapter 5.1B]. As asked in

[BGL+16, Remark 3.3]:

Question 4.5.7. Let µ ≥ ℵ1. Does the Hanf number exist for µ-AECs?
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CHAPTER 5

STABILITY RESULTS ASSUMING TAMENESS, MONSTER MODEL

AND CONTINUITY OF NONSPLITTING

ABSTRACT

Assuming the existence of a monster model, tameness and continuity of nonsplit-

ting in an abstract elementary class (AEC), we extend known superstability results:

let µ > LS(K) be a regular stability cardinal and let χ be the local character of

µ-nonsplitting. The following holds:

1. When µ-nonforking is restricted to (µ,≥ χ)-limit models ordered by universal

extensions, it enjoys invariance, monotonicity, uniqueness, existence, extension

and continuity. It also has local character χ. This generalizes Vasey’s result

[Vas18a, Corollary 13.16] which assumed µ-superstability to obtain same prop-

erties but with local character ℵ0.

2. There is λ ∈ [µ, h(µ)) such that if K is stable in every cardinal between µ and

λ, then K has µ-symmetry while µ-nonforking in (1) has symmetry. In this case

(a) K has the uniqueness of (µ,≥ χ)-limit models: if M1,M2 are both (µ,≥ χ)-

limit over some M0 ∈ Kµ, then M1
∼=M0 M2;

(b) any increasing chain of µ+-saturated models of length ≥ χ has a µ+-

saturated union. These generalize [VV17] and remove the symmetry as-

sumption in [BV15a, Vas18c] .

Under (< µ)-tameness, the conclusions of (1), (2)(a)(b) are equivalent to K having

the χ-local character of µ-nonsplitting.

Grossberg and Vasey [GV17, Vas18c] gave eventual superstability criteria for tame

AECs with a monster model. We remove the high cardinal threshold and reduce

the cardinal jump between equivalent superstability criteria. We also add two new

superstability criteria to the list: a weaker version of solvability and the boundedness

of the U -rank.

91



5.1 INTRODUCTION

Good frames in abstract elementary classes (AECs) were constructed in [She09a, IV

Theorem 4.10], assuming categoricity and non-ZFC axioms. Later Boney and Grossberg

[BG17] built a good frame from coheir with the assumption of tameness and extension

property of coheir in ZFC. Vasey [Vas16c, Section 5] further developed on coheir and

[Vas16a] managed to construct a good frame at a high categoricity cardinal (categoricity

can be replaced by superstability and type locality, but the initial cardinal of the good

frame is still high).

Another approach to building a good frame is via nonsplitting. It is in general not

clear whether uniqueness or transitivity hold for nonsplitting (where models are ordered

by universal extensions). To resolve this problem, Vasey [Vas16b] constructed nonforking

from nonsplitting, which has nicer properties: assuming superstability in Kµ, tameness

and a monster model, nonforking gives rise to a good frame over the limit models in Kµ+

[VV17, Corollary 6.14]. Later it was found that uniqueness of nonforking also holds for

limit models in Kµ [Vas17c].

We will generalize the nonforking results by replacing the superstability assumption by

continuity of nonsplitting. A key observation is that the extension property of nonforking

still holds if we have continuity of nonsplitting and stability. This allows us to replicate

extension, uniqueness and transitivity properties. Since the assumption of continuity of

nonsplitting applies to universal extensions only, we only get continuity and local character

for universal extensions. Hence we can build an approximation of a good frame which is

over the skeleton (see Definition 5.2.4) of long enough limit models ordered by universal

extensions. We state the known result and our result for comparison:

Theorem 5.1.1. Let µ ≥ LS(K), K have a monster model, be µ-tame and stable in µ. Let

χ be the local character of µ-nonsplitting.

1. [Vas18a, Corollary 13.16] If K is µ-superstable, then there exists a good frame over

the skeleton of limit models in Kµ ordered by ≤u, except for symmetry;

2. (Corollary 5.4.13) If µ is regular and K has continuity of µ-nonsplitting, then there

exists a good µ-frame over the skeleton of (µ,≥ χ)-limit models ordered by ≤u, except
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for symmetry. The local character is χ in place of ℵ0.

We assumed that µ is regular to guarantee that χ ≤ µ. In the superstable case,

χ = ℵ0 ≤ µ by the definition of µ-superstability.

To obtain symmetry for our frame, we look at the argument in [VV17]. In [Van16a,

Van16b], VanDieren defined a stronger version of symmetry called µ-symmetry and proved

its equivalence with the continuity of reduced towers. [VV17, Lemma 4.6] noticed that a

weaker version of symmetry is sufficient in one direction and deduced the weaker version

of symmetry via superstability. To generalize these arguments, in Section 5.5 we replace

superstability by continuity of nonsplitting and stability in a range of cardinals (the range

depends on the no-order-property of K, see Proposition 5.5.9). Then we can obtain a

local version of µ-symmetry, which implies symmetry of our frame for long enough limit

models. Notice that in the superstable case, χ = ℵ0 while (µ, χ)-symmetry is the same as

µ-symmetry.

Theorem 5.1.2. Let µ ≥ LS(K), K be µ-tame and stable in µ. Let χ be the local character

of µ-nonsplitting.

1. [VV17, Corollary 6.9] If K is µ-superstable, then it has µ-symmetry;

2. (Corollary 5.5.13) If µ is regular and K has continuity of µ-nonsplitting. There is

λ < h(µ) such that if K is stable in every cardinal between µ and λ, then K has

(µ, χ)-symmetry.

Continuity of nonsplitting and the localization of symmetry were already exploited in

[BV15a, Theorem 20] to obtain the uniqueness of long enough limit models (see Fact 5.6.1).

They simply assumed the local symmetry while we used the argument in [VV17] to deduce

it from extra stability and continuity of nonsplitting (Corollary 5.6.2). On the other hand,

[Vas18c, Section 11] used continuity of nonsplitting to deduce that a long enough chain

of saturated models of the same cardinality is saturated. There he assumed saturation of

limit models and managed to satisfy this assumption using his earlier result with Boney

[BV17a], which has a high cardinal threshold. Since we already have local symmetry under

continuity of nonsplitting and extra stability, we immediately have uniqueness of long limit

93



models, and hence Vasey’s argument can be applied to obtain the above result of saturated

models (see Proposition 5.6.6; a comparison table of the approaches can be found in Remark

5.6.8(2)).

Vasey [Vas18c, Lemma 11.6] observed that a localization of VanDieren’s result

[Van16a] can give: if the union of a long enough chain of µ+-saturated models is µ+-

saturated, then local symmetry is satisfied. Assuming more tameness, we use this obser-

vation to obtain converses of our results (see Main Theorem 5.8.1(4)⇒(3)). In particular

local symmetry will lead to uniqueness of long limit models, which implies local character of

nonsplitting (Main Theorem 5.8.1(3)⇒(1)). Despite the important observation by Vasey,

he did not derive these corollaries.

Theorem 5.1.3. Let µ > LS(K), δ ≤ µ be regular, K have a monster model, be (< µ)-

tame, stable in µ and has continuity of µ-nonsplitting. If any increasing chain of µ+-

saturated models of cofinality ≥ δ has a µ+-saturated union, then K has δ-local character

of µ-nonsplitting.

The equivalent properties of a stable AEC with continuity of nonsplitting can be spe-

cialized to a superstable AEC, because superstability implies stability and continuity of

nonsplitting. In [GV17], equivalent superstability properties were listed using the machin-

ery of averages, leading to a high cardinal threshold for the equivalences to take place,

and a high cardinal jump when moving from one property to another. In comparison, the

equivalent properties we obtained in Main Theorem 5.8.1 and Main Theorem 5.8.2 do not

require a high cardinal threshold (simply µ > LS(K) to make sense of saturated models)

but we do need extra stability assumptions above µ. Such stability assumption can be re-

placed by a smaller range of stability plus more no-order-property. Except for transferring

stability in a cardinal to superstability, all other properties are equivalent to each other up

to a jump to the successor cardinal.

In the original list inside [GV17], (λ, ξ)-solvability was considered for λ > ξ, which

they showed to be an equivalent definition of superstability, with a huge jump of cardinal

from no long splitting chains to solvability. Further developments in [Vas17d] indicate

that such solvability has downward transfer properties which seem too strong to be called
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superstability. We propose a variation where λ = ξ and will prove its equivalence with no

long splitting chains in the same cardinal above µ+ (under continuity of nonsplitting and

stability). At Kµ, we demand (< µ)-tameness for the equivalence to hold, up to a jump to

the successor cardinal.

Theorem 5.1.4. Let µ > LS(K), K have a monster model, be (< µ)-tame, stable in µ.

1. [SV99] If there is λ > µ such that K is (λ, µ)-solvable, then it is µ-superstable;

2. [GV17, Corollary 5.5] If µ is high enough and K is µ-superstable, then there is some

λ ≥ µ and some λ′ < λ such that K is (λ, λ′)-solvable;

3. (Proposition 5.6.24) If K has continuity of µ-nonsplitting, then it is µ-superstable iff

it is (µ+, µ+)-solvable.

Meanwhile, [Vas18c, Corollary 4.24] showed that stability in a tail is also an equivalent

definition of superstability, but the starting cardinal of superstability (λ′(K))++χ1 is only

bounded by the Hanf number of µ. Since we assume continuity of nonsplitting, we can

obtain µ-superstability by assuming stability in unboundedly many cardinals below µ, and

enough stability above µ.

Theorem 5.1.5. Let µ > LS(K) with cofinality ℵ0, K have a monster model, be µ-tame,

stable in both µ and unboundedly many cardinals below µ.

1. [Vas18c, Corollary 4.14] If µ ≥ (λ′(K))+ + χ1, then K is µ-superstable;

2. (Proposition 5.7.5) If K has continuity of µ-nonsplitting, then there is λ < h(µ) such

that if K is stable in [µ, λ), then it is µ-superstable.

As the final item of the list, we prove that the boundedness of the U -rank (with

respect to µ-nonforking for limit models inKµ ordered by universal extensions) is equivalent

to µ-superstability (Corollary 5.7.14). We will need to extend our nonforking to longer

types, using results from [BV17b]. Then we can quote a lot of known results from [BG17],

[BGKV16] and [GMA21]. Our strategy of extending frames contrasts with [Vas16a] which

used a complicated axiomatic framework and drew technical results from [She09a, III].
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Here we directly construct a type-full good µ-frame from nonforking and the known results

apply (which are independent of the technical ones in [Vas16a, She09a]).

Theorem 5.1.6. Let µ ≥ LS(K) be regular, K have a monster model, be µ-tame, stable in

µ and have continuity of µ-nonsplitting. Let U(·) be the U-rank induced by µ-nonforking

restricted to limit models in Kµ ordered by ≤u. The following are equivalent:

1. K is µ-superstable;

2. U(p) <∞ for all p ∈ gS(M) and limit model M ∈ Kµ.

In Section 5.2, we will state our global assumptions; define limit models, skeletons

and good frames. In Section 5.3, we will review useful properties of nonsplitting with

miscellaneous improvements. In Section 5.4, we will use µ-nonforking to construct our good

frame over the skeleton of (µ,≥ χ)-limit models ordered by ≤u, except for two changes:

the local character of the frame will be χ in place of ℵ0, while symmetry properties will be

proven in Section 5.5 under extra stability assumptions. In Section 5.6, we will generalize

known superstability results using the symmetry properties. In particular we guarantee

that the union of µ+-saturated models is saturated, provided that we have extra stability,

continuity of nonsplitting and the chain being long enough. In Section 5.7, we will consider

two characterizations of superstability, stability in a tail and the boundedness of the U -rank.

We will prove the main theorems in Section 5.8 and state two applications there.

This paper was written while the author was working on a Ph.D. under the direction of

Rami Grossberg at Carnegie Mellon University and we would like to thank Prof. Grossberg

for his guidance and assistance in my research in general and in this work in particular.

We also thank John Baldwin and Marcos Mazari-Armida for useful comments.

5.2 PRELIMINARIES

Throughout this paper, we assume the following:

Assumption 5.2.1. 1. K is an AEC with AP , JEP and NMM .

2. K is stable in some µ ≥ LS(K).
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3. K is µ-tame.

4. K satisfies continuity of µ-nonsplitting.

5. χ ≤ µ where χ is the minimum local character cardinal of µ-nonsplitting (see Defini-

tion 5.3.10).

AP stands for amalgamation property, JEP for joint embedding property and NMM

for no maximal model. They allow the construction of a monster model. Given a model

M ∈ K, we write gS(M) the set of Galois types over M (the ambient model does not

matter because of AP ).

Definition 5.2.2. Let λ be an infinite cardinal.

1. α ≥ 2 be an ordinal, K is (< α)-stable in λ if for any ∥M∥ = λ, | gS<α(M)| ≤ λ. We

omit α if α = 2.

2. K is λ-tame if for any N ∈ K, any p ̸= q ∈ gS(N), there is M ≤ N of size λ such

that p ↾M ̸= q ↾M .

We will define continuity of µ-nonsplitting in Definition 5.3.5.

Definition 5.2.3. Let λ ≥ LS(K) be a cardinal and α, β < λ+ be regular. Let M ≤ N

and ∥M∥ = λ.

1. N is universal over M (M <u N) if M < N and for any ∥N ′∥ = ∥N∥, there is

f : N ′ −→
M

N .

2. N is (λ, α)-limit over M if ∥N∥ = λ and there exists ⟨Mi : i ≤ α⟩ ⊆ Kλ increasing

and continuous such that M0 =M , Mα = N and Mi+1 is universal over Mi for i < α.

We call α the length of N .

3. N is (λ, α)-limit if there exists ∥M ′∥ = λ such that N is (λ, α)-limit over M ′.

4. N is (λ,≥ β)-limit (over M) if there exists α ≥ β such that (2) (resp. (3)) holds.

5. N is (λ, λ+)-limit (over M) if ∥N∥ = λ+ and we replace α by λ+ in (2) (resp. (3)).
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6. Let λ1 ≤ λ2, then N is ([λ1, λ2],≥ β)-limit (over M) if there exists λ ∈ [λ1, λ2] such

that N is (λ,≥ β)-limit (over M).

7. If λ > LS(K), we say M is λ-saturated if for any M ′ ≤M , ∥M ′∥ < λ, M ⊨ gS(M ′).

8. M is saturated if it is ∥M∥-saturated.

In general, we do not know limit models or saturated models are closed under chains,

so they do not necessary form an AEC. We adapt [Vas16a, Definition 5.3] to capture such

behaviours.

Definition 5.2.4. An abstract class K1 is a µ-skeleton of K if the following is satisfied:

1. K1 is a sub-AC ofKµ: K1 ⊆ Kµ and for anyM,N ∈ K1,M ≤K1 N impliesM ≤K N .

2. For any M ∈ Kµ, there is M ′ ∈ K1 such that M ≤K M ′.

3. Let α be an ordinal and ⟨Mi : i < α⟩ be ≤K-increasing in K1. There exists N ∈ K1

such that for all i < α, Mi ≤K1 N (the original definition requires strict inequality

but it is immaterial under NMM).

We say K1 is a (≥ µ)-skeleton of K if the above items hold for K≥µ in place of Kµ.

By [She09a, II Claim 1.16], limit models in µ with≤K form a µ-skeleton ofK. Similarly

let α < µ+ be regular, then (≥ µ,≥ α)-limits form a (≥ µ)-skeleton of K.

On the other hand, good frames were developed by Shelah [She09a] for AECs in a range

of cardinals. [Vas16a] defined good frames over a coherent abstract class. We specialize

the abstract class to a skeleton of an AEC.

Definition 5.2.5. Let K be an AEC and K1 be a µ-skeleton of K. We say a nonforking

relation is a good µ-frame over the skeleton of K1 if the following holds:

1. The nonforking relation is a binary relation between a type p ∈ gS(N) and a model

M ≤K1 N . We say p does not fork over M if the relation holds between p and M .

Otherwise we say p forks over M .
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2. Invariance: if f ∈ Aut(C) and p does not fork over M , then f(p) does not fork over

f [M ].

3. Monotonicity: if p ∈ gS(N) does not fork over M and M ≤K1 M
′ ≤K1 N for some

M ′ ∈ K1, then p ↾M ′ does not fork over M while p itself does not fork over M ′.

4. Existence: if M ∈ K1 and p ∈ gS(M), then p does not fork over M .

5. Extension: if M ≤K1 N ≤K1 N
′ and p ∈ gS(N) does not fork over M , then there is

q ∈ gS(N ′) such that q ⊇ p and q does not fork over M .

6. Uniqueness: if p, q ∈ gS(N) do not fork over M and p ↾M = q ↾M , then p = q.

7. Transitivity: if M0 ≤K1 M1 ≤K1 M2, p ∈ gS(M2) does not fork over M1, p ↾M1 does

not fork over M0, then p does not fork over M0.

8. Local character ℵ0: if δ is an ordinal of cofinality ≥ ℵ0, ⟨Mi : i ≤ δ⟩ is ≤K1-increasing

and continuous, then there is i < δ such that p does not fork over Mi.

9. Continuity: Let δ is a limit ordinal and ⟨Mi : i ≤ δ⟩ be≤K1-increasing and continuous.

If for all 1 ≤ i < δ, pi ∈ gS(Mi) does not fork over M0 and pi+1 ⊇ pi, then pδ does

not fork over M0.

10. Symmetry: let M ≤K1 N , b ∈ |N |, gtp(b/M) do not fork over M , gtp(a/N) do not

fork over M . There is Na ≥K1 M such that gtp(b/Na) do not fork over M .

If the above holds for a (≥ µ)-skeleton K1, then we say the nonforking relation is a good

(≥ µ)-frame over the skeleton K1. If K1 is itself an AEC (in µ), then we omit “skeleton”.

Let α < µ+ be regular. We say a nonforking relation has local character α if we replace

“ℵ0” in item (8) by α.

Remark 5.2.6. 1. In this paper, K1 will be the (µ,≥ α)-limit models for some α < µ+,

with ≤K1=≤u (the latter is in K).

2. In Fact 5.7.20, we will draw results of a good frame over longer types, where we allow

the types in the above definition to be of arbitrary length. Extension property will
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have an extra clause that allows extension of a shorter type to a longer one that still

does not fork over the same base.

3. Some of the properties of a good frame imply or simply one another. Instead of using

a minimalistic formulation (for example in [Vas18a, Definition 17.1]), we keep all the

properties because sometimes it is easier to deduce a certain property first.

5.3 PROPERTIES OF NONSPLITTING

Let p ∈ gS(N), f : N → N ′, we write f(p) := gtp(f+(d)/f(N)) where f+ extends f

to include some d ⊨ p in its domain.

Proposition 5.3.1. Such f+ exists by AP and f(p) is independent of the choice of f+.

Proof. Pick a ∈ N1 ≥ realizing p, use AP to obtain f+
1 : a 7→ c extending f (enlarge N1 if

necessary so that f+
1 (N1) contains f(N)).

b ∈ N3 b ∈ N2 d ∈ f+
2 (N2)

a ∈ N ′
1 c ∈ f++

1 (N ′
1)

a ∈ N1 c ∈ f+
1 (N1)

N f(N)

f+
2

∼=

f++
1

f+
1

g

f

Suppose b ∈ N2 realizes p and there is f+
2 : b 7→ d extending f . Extend N2 so that f+

2

is an isomorphism. We need to find h : d 7→ c which fixes f(N). Since a, b ⊨ p, by

AP there is N3 ∋ b and g : N1 −→
N

N3 that maps a to b. Extend g to an isomorphism

N ′
1
∼=N N3 ≥ N2. By AP again, obtain f++

1 of domain N ′
1 extending f+

1 . Therefore,

d ∈ f(N+
2 ) and f++

1 ◦ g−1 ◦ idN2 ◦(f+
2 )

−1(d) = c. Hence we can take h := f++
1 ◦ g−1 ◦

idN2 ◦(f+
2 )

−1 : f+
2 (N2) −−−→

f(N)
f++
1 (N ′

1).

Definition 5.3.2. Let M,N ∈ K, p ∈ gS(N). p µ-splits over M if there exists N1, N2 of

size µ such that M ≤ N1, N2 ≤ N and f : N1
∼=M N2 such that f(p) ↾ N2 ̸= p ↾ N2.
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Proposition 5.3.3 (Monotonicity of nonsplitting). Let M,N ∈ Kµ, p ∈ gS(N) do not

µ-split over M . For any M1, N1 with M ≤M1 ≤ N1 ≤ N , we have p ↾ N1 does not µ-split

over M1.

Proposition 5.3.4. Let M,N ∈ K, M ∈ Kµ and p ∈ gS(N). p µ-splits over M iff p

(≥ µ)-splits over M (the witnesses N1, N2 can be in K≥µ).

Proof. We sketch the backward direction: pick N1, N2 ∈ K≥µ witnessing p (≥ µ)-splits over

M . By µ-tameness and Löwenheim-Skolem axiom, we may assume N1, N2 ∈ Kµ.

Definition 5.3.5. Let χ be a regular cardinal.

1. A chain ⟨Mi : i ≤ δ⟩ is u-increasing if Mi+1 >u Mi for all i < δ.

2. K satisfies continuity of µ-nonsplitting if for any limit ordinal δ, ⟨Mi : i ≤ δ⟩ ⊆ Kµ

u-increasing and continuous, p ∈ gS(Mδ),

p ↾Mi does not µ-split over M0 for i < δ ⇒ p does not µ-split over M0.

3. K has χ-weak local character of µ-nonsplitting if for any limit ordinal δ ≥ χ, ⟨Mi : i ≤

δ⟩ ⊆ Kµ u-increasing and continuous, p ∈ gS(Mδ), there is i < δ such that p ↾ Mi+1

does not µ-split over Mi.

4. K has χ-local character of µ-nonsplitting if the conclusion in (3) becomes: p does not

µ-split over Mi.

We call any δ that satisfies (3) or (4) a (weak) local character cardinal.

Remark 5.3.6. When defining the continuity of nonsplitting, we can weaken the statement

by removing the assumption that p exists and replacing p ↾ Mi by pi increasing. This is

because we can use [Bon14a, Proposition 5.2] to recover p. In details, we can use the weaker

version of continuity and weak uniqueness (Proposition 5.3.12) to argue that the pi’s form

a coherent sequence. p can be defined as the direct limit of the pi’s.

The following lemma connects the three properties of µ-nonsplitting:
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Lemma 5.3.7. [BGVV17, Lemma 11(1)] If µ is regular, K satisfies continuity of µ-

nonsplitting and has χ-weak local character of µ-nonsplitting, then it has χ-local character

of µ-nonsplitting.

Proof. Let δ be a limit ordinal of cofinality ≥ χ, ⟨Mi : i ≤ δ⟩ u-increasing and continuous.

Suppose p ∈ gS(Mδ) splits overMi for all i < δ. Define i0 := 0. By δ regular and continuity

of µ-nonsplitting, build an increasing and continuous sequence of indices ⟨ik : k < δ⟩ such

that p ↾ Mik+1
µ-splits over Mik . Notice that Mik+1

>u Mik . Then applying χ-weak local

character to ⟨Mik : k < δ⟩ yields a contradiction.

From stability (even without continuity of nonsplitting), it is always possible to obtain

weak local character of nonsplitting. Shelah sketched the proof and alluded to the first-order

analog, so we give details here.

Lemma 5.3.8. [She99, Claim 3.3(2)] If K is stable in µ (which is in Assumption 5.2.1),

then for some χ ≤ µ, it has weak χ-local character of µ-nonsplitting.

Proof. Pick χ ≤ µ minimum such that 2χ > µ. Suppose we have ⟨Mi : i ≤ χ⟩ u-increasing

and continuous and d ⊨ p ∈ gS(Mχ) such that for all i < χ, p ↾ Mi+1 µ-splits over p ↾ Mi.

Then for i < χ, we have N1
i and N2

i of size µ, Mi ≤ N1
i , N

2
i ≤ Mi+1, fi : N

1
i
∼=Mi

N2
i and

fi(p) ↾ N2
i ̸= p ↾ N2

i . We build ⟨M ′
i : i ≤ χ⟩ and ⟨hη : Ml(η) −−→

M0

M ′
l(η) | η ∈ 2≤χ⟩ both

increasing and continuous with the following requirements:

1. h⟨⟩ := idM0 and M ′
0 :=M0.

2. For η ∈ 2<χ, hη⌢0 ↾ N2
l(η) = hη⌢1 ↾ N2

l(η).

Mhfi M ′
i+1

Mi+1 M∗∗

N1
i N2

i M∗

Mi M ′
i

g1

g0

hν⌢0

fi
∼=

h

hν
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We specify the successor step: suppose l(ν) = i and hν has been constructed. By AP ,

obtain

1. h : N2
i →M∗ ≥M ′

i with h ⊇ hν .

2. hν⌢0 :Mi+1 →M∗∗ ≥M∗ with hν⌢0 ⊇ h.

3. g0 :Mi+1 →Mhfi ≥M∗ with g0 ⊇ h ◦ fi.

4. g1 :Mhfi →M ′
i+1 ≥M∗∗ with g1 ◦ g0 = hν⌢0.

Define hν⌢1 := g1 ◦ g0 : Mi+1 → M ′
i+1. By diagram chasing, hν⌢1 ↾ Mi = g1 ◦ g0 ↾ Mi =

g1 ◦h◦fi ↾Mi = g1 ◦h ↾Mi = h ↾Mi = hν ↾Mi. On the other hand, hν⌢0 ↾Mi = h ↾Mi =

hν ↾ Mi. Therefore the maps are increasing. Now hν⌢1 ↾ N2
i = g1 ◦ g0 ↾ N2

i = hν⌢0 ↾ N2
i

by item (4) in our construction.

For η ∈ 2χ, extend hη so that its range includes M ′
χ and its domain includes d. We

show that {gtp(hη(d)/M ′
χ) : η ∈ 2χ} are pairwise distinct. For any η ̸= ν ∈ 2χ, pick the

minimum i < χ such that η[i] ̸= ν[i]. Without loss of generality, assume η[i] = 0, ν[i] = 1.

Using the diagram above (see the comment before Proposition 5.3.1),

gtp(hη(d)/M
′
χ) ⊇ gtp(hη(d)/h(N

2
i ))

= h(gtp(d/N2
i ))

̸= h ◦ fi(gtp(d/N1
i ))

= g1 ◦ h ◦ fi(gtp(d/N1
i ))

⊆ gtp(hν(d)/M
′
χ)

This contradicts the stability in µ.

Proposition 5.3.9. If µ is regular, then for some χ ≤ µ, K has the χ-local character of

µ-nonsplitting.

Proof. By Lemma 5.3.8, K has µ-weak local character of µ-nonsplitting. By Lemma 5.3.7

(together with continuity of µ-nonsplitting in Assumption 5.2.1), K has µ-local character

of µ-nonsplitting. Hence χ exists and χ ≤ µ.
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From now on, we fix

Definition 5.3.10. χ is the minimum local character cardinal of µ-nonsplitting. χ ≤ µ if

either µ is regular (by the previous proposition), or µ is greater than some regular stability

cardinal ξ where K has continuity of ξ-nonsplitting and is ξ-tame (by Lemma 5.6.7).

Remark 5.3.11. Without continuity of nonsplitting, it is not clear whether there can be

gaps between the local character cardinals: Definition 5.3.5(4) might hold for δ = ℵ0 and

δ = ℵ2 but not δ = ℵ1. In that case defining χ as the minimum local character cardinal

might not be useful. Similar obstacles form when we only know a particular λ is a local

character cardinal but not necessary those above λ.

Meanwhile, weak local character cardinals close upwards and we can eliminate the

above situation by assuming continuity of nonsplitting: if we know χ is the minimum local

character cardinal, then it is also a weak local character cardinal, so are all regular cardinals

between [χ, µ+). By the proof of Lemma 5.3.7, the regular cardinals between [χ, µ+) are

all local character cardinals.

We now state the existence, extension, weak uniqueness and weak transitivity proper-

ties of µ-nonsplitting. The original proof for weak uniqueness assumes ∥M∥ = µ but it is

not necessary; while that for extension and for weak transitivity assume all models are in

Kµ; but under tameness we can just require ∥M∥ = ∥N∥.

Proposition 5.3.12. Let M0 <u M ≤ N where ∥M0∥ = µ.

1. [She99, Claim 3.3(1)] (Existence) If p ∈ gS(N), there is N0 ≤ N of size µ such that

p does not µ-split over N0.

2. [GV06b, Theorem 6.2] (Weak uniqueness) If p, q ∈ gS(N) both do not µ-split over

M0, and p ↾M = q ↾M , then p = q.

3. [GV06b, Theorem 6.1] (Extension) Suppose ∥M∥ = ∥N∥. For any p ∈ gS(M) that

does not µ-split over M0, there is q ∈ gS(N) extending p such that q does not µ-split

over M0.
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4. [Vas16b, Proposition 3.7] (Weak transitivity) Suppose ∥M∥ = ∥N∥. Let M∗ ≤ M0

and p ∈ gS(N). If p does not µ-split over M0 while p ↾ M does not µ-split over M∗,

then p does not µ-split over M∗.

Proof. 1. We skip the proof, which has the same spirit as that of Lemma 5.3.8.

2. By stability in µ, we may assume that ∥M∥ = µ. Suppose p ̸= q, by tameness in µ we

may find M ′ ∈ Kµ such that M ≤ M ′ ≤ N and p ↾ M ′ ̸= q ↾ M ′. By M0 <u M and

M0 < N , we can find f : M ′ −−→
M0

M . Using nonsplitting twice, we have p ↾ f(M ′) =

f(p) and q ↾ f(M ′) = f(q). But f(M ′) ≤ M implies p ↾ f(M ′) = q ↾ f(M ′). Hence

f(p) = f(q) and p = q.

3. By universality of M , find f : N −−→
M0

M . We can set q := f−1(p ↾ f(N)).

4. Let q := p ↾ M . By extension, obtain q′ ⊇ q in gS(N) such that q′ does not µ-split

over M∗. Now p ↾ M = q ↾ M = q′ ↾ M and both p, q′ do not µ-split over M0 (for q′

use monotonicity, see Proposition 5.3.3). By weak uniqueness, p = q′ and the latter

does not µ-split over M∗.

Transitivity does not hold in general for µ-nonsplitting. The following example is

sketched in [Bal09, Example 19.3].

Example 5.3.13. Let T be the first-order theory of a single equivalence relation E with

infinitely many equivalence classes and each class is infinite. Let M ≤ N where N contains

(representatives of) two more classes than M . Let d be an element. Then tp(d/N) splits

over M iff dEa for some element a ∈ N but ¬dEb for any b ∈ M . Meanwhile, suppose

M0 ≤ M both of size µ, then M0 <u M iff M contains µ-many new classes and each class

extends µ many elements. Now require M0 <u M while N contains only an extra class

than M , say witnessed by d, then tp(d/N) cannot split over M . Also tp(d/M) does not

split over M0 because d is not equivalent to any elements from M . Finally tp(d/N) splits

over M0 because it contains two more classes than M0 (one must be from M).
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The same argument does not work if alsoM <u N because N would contain two more

classes than M and they will witness tp(d/N) splits over M . Baldwin originally assigned

it as [Bal09, Exercise 12.9] but later [Bal18] retracted the claim.

Question 5.3.14. When models are ordered by ≤u,

1. does uniqueness of µ-nonsplitting hold? Namely, let M <u N both in Kµ, p, q ∈

gS(N) both do not µ-split over M , p ↾M = q ↾M , then p = q.

2. does transitivity of µ-nonsplitting hold? Namely, let M0 <u M <u N all in Kµ,

p ∈ gS(N) does not µ-split over M and p ↾ M does not µ-split over M0, then p does

not µ-split over M0.

In Assumption 5.2.1, we assumed continuity of µ-nonsplitting. One way to obtain it

is to assume superstability which is stronger. Another way is to assume ω-type locality.

Definition 5.3.15. 1. [Gro02, Definition 7.12] Let λ ≥ LS(K), K is λ-superstable if it

is stable in λ and has ℵ0-local character of λ-nonsplitting.

2. [Bal09, Definition 11.4] Types in K are ω-local if: for any limit ordinal α, ⟨Mi : i ≤ α⟩

increasing and continuous, p, q ∈ gS(Mα) and p ↾ Mi = q ↾ Mi for all i < α, then

p = q.

Proposition 5.3.16. Let K satisfy Assumption 5.2.1 except for the continuity of µ-

nonsplitting. It will satisfy the continuity of µ-nonsplitting if either

1. K is µ-superstable; or

2. Types in K are ω-local.

Proof. For (1), it suffices to prove that for any regular λ ≥ ℵ0, λ-local character implies

continuity of µ-nonsplitting over chains of cofinality ≥ λ. Let ⟨Mi : i ≤ λ⟩ be u-increasing

and continuous. Suppose p ∈ gS(Mλ) satisfies p ↾Mi does not µ-split over M0 for all i < λ.

By λ-local character, p does not µ-split over some Mi. If i = 0 we are done. Otherwise,

we have M0 <u Mi <u Mi+1 <u Mλ. By assmption, p ↾Mi+1 does not µ-split over M0. By

weak transitivity (Proposition 5.3.12), p does not µ-split over M0 as desired.
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For (2), let ⟨Mi : i ≤ λ⟩ and p as above. By assumption p ↾ M1 does not µ-split over

M0 and M1 >u M0. By extension (Proposition 5.3.12), there is q ⊇ p ↾M1 in gS(Mλ) such

that q does not µ-split over M0. By monotonicity, for 2 ≤ i < λ, q ↾ Mi does not µ-split

over M0. Now (q ↾ Mi) ↾ M1 = p ↾ M1 = (p ↾ Mi) ↾ M1, we can use weak uniqueness

(Proposition 5.3.12) to inductively show that q ↾ Mi = p ↾ Mi for all i < λ. By ω-locality,

p = q and the latter does not µ-split over M0 as desired.

Once we have continuity of µ-nonsplitting in Kµ, it automatically works for K≥µ:

Proposition 5.3.17. Let δ be a limit ordinal, ⟨Mi : i ≤ δ⟩ ⊆ K≥µ be u-increasing and

continuous, p ∈ gS(Mδ). If for all i < δ, p ↾Mi does not µ-split over M0, then p also does

not µ-split over M0.

Proof. The statement is vacuous when M0 ∈ K>µ so we assume M0 ∈ Kµ. By cofinality

argument we may also assume cf(δ) ≤ µ. Suppose p µ-splits over M0 and pick witnesses

Na and N b of size µ. Using stability, define another u-increasing and continuous chain

⟨Ni : i ≤ δ⟩ ⊆ Kµ such that:

1. For i ≤ δ, Ni ≤Mi.

2. Nδ contains N
a and N b.

3. N0 :=M0.

4. For i ≤ δ, |Ni| ⊇ |Mi| ∩ (|Na| ∪ |N b|).

By assumption each p ↾ Mi does not µ-split over M0, so by monotonicity p ↾ Ni does not

µ-split over N0 = M0. By continuity of µ-nonsplitting, p ↾ Nδ does not µ-split over N0,

contradicting item (2) above.

5.4 GOOD FRAME OVER (≥ χ)-LIMIT MODELS EXCEPT SYMMETRY

As seen in Proposition 5.3.12, µ-nonsplitting only satisfies weak transitivity but not

transitivity, which is a key property of a good frame. We will adapt [Vas16b, Definitions

3.8, 4.2] to define nonforking from nonsplitting to solve this problem.
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Definition 5.4.1. Let M ≤ N in K≥µ and p ∈ gS(N).

1. p (explicitly) does not µ-fork over (M0,M) if M0 ∈ Kµ, M0 <u M and p does not

µ-split over M0.

2. p does not µ-fork over M if there exists M0 satisfying (1).

We call M0 the witness to µ-nonforking over M .

The main difficulty of the above definition is that different µ-nonforkings over M may

have different witnesses. For extension, the original approach in [Vas16b] was to work in

µ+-saturated models. Later [VV17, Proposition 5.1] replaced it by superstability in an

interval, which works for K≥µ. We weaken the assumption to stability in an interval and

continuity of µ-nonsplitting, and use a direct limit argument similar to that of [Bon14a,

Theorem 5.3].

Proposition 5.4.2 (Extension). Let M ≤ N ≤ N ′ in K≥µ. If K is stable in [∥N∥, ∥N ′∥]

and p ∈ gS(N) does not µ-fork over M , then there is q ⊇ p in gS(N ′) such that q does not

µ-fork over M .

Proof. Since p does not µ-fork over M , we can find witness M0 ∈ Kµ such that M0 <u M

and p does not µ-split over M0. If ∥N∥ = ∥N ′∥, we can use extension of nonsplitting

(Proposition 5.3.12) to obtain (the unique) q ∈ gS(N ′) extending p which does not µ-split

over M0. By definition q does not µ-fork over M .

If ∥N∥ < ∥N ′∥, first we assume N ′ =
⋃
{Ni : i ≤ α} u-increasing and continuous

where N0 = N , Nα = N ′ for some α. We will define a coherent sequence ⟨pi : i ≤ α⟩ such

that pi is a nonsplitting extension of p in gS(Ni). The first paragraph gives the successor

step. For limit step δ ≤ α, we take the direct limit to obtain an extension pδ of ⟨pi : i < δ⟩.

Since all previous pi does not µ-split overM0, by Proposition 5.3.17, pδ also does not µ-split

over M0. After the construction has finished, we obtain q := pα a nonsplitting extension of

p in gS(N ′). Since M0 <u M ≤ N ′, we still have q does not µ-fork over M .

In the general case where N ≤ N ′, extend N ′ ≤ N ′′ so that ∥N ′′∥ = ∥N ′∥ and N ′′

contains a limit model over N of size ∥N ′∥. The construction is possible by stability in
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[∥N∥, ∥N ′∥]. Then we can extend p to a nonforking q′′ ∈ gS(N ′′) and use monotonicity to

obtain the desired q.

Corollary 5.4.3. Let M0 <u M ≤ N ′ with M0 ∈ Kµ. If K is stable in [∥M∥, ∥N ′∥] and

p ∈ gS(M) does not µ-split over M0, then there is q ⊇ p in gS(N ′) such that q does not

µ-split over M0.

Proof. Run through the exact same proof as in Proposition 5.4.2, where M = N and M0

is given in the hypothesis.

For continuity, the original approach in [Vas16b, Lemma 4.12] was to deduce it from

superstability (which we do not assume) and transitivity. Transitivity there was obtained

from extension and uniqueness, and uniqueness was proved in [Vas16b, Lemma 5.3] for

µ+-saturated models only (or assuming superstability in [Vas17c, Lemma 2.12]). Our new

argument uses weak transitivity and continuity of µ-nonsplitting to show that continuity

of µ-nonforking holds for a universally increasing chain in Kµ. The case in K≥µ will be

proved after we have developed transitivity and local character of nonforking.

Proposition 5.4.4 (Continuity 1). Let δ < µ+ be a limit ordinal and ⟨Mi : i ≤ δ⟩ ⊆ Kµ

be u-increasing and continuous. Let p ∈ gS(Mδ) satisfy p ↾Mi does not µ-fork over M0 for

all 1 ≤ i < δ. Then p also does not µ-fork over M0.

Proof. For 1 ≤ i < δ, since p ↾ Mi does not µ-fork over M0, we can find M i <u M0 of size

µ such that p ↾Mi does not µ-split over M
i. By monotonicity of nonsplitting, p ↾Mi does

not µ-split over M0. By continuity of µ-nonsplitting, p does not µ-split over M0. Since

M1 <u M0 <u M1 <u Mδ, by weak transitivity (Proposition 5.3.12) p does not µ-split over

M1. (By a similar argument, it does not µ-split over other M i.) By definition p does not

µ-fork over M0.

We now show uniqueness of nonforking in Kµ, by generalizing the argument in

[Vas17c]. Instead of superstability, we stick to our Assumption 5.2.1. Fact 2.9 in that

paper will be replaced by our Proposition 5.4.2. The requirement that M0,M1 be limit

models is removed.
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Proposition 5.4.5 (Uniqueness 1). Let M0 ≤ M1 in Kµ and p0, p1 ∈ gS(M1) both do not

µ-fork over M0. If in addition p⟨⟩ := p0 ↾M0 = p1 ↾M0, then p0 = p1.

Proof. Suppose the proposition is false. Let N0 <u M0 and N1 <u M0 such that p0 does not

µ-split over N0 while p1 does not µ-split over N1 (necessarily N0 ̸= N1 by weak uniqueness

of nonsplitting). We will build a u-increasing and continuous ⟨Mi : i ≤ µ⟩ ⊆ Kµ and a

coherent ⟨pη ∈ gS(Ml(η)) : η ∈ 2≤µ⟩ such that for all ν ∈ 2<µ, pν⌢0 and pν⌢1 are distinct

nonforking extensions of pν . If done {pη : η ∈ 2µ} will contradict stability in µ.

The base case is given by the assumption. For successor case, suppose Mi and {pη :

η ∈ 2i} have been constructed for some 1 ≤ i < µ. DefineM ′
i+1 to be a (µ, ω)-limit overMi.

Fix η ∈ 2i, we will define pη⌢0, pη⌢1 ∈ gS(M ′
i+1) nonforking extensions of pη (nonsplitting

will be witnessed by different models; otherwise weak uniqueness of nonsplitting applies).

Since pη does not µ-fork over M0, we can find Nη <u M0 such that pη does not µ-split

over Nη. Pick p+η ∈ gS(M ′
i+1) a nonsplitting extension of pη. On the other hand, obtain

N ′
η <u N

∗ <u M0 such that N∗ is a (µ, ω)-limit over N ′
η and N ′

η >u Nη. By uniqueness of

limit models over Nη of the same length, there is f :M ′
i+1

∼=N ′
η
N∗.

p0 pη⌢0

Nη N ′
η N∗ M0 M1 · · · Mi M ′

i+1 Mi+1

p1 pη⌢1

u (µ,ω) u (µ,ω)

f

By invariance of nonsplitting, f(p+η ) does not µ-split over Nη. By monotonicity of

nonsplitting, pη, and hence pη ↾ N∗ does not µ-split over Nη. f(p
+
η ) ↾ N

′
η = p+η ↾ N ′

η = (pη ↾

N∗) ↾ N ′
η. By weak uniqueness of µ-nonsplitting, f(p+η ) = pη ↾ N∗. Since pη ↾ N∗ has two

nonforking extensions p0 ̸= p1 ∈ gS(M1) where M1 >u N
∗, we can obtain their isomorphic

copies pη⌢0 ̸= pη⌢1 ∈ gS(Mi+1) for some Mi+1 >u M
′
i+1. They still do not µ-fork over M0

because M0 is fixed (actually pη⌢i does not µ-split over Ni <u M0). Ensure coherence at

the end.
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For limit case, let η ∈ 2δ for some limit ordinal δ ≤ µ. Define pη ∈ gS(Mδ) to be the

direct limit of ⟨pη↾i : i < δ⟩. By Proposition 5.4.4, pη does not µ-fork over M0.

Corollary 5.4.6 (Uniqueness 2). Let M ≤ N in K≥µ and p, q ∈ gS(N) both do not µ-fork

over M . If in addition p ↾M = q ↾M , then p = q.

Proof. Proposition 5.4.5 takes care of the case M,N ∈ Kµ. Suppose the corollary is false,

then p ̸= q and there exist Np, N q <u M such that p does not µ-fork over Np and q does

not µ-fork over N q. We have two cases:

1. SupposeM ∈ Kµ butN ∈ K>µ. By tameness obtainN ′ ∈ Kµ such thatM ≤ N ′ ≤ N

and p ↾ N ′ ̸= q ↾ N ′. Together with p ↾M = q ↾M , it contradicts Proposition 5.4.5.

2. Suppose M ∈ K>µ. Obtain Mp,M q ≤ M of size µ that are universal over Np and

N q respectively. By Löwenheim-Skolem axiom, pick M ′ ≤ M of size µ containing

Mp and M q. Thus M ′ is universal over both Np and N q, and p ↾M ′ = q ↾M ′. Since

p ̸= q, tameness gives some N ′ ∈ Kµ, M
′ ≤ N ′ ≤ N such that p ↾ N ′ ̸= q ↾ N ′, which

contradicts Proposition 5.4.5.

Remark 5.4.7. The strategy of case (2) cannot be applied to Proposition 5.4.5 because

M ′ might coincide with M and we do not have enough room to invoke weak uniqueness

of nonsplitting. This calls for a specific proof in Proposition 5.4.5. Similarly, we cannot

simply invoke weak uniqueness of nonsplitting to prove case (2) because we do not know if

M is also universal over M ′.

Corollary 5.4.8 (Transitivity). Let M0 ≤M1 ≤M2 be in K≥µ, p ∈ gS(M2). If K is stable

in [∥M1∥, ∥M2∥], p does not µ-fork over M1 and p ↾ M1 does not µ-fork over M0, then p

does not µ-fork over M0.

Proof. By Proposition 5.4.2, obtain q ⊇ p ↾ M1 a nonforking extension in gS(M2). Both q

and p do not fork over M1 and q ↾M1 = p ↾M1. By Corollary 5.4.6, p = q, but q does not

µ-fork over M0.
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For local character, we imitate [Vas16b, Lemma 4.11] which handled the case of µ+-

saturated models ordered by ≤K instead of <u. That proof originates from [She09a, II

Claim 2.11(5)].

Proposition 5.4.9 (Local character). Let δ ≥ χ be regular, ⟨Mi : i ≤ δ⟩ ⊆ K≥µ u-

increasing and continuous, p ∈ gS(Mδ). There is i < δ such that p does not µ-fork over

Mi.

Proof. If δ ≥ µ+, then by existence of nonsplitting (Proposition 5.3.12) and monotonicity,

there is j < δ such thtat p does not µ-split over Mj. As Mj+1 is universal over Mj, p does

not µ-fork over Mj+1.

If χ ≤ δ ≤ µ and suppose the conclusion fails, then we can build

1. ⟨Ni : i ≤ δ⟩ ⊆ Kµ u-increasing and continuous;

2. ⟨N ′
i : i ≤ δ⟩ ⊆ Kµ increasing and continuous;

3. N0 = N ′
0 ≤M0 be any model in Kµ;

4. For all i < δ, Ni ≤Mi and Ni ≤ N ′
i ≤Mδ.

5. For all i < δ,
⋃

j≤i(|N ′
j| ∩ |Mi+1|) ⊆ |Ni+1|

6. For all j < δ, p ↾ N ′
j+1 µ-splits over Nj.

We specify the successor step of N ′
i : suppose Ni has been constructed. Since p µ-forks over

Mi, hence over Ni. Thus (Ni−1, Ni) cannot witness nonforking, so there is N ′
i ∈ Kµ with

Ni ≤ N ′
i ≤Mδ such that p ↾ N ′

i µ-splits over Ni−1. After the construction, by monotonicity

p ↾ Nδ ⊇ p ↾ N ′
i µ-splits over Ni−1 for each successor i, contradicting χ-local character of

µ-nonsplitting.

In Section 6, we will need the original form of [Vas16b, Lemma 4.11], whose proof is

similar to Proposition 5.4.9. We write the statement here for comparison.

Fact 5.4.10. Let δ ≥ χ be regular, ⟨Mi : i ≤ δ⟩ be an increasing and continuous chain of

µ+-saturated models, p ∈ gS(Mδ). There is i < δ such that p does not µ-fork over Mi.
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We now show the promised continuity of nonforking. In [Vas16b, Lemma 4.12], the

chain must be of length≥ χ. We do not have the restriction here because we have continuity

of nonsplitting in Assumption 5.2.1.

Proposition 5.4.11 (Continuity 2). Let δ < µ+ be regular, ⟨Mi : i ≤ δ⟩ ⊆ K≥µ u-

increasing and continuous, and K is stable in [∥M1∥, ∥Mδ∥). Let p ∈ gS(Mδ) satisfy p ↾Mi

does not µ-fork over M0 for all 1 ≤ i < δ. Then p also does not µ-fork over M0.

Proof. If δ ≥ χ, by Proposition 5.4.9 there is i < δ such that p does not µ-fork over Mi.

By Corollary 5.4.8, p does not µ-fork over M0.

If δ < χ ≤ µ, we have two cases: (1) M0 ∈ Kµ: then for 1 ≤ i < δ, p ↾ Mi does not

µ-split over M0. By Proposition 5.3.17, p does not µ-split over M0, so p does not µ-fork

over M1. By Corollary 5.4.8, p does not µ-fork over M0. (2) M0 ∈ K>µ: for 1 ≤ i < δ, let

Ni <u M0 witness p ↾ Mi does not µ-fork over M0. By Löwenheim-Skolem axiom, there is

N ∈ Kµ (here we need δ ≤ µ) such that Ni <u N ≤ M0 for all i. Apply case (1) with N

replacing M0.

Existence is more tricky because nonforking requires the base to be universal over the

witness of nonsplitting. The second part of the proof is based on [Vas16b, Lemma 4.9].

Proposition 5.4.12 (Existence). Let M be a (≥ µ,≥ χ)-limit model, p ∈ gS(M). Then p

does not µ-fork over M . Alternatively M can be a µ+-saturated model.

Proof. The first part is immediate from Proposition 5.4.9. For the second part, apply

existence of nonsplitting Proposition 5.3.12 to obtain N ∈ Kµ, N ≤ M such that p does

not µ-split over N . By model-homogeneity, M is universal over N , hence p does not µ-fork

over M .

Corollary 5.4.13. There exists a good µ-frame over the µ-skeleton of (µ,≥ χ)-limit models

ordered by ≤u, except for symmetry and local character χ in place of ℵ0.

Proof. Define nonforking as in Definition 5.4.1(2). Invariance and monotonicity are immedi-

ate. Existence is by Proposition 5.4.12, χ-local character is by Proposition 5.4.9, extension

is by Proposition 5.4.2, uniqueness is by Proposition 5.4.5, continuity is by Proposition

5.4.4.
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Remark 5.4.14. 1. We do not expect ℵ0-local character because there are strictly sta-

ble AECs. For the same reason we restrict models to be (µ,≥ χ)-limit to guarantee

existence property.

2. Let λ ≥ µ. Our frame extends to ([µ, λ],≥ χ)-limit models if we assume stability in

[µ, λ]. However [Vas16b] has already developed µ-nonforking for µ+-saturated models

ordered by ≤, and we will see in Corollary 5.6.2(2) that under extra stability assump-

tions, (> µ,≥ χ)-limit models are automatically µ+-saturated, so the interesting part

is Kµ here.

3. We will see in Corollary 5.5.13(2) that symmetry also holds if we have enough stability.

Since we have built an approximation of a good frame in Corollary 5.4.13, one might

ask if it is canonical. We first observe the following fact (Assumption 5.2.1 is not needed):

Fact 5.4.15. [Vas18a, Theorem 14.1] Let λ ≥ LS(K). Suppose K is λ-superstable and

there is an independence relation over the limit models (ordered by ≤) in Kλ, satisfying

invariance, monotonicity, universal local character, uniqueness and extension. Let M ≤ N

be limit models in Kλ and p ∈ gS(N). Then p is independent over M iff p does not λ-fork

over M .

Its proof has the advantage that it does not require the independence relation to be

for longer types as in [BGKV16, Corollary 5.19]. However, it still uses the following lemma

from [BGKV16, Lemma 4.2]:

Lemma 5.4.16. Suppose there is an independence relation over models in Kµ ordered by

≤. If it satisfies invariance, monotonicity and uniqueness, then the relation is extended by

µ-nonsplitting.

Proof. Suppose M ≤ N in Kµ, p ∈ gS(N) is independent over M . For any N1, N2 ∈ Kµ

with M ≤ N1, N2 ≤ N , and any f : N1
∼=M N2. We need to show that f(p) ↾ N2 = p ↾ N2.

By monotonicity, p ↾ N1 and p ↾ N2 do not depend on M . By invariance, f(p) ↾ N2 is

independent over M . By uniqueness and the fact that f fixes M , we have f(p) ↾ N2 = p ↾

N2.
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In the above proof, it utilizes the assumption that the independence relation is for

models ordered by ≤, so it makes sense to talk about p ↾ Ni is independent over M for

i = 1, 2. To generalize Fact 5.4.15 to our frame in Corollary 5.4.13, one way is to assume

the independence relation to be for models ordered by ≤, and with universal local character

χ. But since we defined our frame to be for models ordered by ≤u, we want to keep the

weaker assumption that the arbitrary independence relation is also for models ordered by

≤u. Thus we cannot directly invoke Lemma 5.4.16, where the Ni’s are not necessarily

universal over M . To circumvent this, we adapt the lemma by allowing more room:

Lemma 5.4.17. Let M <u N <u N
′ all in Kµ, p ∈ gS(N ′). If p ↾ N µ-splits over M , then

p also µ-splits over M with witnesses universal over M . Namely, there are N ′
1, N

′
2 ≤ N ′

such that N ′
1 >u M , N ′

2 >u M and there is f ′ : N ′
1
∼=M N ′

2 with f(p) ↾ N ′
2 ̸= p ↾ N ′

2.

Proof. By assumption, there are N1, N2 ∈ Kµ such that M ≤ N1, N2 ≤ N and there

is f : N1
∼=M N2 such that f(p ↾ N) ↾ N2 ̸= p ↾ N2. Extend f to an isomorphism f̃ of

codomain N , and let N∗ ≥ N1 be the domain of f̃ . Since N >u M , by invariance N∗ >u M .

On the other hand, N ′ >u N , then N ′ >u N1 and there is g : N∗ −→
N1

N ′. Let the image of

g be N∗∗

In the diagram below, we use dashed arrows to indicate isomorphisms. Solid arrows

indicate ≤.

N∗

N1 N∗∗

M N2 N N ′

f̃

g

f
f̃◦g−1
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Since f̃ ◦ g−1 : N∗∗ ∼=M N and M <u N
∗∗, N ≤ N ′, we consider f̃ ◦ g−1(p) ↾ N and p ↾ N .

f̃ ◦ g−1(p) ↾ N ≥ [f̃ ◦ g−1(p)] ↾ N2

= f̃([g−1(p)] ↾ N1) ↾ N2 as f̃−1[N2] = N1

= f̃(p ↾ N1) ↾ N2 as g fixes N1

= f(p ↾ N1) ↾ N2 as f̃ extends f

= f(p ↾ N) ↾ N2 as f−1[N2] = N1 ≤ N

p ↾ N ≥ p ↾ N2

Since f(p ↾ N) ↾ N2 ̸= p ↾ N2, f̃ ◦g−1(p) ↾ N ̸= p ↾ N and we can take N ′
1 := N∗∗, N ′

2 := N ,

f ′ := f̃ ◦ g−1 in the statement of the lemma.

Now we can prove a canonicity result for our frame. In order to apply Lemma 5.4.17,

we will need to enlarge N to a universal extension in order to have more room. This

procedure is absent in the original forward direction of Fact 5.4.15 but is similar to the

backward direction (to get q below).

Proposition 5.4.18. Suppose there is an independence relation over the (µ,≥ χ)-limit

models ordered by ≤u satisfying invariance, monotonicity, local character χ, uniqueness and

extension. Let M <u N be (µ,≥ χ)-limit models and p ∈ gS(N). Then p is independent

over M iff p does not µ-fork over M .

Proof. Suppose p is independent over M . By assumption M is a (µ, δ)-limit for some

regular δ ∈ [χ, µ+). Resolve M =
⋃

i<δMi such that all Mi are also (µ, δ)-limit. By

local character, p ↾ M is independent over Mi for some i < δ. Since the independence

relation satisfies uniqueness and extension, by the proof of Corollary 5.4.8 it also satisfies

transitivity. Therefore p is independent over Mi. Let N ′ >u N . By extension, there is

p′ ∈ gS(N ′) independent over Mi and p
′ ⊇ p. Now suppose p µ-splits over Mi, by Lemma

5.4.17 p′ µ-splits over Mi with universal witnesses, contradicting Lemma 5.4.16 (where ≤

is replaced by <u where). As a result, p does not µ-split over Mi. Since Mi <u M , p does

not µ-fork over M .
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Conversely suppose p does not µ-fork over M . By local character and monotonicity,

p ↾ M is independent over M . By extension, obtain q ∈ gS(N) independent over M and

q ⊇ p. From the forward direction, q does not µ-fork over M . By Proposition 5.4.5, p = q

so invariance gives q independent over M .

To conclude this section, we show that the existence of a frame similar to Corollary

5.4.13 is sufficient to obtain local character of nonsplitting. Continuity of µ-nonsplitting

and µ-tameness in Assumption 5.2.1 are not needed.

Proposition 5.4.19. Let δ < µ+ be regular. Suppose there is an independence relation over

the (µ,≥ δ)-limit models ordered by ≤u satisfying invariance, monotonicity, local character

δ, uniqueness and extension. Then K has δ-local character of µ-nonsplitting.

Proof. Let ⟨Mi : i ≤ δ⟩ be u-increasing and continuous, p ∈ gS(Mδ). There is i < δ

such that p is independent over Mi. By the forward direction of Proposition 5.4.18 (local

character of nonsplitting is not used), p does not µ-split over Mi.

5.5 LOCAL SYMMETRY

Tower analysis was used in [Van16a, Theorem 3] to connect a notion of µ-symmetry

and reduced towers. Combining with [GVV16], superstability and µ-symmetry imply the

uniqueness of limit models. [VV17, Lemma 4.6] observed that a weaker form of µ-symmetry

is sufficient to deduce one direction of [Van16a, Theorem 3], and enough superstability

implies the weaker form of µ-symmetry. Therefore enough superstability already implies

the uniqueness of limit models [VV17, Corollary 1.4]. Meanwhile, [BV15a] localized the

notion of µ-symmetry and deduced the uniqueness of limit models of length ≥ χ. We

will imitate the above argument and replace the hypothesis of local symmetry by sufficient

stability. As a corollary we will obtain symmetry property of nonforking. The uniqueness

of limit models will be discussed in the next section.

The following is based on [BV15a, Definition 10]. They restricted M0 to be exactly

(µ, δ)-limit over N but they should mean (µ,≥ δ) for the proofs to go through. We will

use δ := χ in this paper.
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Definition 5.5.1. Let δ < µ+ be a limit ordinal. K has (µ, δ)-symmetry for µ-nonsplitting

if for any M,M0, N ∈ Kµ, elements a, b with

1. a ∈M −M0;

2. M0 <u M and M0 is (µ,≥ δ)-limit over N ;

3. gtp(a/M0) does not µ-split over N ;

4. gtp(b/M) does not µ-split over M0,

then there is M b ∈ Kµ universal over M0 and containing b such that gtp(a/M b) does not

µ-split over N . We will abbreviate (µ, δ)-symmetry for µ-nonsplitting as (µ, δ)-symmetry.

Now we localize the hierarchy of symmetry properties in [VV17, Definition 4.3]. The

first two items will be important in our improvement of [BV15a].

Definition 5.5.2. Let δ < µ+ be a limit ordinal. In the following items, we always let

a ∈M−M0,M0 <u M ,M0 be (µ,≥ δ)-limit over N and b be an element. In the conclusion,

M b ∈ Kµ universal over M0 and containing b is guaranteed to exist.

1. K has uniform (µ, δ)-symmetry : If gtp(b/M) does not µ-split over M0, gtp(a/M0)

does not µ-fork over (N,M0), then gtp(a/M b) does not µ-fork over (N,M0).

2. K has weak uniform (µ, δ)-symmetry : If gtp(b/M) does not µ-fork over M0,

gtp(a/M0) does not µ-fork over (N,M0), then gtp(a/M b) does not µ-fork over

(N,M0).

3. K has nonuniform (µ, δ)-symmetry : If gtp(b/M) does not µ-split overM0, gtp(a/M0)

does not µ-fork over M0, then gtp(a/M b) does not µ-fork over M0.

4. K has weak nonuniform (µ, δ)-symmetry : If gtp(b/M) does not µ-fork over M0,

gtp(a/M0) does not µ-fork over M0, then gtp(a/M b) does not µ-fork over M0.

The following results generalize [VV17, Section 4] which assumes superstability and

works with full symmetry properties.
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Proposition 5.5.3. Let δ < µ+ be a limit ordinal. (µ, δ)-symmetry is equivalent to uni-

form (µ, δ)-symmetry. Both imply nonuniform (µ, δ)-symmetry and weak uniform (µ, δ)-

symmetry. Nonuniform (µ, δ)-symmetry implies weak nonuniform (µ, δ)-symmetry.

Proof. In the definition of the symmetry properties, we always have N <u M0, so the

following are equivalent:

� gtp(a/M0) does not µ-fork over (N,M0);

� gtp(a/M0) does not µ-split over N .

Similarly, the following are equivalent:

� gtp(a/M b) does not µ-fork over (N,M0);

� gtp(a/M b) does not µ-split over N .

Therefore, (µ, δ)-symmetry is equivalent to uniform (µ, δ)-symmetry.

Uniform (µ, δ)-symmetry implies weak uniform (µ, δ)-symmetry because nonforking

over M0 is a stronger assumption than nonsplitting over M0. Uniform (µ, δ)-symmetry

implies nonuniform (µ, δ)-symmetry because the latter does not require the witness to

nonforking be the same, so its conclusion is weaker. Nonuniform (µ, δ)-symmetry implies

weak nonuniform (µ, δ)-symmetry because nonforking over M0 is a stronger assumption

than nonsplitting over M0.

The following result modifies the proof of [BV15a] which involves a lot of tower anal-

ysis. We will only mention the modifications and refer the readers to the original proof.

Proposition 5.5.4. Let δ < µ+ be a limit ordinal. If δ ≥ χ, then weak uniform (µ, δ)-

symmetry implies uniform (µ, δ)-symmetry.

Proof sketch. [BV15a, Theorems 18, Proposition 19] establish that (µ, δ)-symmetry is

equivalent to continuity of reduced towers at ≥ δ. We will show that the backward di-

rection only requires weak uniform (µ, δ)-symmetry. Then using the equivalence twice

we deduce that weak uniform (µ, δ)-symmetry implies (µ, δ)-symmetry. By the previous

proposition, it is equivalent to uniform (µ, δ)-symmetry.
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There are three places in [BV15a, Theorems 18] which use (µ, δ)-symmetry. In the

first two paragraphs of page 11:

1. By χ-local character, there is a successor i∗ < δ such that gtp(b/M δ
δ ) does not µ-split

over M i∗
i∗ .

2. For any j < δ, M δ
δ is universal over M j

j .

3. For any j < δ, gtp(aj/M
j
j ) does not µ-split over Nj.

4. For any successor j < δ, M j
j is (µ,≥ δ)-limit over M j−1

j−1 and over Nj.

Let j∗ := i∗ + 1 which is still a successor ordinal less than δ. Combining (1) and (4), we

have gtp(b/M δ
δ ) does not µ-fork over M j∗

j∗ . Combining (3) and (4), gtp(aj∗/M
j∗

j∗ ) does not

µ-fork over M j∗

j∗ ). Moreover, (2) gives M δ
δ is universal over M j∗

j∗ . Together with (4) and

weak uniform (µ, δ)-symmetry, we can find M b (µ,≥ δ)-limit over M j∗

j∗ and containing b

such that gtp(a/M b) does not µ-fork over (Nj∗ ,M
j∗

j∗ ). In other words, gtp(a/M b) does not

µ-split over Nj∗ and so the original argument goes through with i∗ replaced by j∗.

In “Case 2” on page 12:

a. gtp(b/
⋃

l<αM
l
l ) does not µ-split over M

i∗
i∗ .

b. i∗ + 2 ≤ k < α and gtp(ak/M
k+1
k ) does not µ-split over Nk.

c. Mk+1
k is universal over M i∗

i∗ .

d.
⋃

l<αM
l
l is universal over M

k+1
k . Mk+1

k is (µ,≥ δ)-limit over Nk.

Combining (a) and (c), gtp(b/
⋃

l<αM
l
l ) does not µ-fork overMk+1

k . (b) gives gtp(ak/M
k+1
k )

does not µ-fork over (Nk,M
k+1
k ). Together with (d) and weak uniform (µ, δ)-symmetry,

we can find M b
k (µ,≥ δ)-limit over Mk+1

k and containing b such that gtp(ak/M
b
k) does not

µ-fork over (Nk,M
k+1
k ) so the proof goes through (we do not change index this time).

Before “Case 1” on page 11, they refer the successor case to the original proof of

[Van16a, Theorem 3] which also uses (µ, δ)-symmetry. But the idea from the previous case

applies equally.
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In [Vas17c, Corollary 2.18], it was shown that under superstability, weak nonuniform

µ-symmetry implies weak uniform µ-symmetry. We generalize this as:

Proposition 5.5.5. Let δ < µ+ be a limit ordinal. Weak nonuniform (µ, δ)-symmetry

implies weak uniform (µ, δ)-symmetry.

Proof. Using the notation in Definition 5.5.2, we assume gtp(b/M) does not µ-fork over

M0 and gtp(a/M0) does not µ-fork over (N,M0). By weak nonuniform (µ, δ)-symmetry,

we can find M b such that gtp(a/M b) does not µ-fork over M0. Since gtp(a/M0) does not

µ-fork over (N,M0), by extension of nonsplitting (Proposition 5.3.12), there is a′ such that

gtp(a/M0) = gtp(a′/M0) and gtp(a′/M b) does not µ-split overN . Now both gtp(a/M b) and

gtp(a′/M b) do not µ-fork over M0 and they agree on the restriction of M0. By uniqueness

of nonforking (Proposition 5.4.5), gtp(a/M b) = gtp(a′/M b) and hence gtp(a/M b) does not

µ-split over N . In other words, it does not µ-fork over (N,M0) as desired.

Corollary 5.5.6. The following are equivalent:

0. (µ, χ)-symmetry for µ-nonsplitting;

1. Uniform (µ, χ)-symmetry;

2. Weak uniform (µ, χ)-symmetry;

3. Nonuniform (µ, χ)-symmetry;

4. Weak nonuniform (µ, χ)-symmetry.

Proof. By Proposition 5.5.3, (0) and (1) are equivalent, (1) implies (2) and (3) while (3)

implies (4). By Proposition 5.5.4 (this is where we need χ instead of a general δ), (2)

implies (1). By Proposition 5.5.5, (4) implies (2).

The following adapts [VV17, Lemma 5.6] and fills in some gaps. In particular we need

µ-tameness (in Assumption 5.2.1) and stability in ∥Nα∥ for the proof to go through. It is

not clear how to remove µ-tameness which they do not assume.
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Lemma 5.5.7. Let M0 ∈ Kµ, Nα ∈ K≥µ with M0 ≤ Nα, b, bβ ∈ |Nα|, aα be an element.

If K is stable in ∥Nα∥, gtp(aα/Nα) does not µ-fork over M0 and gtp(b/M0) = gtp(bβ/M0),

then gtp(aαb/M0) = gtp(aαbβ/M0).

Proof. Let M∗ <u M0 witness that gtp(aα/Nα) does not µ-fork over (M∗,M0). By exten-

sion (Corollary 5.4.3) and weak uniqueness of nonsplitting (Proposition 5.3.12(2)), we can

extend Nα to N∗ >u Nα such that gtp(aα/N
∗) does not µ-split over M∗. As gtp(b/M0) =

gtp(bβ/M0) and N∗ >u Nα, there is f : Nα −−→
M0

N∗ such that f(b) = bβ. As gtp(aα/N
∗)

does not µ-split over M∗, by Proposition 5.3.4 gtp(f(aα)/f(Nα)) = gtp(aα/f(Nα)). Hence

there is g ∈ Autf(Nα)(C) such that g(f(aα)) = aα. Then

gtp(aαb/M0) = gtp(f(aα)f(b)/M0) = gtp(g(f(aα))f(b)/M0) = gtp(aαbβ/M0).

Remark 5.5.8. By swapping the dummy variables, we have the following formulation:

Let M0 ∈ Kµ, N
′
β ∈ K≥µ with M0 ≤ N ′

β, a, aα ∈ |N ′
β|, bβ be an element. If K is

stable in ∥N ′
β∥, gtp(bβ/N ′

β) does not µ-fork over M0 and gtp(a/M0) = gtp(aα/M0), then

gtp(abβ/M0) = gtp(aαbβ/M0).

The following adapts [VV17, Lemma 5.7] which assumes superstability in [µ, λ). When

we write the µ-order property, we mean tuples that witness order property have length µ.

Proposition 5.5.9. Let λ ≥ µ be a cardinal. If K is stable in [µ, λ) and fails (µ, χ)-

symmetry, then it has the µ-order property of length λ.

Proof. By Corollary 5.5.6(2)⇒(0), K fails weak uniform (µ, χ)-symmetry. So there are

N,M0,M ∈ Kµ and elements a, b such that

� a ∈M −M0, M0 <u M and M0 is (µ,≥ χ)-limit over N ;

� gtp(b/M) does not µ-fork over M0;

� gtp(a/M0) does not µ-fork over (N,M0);

� There is no M b ∈ Kµ universal over M0 containing b such that gtp(a/M b) does not

µ-fork over (N,M0).
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Build ⟨aα, bα, Nα, N
′
α : α < λ⟩ such that:

1. Nα, N
′
α ∈ Kµ+|α|;

2. b ∈ |N0| and N0 is universal over M ;

3. Nα <u N
′
α <u Nα+1;

4. aα ∈ |N ′
α| and gtp(aα/M0) = gtp(a/M0);

5. bα ∈ |Nα+1| and gtp(bα/M) = gtp(b/M);

6. gtp(aα/Nα) does not µ-fork over (N,M0);

7. gtp(bα/N
′
α) does not µ-fork over M0.

N0 is specified in (2). We specify the successor step: suppose Nα has been constructed

, by Corollary 5.4.3 there is aα such that gtp(aα/Nα) extends gtp(a/M0) and does not

µ-fork over (N,M0). Build any N ′
α universal over Nα containing aα. By Proposition 5.4.2

again, there is bα such that gtp(bα/N
′
α) extends gtp(b/M) and does not µ-fork over M0.

Build Nα+1 universal over N ′
α containing bα. Notice that stability is used to guarantee the

existence of Nα, N
′
α and the extension of types.

After the construction, we have the following properties for α, β < λ:

a. gtp(aαb/M0) ̸= gtp(ab/M0);

b. gtp(abβ/M0) = gtp(ab/M0);

c. If β < α, gtp(ab/M0) ̸= gtp(aαbβ/M0);

d. If β ≥ α, gtp(ab/M0) = gtp(aαbβ/M0).

Suppose (a) is false. By invariance and the choice of a, b,M0, N there is no M ′ ∈ Kµ

universal over M0 containing b such that gtp(aα/M
′) does not µ-fork over (N,M0). This

contradicts M ′ := Nα and item (6) in the construction. (b) is true because of item (5) of

the construction and a ∈ |M |. For (c), items (5), (6) and Lemma 5.5.7 (with the exact

same notations) imply gtp(aαbβ/M0) = gtp(aαb/M0) which is not equal to gtp(ab/M0) by
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(a). For (d), items (4), (7) and Remark 5.5.8 imply gtp(aαbβ/M0) = gtp(abβ/M0) which is

equal to gtp(ab/M0) by (b).

To finish the proof, let d enumerate M0, and for α < λ, cα := aαbαd. By (c) and (d)

above, ⟨cα : α < λ⟩ witnesses the µ-order property of length λ.

Remark 5.5.10. When proving (d), we used Remark 5.5.8 which requires gtp(bβ/N
′
β)

nonforking over M0, and this is from extending gtp(b/M) nonforking over M0. This called

for the failure of weak uniform (µ, χ)-symmetry instead of just (µ, χ)-symmetry. (In the

original proof, they claimed the same for (c) in place of (d), which should be a typo.)

Question 5.5.11. Is it possible to weaken the stability assumption in Proposition 5.5.9?

Fact 5.5.12. For any infinite cardinal λ, h(λ) := ℶ(2λ)+ . When we write the µ-stable, we

mean stability of tuples of length µ.

1. [She99, Claim 4.6] If K does not have the µ-order property, then there is λ < h(µ)

such that K does not have the µ-order property of length λ.

2. [BGKV16, Fact 5.13] If K is µ-stable (in some cardinal ≥ µ), then it does not have

the µ-order property.

3. If K is stable in some λ = λµ, then K is µ-stable in λ.

4. [GV06b, Corollary 6.4] If K is stable and tame in µ (these are in Assumption 5.2.1),

then it is stable in all λ = λµ. In particular it is stable in 2µ.

5. For some λ < h(µ), K does not have the µ-order property of length λ.

Proof. For (1) and (2), see also Proposition 3.3.4 for a proof sketch. (3) is an immediate

corollary of [Bon17, Theorem 3.1], see Theorem 3.2.2 for a proof. We show (5): by (4)

K is stable in 2µ. By (3) it is µ-stable in 2µ. Combining with (2) and (1) gives the

conclusion.

Corollary 5.5.13. There is λ < h(µ) such that if K is stable in [µ, λ), then

1. K has (µ, χ)-symmetry;
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2. the frame in Corollary 5.4.13 satisfies symmetry.

Proof. 1. By Fact 5.5.12(5), there is λ < h(µ) such that K does not have the µ-order

property of length λ. By the contrapositive of Proposition 5.5.9, K has (µ, χ)-

symmetry.

2. By (1) and Proposition 5.5.3, K has weak nonuniform (µ, χ)-symmetry. Compared to

symmetry in a good frame, weak nonuniform (µ, χ)-symmetry has the extra assump-

tion that gtp(a/M0) does not µ-fork over M0, but this is always true by Proposition

5.4.12.

Remark 5.5.14. From the proof of Corollary 5.5.13(2), we see that if the frame in Corollary

5.4.13 (which is defined for (µ,≥ χ)-limits) has symmetry, then weak nonuniform (µ, χ)-

symmetry, and hence all the other ones in Corollary 5.5.6 hold.

5.6 SYMMETRY AND SATURATED MODELS

As mentioned in the previous section, [VV17, Corollary 1.4] deduced symmetry from

superstability and obtained the uniqueness of limit models. It is natural to localize such

argument, which was partially done in

Fact 5.6.1. [BV15a, Theorem 20] Assume K has (µ, χ)-symmetry (together with Assump-

tion 5.2.1). Then it has the uniqueness of (µ,≥ χ)-limit models: let M0,M1,M2 ∈ Kµ. If

both M1 and M2 are (µ,≥ χ)-limit over M0, then M1
∼=M0 M2.

In the original proof of the above fact, they did not assume tameness. However, we will

need tameness when we remove the symmetry assumption (see also the discussion before

Lemma 5.5.7).

Corollary 5.6.2. There is λ < h(µ) such that if K is stable in [µ, λ), then

1. K has the uniqueness of (µ,≥ χ)-limit models.

2. if also µ > LS(K), any (µ,≥ χ)-limit model is saturated.
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Proof. 1. By Corollary 5.5.13(1), K has (µ, χ)-symmetry. Apply Fact 5.6.1.

2. Suppose µ is regular. Since χ ≤ µ, any (µ,≥ χ)-limit is isomorphic to a (µ, µ)-limit,

which is saturated. Suppose µ is singular. Let M be a (µ,≥ χ)-limit model. We

show that it is δ-saturated for any regular δ < µ. Since δ + χ is a regular cardinal in

[χ, µ+), M is also (µ, δ + χ)-limit, which implies it is (δ + χ)-saturated.

Before stating a remark, we quote a fact in order to compare Vasey’s results with ours

(but we will not use that fact in our paper). Continuity of µ-nonsplitting in Assumption

5.2.1 is not needed.

Fact 5.6.3. [BV17a, Theorems 5.15] Let χ0 ≥ 2µ be such that K does not have the µ-order

property of length χ+
0 , define χ1 := (22

χ0 )+3, and let ξ ≥ χ1. If K is stable in unboundedly

many cardinals < ξ, then any increasing chain of ξ-saturated models of length ≥ χ is

ξ-saturated.

Remark 5.6.4. We assumed enough stability to get a local result: the same µ was con-

sidered throughout. In contrast, [Vas18c, Theorems 6.3, 11.7] are eventual : Fact 5.6.3 was

heavily used. Some of the hypotheses there require unboundedly many (H1-closed) stability

cardinals.

Now we turn to an AEC version of Harnik’s Theorem. [Vas18c, Lemma 11.9] improved

[Van16b, Theorem 1] and showed that:

Fact 5.6.5. Let K be µ-tame with a monster model. Let ξ ≥ µ+. Suppose

1. K is stable in µ and ξ;

2. ⟨Mi : i < δ⟩ is an increasing chain of ξ-saturated models;

3. cf(δ) ≥ χ;

4. (ξ, δ)-limit models are saturated,

then
⋃

i<δMi is ξ-saturated.
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We remove the assumption of (4) by assuming more stability and continuity of non-

splitting. Our proof is based on [Vas18c, Lemma 11.9] which have some omissions. For

comparison, we write down all the assumptions.

Proposition 5.6.6. Let K be an AEC with a monster model. Assume K is µ-tame, stable

in µ and has χ-local charcter of µ-nonsplitting. Let ξ ≥ µ+. There is λ < h(ξ) such that if

1. K is stable in [ξ, λ),

2. ⟨Mi : i < δ⟩ is an increasing chain of ξ-saturated models;

3. cf(δ) ≥ χ;

4. Continuity of µ-nonsplitting and of ξ-nonsplitting holds,

then
⋃

i<δMi is ξ-saturated.

Before proving the proposition, we need to justify that the local character χ (Definition

5.3.10), which was defined for Kµ, also applies to Kξ. In other words, we need to show

that Kξ has local character of nonsplitting (at most) χ. (Vasey usually cited this fact as

[Vas16b, Section 4], by which he should mean an adaptation of [Vas16b, Lemma 4.11].)

Lemma 5.6.7 (Local character transfer). If K is stable in some ξ ≥ µ, then it has χ-local

character of ξ-nonsplitting.

Proof. Let ⟨Mi : i ≤ δ⟩ be u-increasing and continuous in Kξ, p ∈ gS(Mδ). By Proposition

5.4.9, there is i < δ such that p does not µ-fork over Mi. By definition of nonforking, there

is N <u Mi of size µ such that p does not µ-split over N . Suppose p ξ-splits over Mi then

it also ξ-splits over N . By µ-tameness, it µ-splits over N , contradiction.

Proof of Proposition 5.6.6. Let δ ≥ χ be regular. If δ ≥ ξ we can use a cofinality argument.

So we assume δ < ξ. Let Mδ :=
⋃

i<δMi and N ∈ K<ξ, N ≤Mδ, p ∈ gS(N). Without loss

of generality, we may assume for i ≤ δ, Mi ∈ Kξ: given a saturated M∗ ∈ K≥ξ+ and some

Ñ ≤M∗ of size ≤ ξ, we can close Ñ into a (ξ, χ)-limit N∗. By ξ-model-homogeneity ofM∗,

we may assume N∗ ≤M∗. By Lemma 5.6.7 and Corollary 5.6.2(2), any (ξ,≥ χ)-limits are
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saturated, so N∗ is saturated. Therefore we can recursively shrink each Mi to a saturated

model in Kξ while still containing the same intersection with Ñ .

Extend p to a type in gS(Mδ). By Fact 5.4.10, there is i < δ such that p does not

µ-fork over Mi. By reindexing assume i = 0 and let M0
0 ∈ Kµ witness the nonforking.

Obtain N0 ∈ Kµ such that M0
0 <u N0 ≤ M0. Define µ

′ := µ+ δ, we build ⟨Ni : 1 ≤ i ≤ δ⟩

increasing and continuous in Kµ′ such that N0 ≤ N1 ≤ N ≤ Nδ and for i ≤ δ, Ni ≤ Mi.

Now we construct

1. ⟨M∗
i , fi,j : i ≤ j < δ⟩ an increasing and continuous directed system;

2. For i < δ, M∗
i ∈ Kξ, Ni ≤M∗

i ≤Mi;

3. For i < δ, fi,i+1 :M
∗
i −→

Ni

M∗
i+1;

4. M∗
0 :=M0. For i < δ, fi,i+1[M

∗
i ] <u M

∗
i+1.

Kξ M0 M1 · · · Mδ M̃

Kξ M∗
0 M∗

1 M∗
δ

K ′
µ N1 · · · Nδ

Kµ M0
0 <u N0

f0,1 f1,δ

At limit stage i < δ, take direct limit M∗
i which contains Ni. Since ∥Ni∥ < ξ and Mi

is model-homogeneous, we may assume M∗
i is inside Mi. Suppose M∗

i is constructed for

some i < δ, obtain the amalgam M∗∗
i+1 of M∗

i and Ni+1 over Ni. Since ∥Ni+1∥ < ξ and

Mi+1 is model-homogeneous, we may embed the amalgam into Mi+1. Call the image of the

amalgam M∗
i+1. After the construction, take one more direct limit to obtain (M∗

δ , fi,δ)i<δ

(but this time we do not know if M∗
δ ≤ Mδ). By item (4) above, we have that M∗

δ is a

(ξ, δ)-limit, hence saturated.

We will work in a local monster model, namely we find a saturated M̃ ∈ Kξ such that

a. M̃ contains Mδ and M
∗
δ ;
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b. For i < δ, fi,δ can be extended to f ∗
i,δ ∈ Aut(M̃);

c. For i < δ, f ∗
i,δ[Nδ] ≤M∗

δ .

(c) is possible because M∗
δ is universal over fi,δ[M

∗
i ]. Finally, we define N

∗ ≤M∗
δ of size µ′

containing
⋃

i<δ f
∗
i,δ[Nδ]. By model-homogeneity of M∗

δ , we build M
∗∗ ∈ Kξ saturated such

that N∗ ≤M∗∗ <u M
∗
δ .

By Proposition 5.4.2, extend p to q ∈ gS(M̃) nonforking over N0 (here we need

N0 ∈ Kµ or else we have to assume more stability). Since M∗
δ >u M∗∗, we can find

bδ ∈M∗
δ such that bδ ⊨ q ↾M∗∗. Since M∗

δ is a direct limit of the M∗
i ’s, there is i < δ such

that fi,δ(b) = bδ. As b ∈ M∗
i ⊆ Mi ≤ Mδ, it suffices to show that b ⊨ q ↾ (f ∗

i,δ)
−1[M∗∗],

because N ≤ Nδ ≤ (f ∗
i,δ)

−1[N∗] ≤ (f ∗
i,δ)

−1[M∗∗]. In the following diagram, dotted arrows

refer to ≤ or <u between models, while the dashed equal sign is our goal.

q ∈ gS(M̃) p ∈ gS(Mδ)

q ↾M∗
δ bδ ∈M∗

δ b ∈M∗
i

q ↾M∗∗ gtp(bδ/M
∗∗) gtp(b/(f ∗

i,δ)
−1[M∗∗]) q ↾ (f ∗

i,δ)
−1[M∗∗]

q ↾ N0 gtp(bδ/N0) gtp(b/N0) p ↾ N

f∗
i,δ

u

f∗
i,δ

Since q ↾ M∗∗ = gtp(bδ/M
∗∗) does not µ-fork over N0 and f ∗

i,δ fixes Ni ≥ N0, by

invariance gtp(b/(f ∗
i,δ)

−1[M∗∗]) does not µ-fork N0. By monotonicity, q and hence q ↾

(f ∗
i,δ)

−1[M∗∗] does not µ-fork over N0. By invariance again, gtp(b/N0) = gtp(bδ/N0) = q ↾

N0. By Corollary 5.4.6, q ↾ (f ∗
i,δ)

−1[M∗∗] = gtp(b/(f ∗
i,δ)

−1[M∗∗]) as desired.

Remark 5.6.8. 1. In Proposition 5.6.6, the assumption of stability in [ξ, λ) is to guar-

antee local symmetry from no ξ-order property of length λ. We can relax the stability

assumption if we have the stronger assumption of no ξ-order property. Namely, if K

does not have ξ-order property of length ζ where ζ > ξ, then we can simply assume

stability in [ξ, ζ).
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2. We compare our approach with Vasey’s. To satisfy hypothesis (4) in Fact 5.6.5, he

used Fact 5.6.1 which requires (ξ, χ)-symmetry and continuity of nonsplitting [Vas18c,

Theorem 11.11(1)]. Meanwhile he obtained the equivalence of (ξ, χ)-symmetry ⇔

the increasing union of saturated models of length ≥ χ in Kξ+ is saturated (see Fact

5.6.15). By Fact 5.6.3, the latter is true for large enough ξ. In short, he raised the

cardinal threshold while we assumed more stability. More curiously, both our stability

assumption and his cardinal threshold are linked to no order property.

A comparison table can be found below. For ξ ≥ µ, we abbreviate the increasing

union of saturated models of length ≥ χ in Kξ is saturated by “Union(ξ)”.

Our approach Vasey’s approach

For ξ ≥ µ+ and For large enough ξ,

Enough stability
(
[µ, h(ξ)) suffices

)
⇒ Union(ξ+) (Fact 5.6.3)

⇒(ξ, χ)-symmetry (Corollary 5.5.13(1)) ⇒ (ξ, χ)-symmetry (Fact 5.6.15)

⇒Saturation of (ξ,≥ χ)-limits ⇒Saturation of (ξ,≥ χ)-limits

(Corollary 5.6.2(2)) (Fact 5.6.1)

⇒Union(ξ) (Proposition 5.6.6) ⇒Union(ξ) (Fact 5.6.5)

Observation 5.6.9. The [ξ, λ) stability assumption in Proposition 5.6.6 can be replaced

by (ξ, χ)-symmetry, because we can directly apply Fact 5.6.1 instead of using extra stability

to invoke Corollary 5.6.2. This applies to other results in the paper.

We now recover two known results with different proofs. The original proof for [Vas16a,

Proposition 10.10] is extremely abstract so we supplement a direct argument. (Here we

already assumed a monster model which implies no maximal models everywhere. Alter-

natively, one can adapt the proof of [Bon14a, Theorem 7.1] without using symmetry to

transfer no maximal models upward.) On the other hand, since we have generalized the

arguments in [VV17], we can specialize them to χ = ℵ0 and recover [VV17, Corollary 6.10]

(see below). In their approach, [Van16b, Theorem 22] was cited for the successor case of λ

and the limit case was proven by inductive hypothesis. We provide a uniform argument to
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both cases for closure under chains, and fill in the computation of the Löwenheim-Skolem

number for the successor case, which they glossed over.

The following facts do not require continuity of nonsplitting.

Fact 5.6.10. 1. [BKV06, Theorem 1] Let ξ ≥ µ. If K is stable in ξ, then it is also

stable in ξ+n for all n < ω.

2. [Vas16b, Theorem 5.5] Let ξ0 ≥ µ while δ be regular, ⟨ξi : i < δ⟩ be strictly increasing

stability cardinals. If K has δ-local character of ξ0-nonsplitting, then supi<δ ξi is also

a stability cardinal. In particular, if K is ξ-superstable for some ξ ≥ µ, then it is

stable in all λ ≥ ξ.

Corollary 5.6.11. 1. [Vas16a, Proposition 10.10] Let ξ ≥ µ. If K is ξ-superstable, then

it is superstable in all ζ ≥ ξ.

2. [VV17, Corollary 6.10] Let K be µ-superstable and ξ ≥ µ+, then Kξ-sat the class of

ξ-saturated models in K forms an AEC with Löwenheim-Skolem number ξ.

Proof. 1. Combine Fact 5.6.10(2) and Lemma 5.6.7.

2. By (1) and Proposition 5.3.16, we have continuity of ξ-nonsplitting and stability

in [ξ,∞). By Proposition 5.6.6, Kξ-sat is closed under chains. We show that the

Löwenheim-Skolem number is ξ: let A be a subset of a ξ-saturated model M . We

need to find a ξ-saturated N ≤M of size ξ + |A| containing A.

Consider the case where ξ is regular : then we construct ⟨Ni : i ≤ ξ⟩ increasing and

continuous such that for 1 ≤ i < ξ,

� N0 contains A;

� Ni ∈ Kξ+|A| is ξ-saturated;

� If N∗ ≤ Ni is of size less than ξ, then Ni+1 realizes all types over N∗.

The construction is possible by stability in ξ+ |A| (implied by µ-superstability): M is

ξ-saturated so it has witnesses to all types over N∗, but those types can be extended

to be over Ni ∈ Kξ+|A|. By stability we can restrict to (ξ + |A|)-many witnesses that
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work for all such N∗. Now Nξ ≤ M is ξ-saturated by a cofinality argument. Also, it

has size ξ + |A|.

For the singular case, write ξ =
⋃

i<cf(ξ) ξi where the ξi’s form an increasing chain of

regular cardinals with µ+ ≤ ξi < ξ. By the inductive hypothesis that LS(Kξi-sat) = ξi,

we can build ⟨Ni : i ≤ cf(ξ)⟩ increasing and continuous such that N0 contains A,

Ni ∈ Kξi+|A| is ξi-saturated. Since each Kξi-sat is closed under chains, Nξ is ξ-

saturated and has size ξ + |A|.

It is natural to ask if there are converses to our results. In particular what are the

sufficient conditions to K having the χ-local character in Kξ for some ξ ≥ µ. [Vas18c,

Lemma 4.12] gave one useful criterion which we adapt below. The original statement did

not cover the case δ = ξ below and such omission affects the rest of his results. In particular

[Vas18c, Theorem 4.11] should only apply to singular µ there. Our result covers regular

cardinals because we assume stability and continuity of nonsplitting. Only in [Vas18c,

Section 11] did he start to assume continuity of nonsplitting and in [Vas18c, Theorem 12.1]

did he take care of the regular case by under extra assumptions.

We state the full assumptions in the following proposition.

Proposition 5.6.12. Let µ ≥ LS(K). Suppose K has a monster model, is µ-tame and

stable in some ξ ≥ µ+. Let δ < ξ+ be regular, ⟨Mi : i ≤ δ⟩ be u-increasing and continuous

in Kξ and p ∈ gS(Mδ). There is i < δ such that p does not ξ-split over Mi if one of the

following holds:

1. δ = ξ (so ξ is regular), K has continuity of ξ-nonsplitting;

2. δ < ξ and Mδ is (µ+ δ)+-saturated.

Proof. The first case is by Proposition 5.3.9 (with ξ in place of µ). We consider the second

case δ < ξ. Suppose the conclusion is false, then for i < δ, there exist

1. N1
i , N

2
i ∈ Kξ with Mi ≤ N1

i , N
2
i ≤Mδ;

2. fi : N
1
i
∼=Mi

N2
i with fi(p ↾ N1

i ) ̸= p ↾ N2
i ;
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3. M1
i ≤ N1

i and M2
i ≤ N2

i such that fi[M
1
i ]

∼= M2
i and fi(p ↾M1

i ) ̸= p ↾M2
i .

Let N ≤ Mδ of size µ + δ containing M1
i and M2

i for all i < δ. Since Mδ is (µ + δ)+-

saturated, there is b ∈ |Mδ| realizing p ↾ N . Then there is i < δ such that b ∈ |Mi|. Since

fi fixes Mi, it also fixes b. Thus

fi(p ↾M
1
i ) = gtp(fi(b)/M

2
i ) = gtp(b/M2

i ) = p ↾M2
i ,

contradicting item (3) above.

Corollary 5.6.13. Suppose ξ ≥ µ+ and δ < ξ+ be regular. If K is stable in ξ, has con-

tinuity of ξ-nonsplitting and has unique (ξ,≥ δ)-limit models, then it has δ-local character

in Kξ. If in addition Kξ has unique limit models, then it is ξ-superstable.

Proof. Let δ′ ≥ δ be regular and ⟨Mi : i ≤ δ′⟩ ⊆ Kξ be u-increasing and continuous,

p ∈ gS(Mδ′). By the proof of Corollary 5.6.2(2), Mδ′ is saturated. By Proposition 5.6.12,

there is i < δ′ such that p does not ξ-split over Mi.

Remark 5.6.14. As before, our result is local. [GV17, Theorem 3.18] proved a similar

result which is eventual: they managed to guarantee superstability after ℶω(χ0) where K

has no order property of length χ0.

Vasey [Vas18c, Fact 11.6] also made another observation that connects saturated mod-

els and symmetry. In the original statement, he omitted writing continuity of nonsplitting

in the hypothesis and did not give a proof sketch, so we give more details here (Assumption

5.2.1 applies). As in the discussion before Definition 5.5.1, we consider the tail of regular

cardinals δ′ ≥ δ in place of a fixed δ′ = δ to match our notations.

Fact 5.6.15. Let δ < µ+ be regular. If for any δ′ ∈ [δ, µ+) regular, any ⟨Mi : i < δ′⟩

increasing chain of saturated models in Kµ+ has a saturated union, then K has (µ, δ)-

symmetry.

Proof. In [Van16a, Theorem 2], it was shown that if the above fact holds for any δ < µ+,

then any reduced tower is continuous at all δ < µ+. We can localize this argument to show

that if the above fact holds for a specific δ < µ+, then any reduced tower is continuous at

≥ δ. By [BV15a, Proposition 19], K has (µ, δ)-symmetry.
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Corollary 5.6.16. Let δ < µ+ be regular. If for any δ′ ∈ [δ, µ+) regular, any ⟨Mi : i < δ′⟩

increasing chain of saturated models in Kµ+ has a saturated union, then K has uniqueness

of (µ,≥ δ)-limit models.

Proof. Combine Fact 5.6.15 and Fact 5.6.1.

Question 5.6.17. Is there an analog of Fact 5.6.15 and Corollary 5.6.16 where “µ+” is

replaced by a general ξ ≥ µ+?

We look at superlimits and solvability before ending this section. The following local-

izes [SV18a, Definition 2.1], which is more natural than [Vas18c, Definition 6.2].

Definition 5.6.18. Let ξ ≥ µ. M ∈ Kξ is a χ-superlimit if M is universal in Kξ, not

maximal, and for any regular δ with χ ≤ δ < ξ+, ⟨Mi : i < δ⟩ increasing such thatMi
∼= M

for all i < δ, then
⋃

i<δMi
∼= M . M is called a superlimit if it is a ℵ0-superlimit.

Proposition 5.6.19. Let K have continuity of ξ-nonsplitting for some ξ ≥ µ+. There is

λ < h(ξ) such that if K is stable in [ξ, λ), then it has a saturated χ-superlimit in Kξ.

Proof. By Corollary 5.6.2(2) and Lemma 5.6.7, any (ξ,≥ χ)-limit M is saturated (hence

universal in Kξ). Let δ be regular, χ ≤ δ < ξ+, ⟨Mi : i < δ⟩ increasing such that Mi
∼= M

for all i < δ. Then all Mi are saturated in Kξ. By Proposition 5.6.6,
⋃

i<δMi is also

saturated, hence isomorphic to M .

Remark 5.6.20. The specific χ-superlimit built above is saturated. Under the same

assumptions, it is true for all χ-superlimits (Lemma 5.6.23).

The following connects superlimit models with solvability (see [GV17, Definition 2.17]

for a definition).

Fact 5.6.21. [GV17, Lemma 2.19] Let λ ≥ ξ. The following are equivalent:

1. K is (λ, ξ)-solvable.

2. There exists an AEC K′ in L(K′) ⊇ L(K) such that LS(K′) ≤ ξ, K′ has arbitarily

large models and for any M ∈ K ′
λ, M ↾ L(K) is a superlimit in K.
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In [GV17, Theorem 4.9], they showed that (λ, ξ)-solvability is eventually (in λ) equiv-

alent to other criteria of superstability (modulo a jump of ℶω+2). Also, λ is required to be

greater than ξ. We propose that a better formulation of superstability which has λ = ξ.

The case λ > ξ should be a stronger condition because it allows downward transfer (see

[Vas17d, Corollary 5.1] for more development on this). Our result proceeds with a series of

lemmas.

The next lemma generalizes [GV17, Fact 2.8(5)] (which is based on [Dru13]).

Lemma 5.6.22. Let ξ ≥ µ+ and M be a saturated model in Kξ. M is a χ-superlimit iff

for any regular δ with χ ≤ δ < ξ+, any increasing chain of saturated models in Kξ of length

δ has a saturated union.

Proof. Immediate from the definition of a χ-superlimit. Notice that we need δ < ξ+ to

make sure that the chain of saturated models have a union in Kξ.

The following lemma generalizes [Dru13, Theorem 2.3.11].

Lemma 5.6.23. Let ξ > LS(K). If M is a χ-superlimit in Kξ, then M is saturated.

Proof. We show that M is a (ξ, δ)-limit for regular δ ∈ [χ, ξ+). If done, the argument in

Corollary 5.6.2(2) shows that it is saturated. Construct ⟨Mi, Ni : i < δ⟩ in Kξ such that

M0 := M ∼= Mi <u Ni < Mi+1 for i < δ. Suppose Ni is constructed, by universality Ni

embeds inside M so we can build Mi+1, an isomorphic copy of M over Ni. To construct

Mi for limit i, we embed the union of previous Ni inside M and repeat the above process.

By the property of a χ-superlimit, M ∼=
⋃

i<δMi =
⋃

i<δNi which is a (ξ, δ)-limit.

Proposition 5.6.24. If µ > LS(K) and K is (< µ)-tame, then it is µ-superstable iff it is

(µ+, µ+)-solvable.

Proof. Suppose K is µ-superstable. By Lemma 5.6.23 with ξ = µ+, superlimits in Kξ

are saturated. By Corollary 5.6.11(2), ξ-saturated models are closed under chains. By

Lemma 5.6.22, saturated models in Kξ are superlimits. Therefore, saturated models and

superlimits coincide in Kξ. By Fact 5.6.21, we can define L(K′) := L(K) and K′ to be the

class of ξ-saturated models. By Corollary 5.6.11(2) again, it is an AEC with LS(K′) = ξ.
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Suppose K is (µ+, µ+)-solvable. By Lemma 5.6.23 there is a saturated superlimit in

Kµ+ , which witnesses the union of saturated models in Kµ+ is µ+-saturated. By Corollary

5.6.16, it has uniqueness of limit models in Kµ. By (< µ)-tameness and the proof of

Corollary 5.6.13 (replace “ξ” there by µ and “µ+” there by LS(K)+), it is µ-superstable.

Remark 5.6.25. One might want to generalize the argument to strictly stable AECs. In

that case the statement of Fact 5.6.21(2) should naturally be for a χ-AEC instead of an

AEC, but we do not know how to prove that saturated models are closed under χ-directed

systems (a similar obstacle is in [BGL+16, Remark 2.3(4)]). On top of that, the equivalence

in Fact 5.6.21 is not clear in that case because we do not have a first-order presentation

theorem on χ-AECs to extract an Ehrenfeucht-Mostowski blueprint (but we do have a

(< µ)-ary presentation theorem, see [BGL+16, Theorem 3.2] or Theorem 4.5.6).

5.7 STABILITY IN A TAIL AND U-RANK

In this section we look at two characterizations of superstability. For convenience we

follow [Vas18c, Section 4] to define some cardinals:

Definition 5.7.1. 1. λ(K) stands for the first stability cardinal above LS(K).

2. χ(K) stands for the least regular cardinal δ such that K has δ-local character of

ξ-nonsplitting for some stability cardinal ξ ≥ LS(K).

3. λ′(K) stands for the minimum stability cardinal ξ such that for any stability cardinal

ξ′ ≥ ξ, K has χ(K)-local character of ξ′-nonsplitting.

Observation 5.7.2. 1. By Assumption 5.2.1, λ(K) ≤ µ.

2. By Definition 5.3.10 (see also the remark after it), χ(K) ≤ χ.

3. By Lemma 5.6.7, we can equivalently define λ′(K) as the minimum stability cardinal

ξ such that K has χ(K)-local character of ξ-nonsplitting.

4. K is eventually superstable (ξ-superstable for large enough ξ) iff χ(K) = ℵ0.
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Currently we do not have a nice bound of λ′(K) so the cardinal threshold might be

very high if we invoke λ′(K) or χ(K). Vasey built upon [She99] and spent several sections

to derive:

Fact 5.7.3. [Vas18c, Theorem 11.3(2)] Suppose K has continuity of ξ-nonsplitting for all

stability cardinal ξ, then λ′(K) < h(λ(K)).

We can now state Vasey’s characterization that superstability is equivalent to stability

in a tail of cardinals. Since continuity of µ-nonsplitting is not assumed there, item (1) only

holds for singular ξ. Also, the original formulation wrote λ′(K) instead of (λ′(K))+ but

the proof did not go through.

Fact 5.7.4. Let K be LS(K)-tame with a monster model.

1. [Vas18c, Corollary 4.14] Let χ1 as in Fact 5.6.3, ξ ≥ (λ′(K))+ + χ1 be singular, K be

stable in unboundedly many cardinal < ξ. K is stable in ξ iff cf(ξ) ≥ χ(K).

2. [Vas18c, Corollary 4.24] χ(K) = ℵ0 iff K is stable in a tail of cardinals.

We prove a simpler and local analog to Fact 5.7.4. Rather than looking at the whole

tail of cardinals (more accurately the class of singular cardinals with all possible cofinalities)

after a potentially high threshold, we directly look for the next ω + 1 many cardinals of µ

and verify that K has enough stability, continuity of nonsplitting and symmetry in those

cardinals. Symmetry will be guaranteed by more stability.

Proposition 5.7.5. There is λ < h(µ+ω) such that if K is stable in [µ, λ) and has conti-

nuity of µ+ω-nonsplitting, then it is µ+ω-superstable.

Proof. Obtain λ from Corollary 5.6.2(2) and supposeK is stable in [µ, λ) and has continuity

of µ+ω. The conclusion of Corollary 5.6.2(2) (which uses stability in µ+ω and continuity of

µ+ω-nonsplitting) gives a saturated modelM of size µ+ω. We show that is a (µ+ω, ω)-limit:

by stability in [µ, µ+ω), build ⟨Mn : n ≤ ω⟩ ⊆ K<µ+ω u-increasing and continuous such

that for n < ω, Mn ∈ Kµ+n and Mω = M . On the other hand, by stability in µ+ω, build

⟨Ni : i ≤ ω⟩ ⊆ Kµ+ω u-increasing and continuous such that M0 ≤ N0. By a back-and-forth
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argument, M ∼=M0 Nω and the latter is a (µ+ω, ω)-limit. By uniqueness of limit models of

the same cofinality, any (µ+ω, ω)-limit is saturated.

By Proposition 5.6.12(2) where ξ = µ+ω, δ = ℵ0, K has ℵ0-local character of µ+ω-

nonsplitting. Together with stability in µ+ω, we know that K is superstable in µ+ω.

We state a more general form of the above proposition:

Corollary 5.7.6. Let δ be a regular cardinal. There is λ < h(µ+δ) such that if K is

stable in [µ, λ) and has continuity of µ+δ-nonsplitting, then it has δ-local character of µ+δ-

nonsplitting. Stability in [µ, λ) can be replaced by stability in [µ+δ, λ) and unboundedly

many cardinals below µ+δ.

Proof. Replace “ω” by δ in Proposition 5.7.5. Notice that unboundedly stability many

cardinals below µ+δ are sufficient to build ⟨Mi : i < δ⟩ ⊆ K<µ+δ u-increasing.

Remark 5.7.7. 1. A missing case of Proposition 5.7.5 is perhaps the regular cardinal

ℵ0. In [BKV06, Theorem 2], it was shown that if K has ω-locality, ℵ0-tameness and

stability in ℵ0, then K is stable everywhere. The original proof used a tree argument

of height ω. We provide an alternative proof using our general tools: by ω-locality

and Proposition 5.3.16(2), K has continuity of ℵ0-nonsplitting. By Proposition 5.3.9,

K has ℵ0-local character of ℵ0-nonsplitting. By Corollary 5.6.11(1), it is (super)stable

everywhere.

2. Our proof strategy of Proposition 5.7.5 is similar to that of [Vas18c, Theorem 4.11]

but we use different tools. Both assume stability in µ+ω and unboundedly many

cardinals in µ+ω. To obtain a saturated model, Vasey raised the threshold of µ so

that the union of µ+n-saturated models is µ+n-saturated (see Fact 5.6.3). Then he

used [Vas18c, Theorem 4.13] that models in Kµ+ω can be closed to a µ+n-saturated

model. These two give a saturated model in Kµ+ω . In contrast, we bypass such gap

by using the uniqueness of long enough limit models in Kµ+ω , this immediately gives

us a saturated model in Kµ+ω . After that, Vasey and our approaches converge: the

saturated model is a (µ+ω, ω)-limit and Proposition 5.6.12 gives ℵ0-local character of

µ+ω-nonsplitting.
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Question 5.7.8. 1. Perhaps under extra assumptions, is it possible to obtain a tighter

bound of λ′(K) in terms of λ(K) than in Fact 5.7.3?

2. Let ξ1, ξ2 be stability cardinals. Is there any relationship between continuity of ξ1-

nonsplitting and continuity of ξ2-nonsplitting? Similarly, can one say anything about

continuity of ξ1-nonsplitting if for unboundedly many stability cardinal ξ < ξ1, K

has continuity of ξ-nonsplitting? A positive answer might help improve Proposition

5.7.5.

In [BG17, Section 7], Boney and Grossberg developed a U -rank for an independence

relation over types of arbitrary length. Until Fact 5.7.16, we specify that we only need an

independence relation over 1-types for the proofs to go through.

Definition 5.7.9. [BG17, Definition 7.2] LetK have a monster model and an independence

relation over types of length one. U is a class function that maps each Galois type (of length

one) in the monster model to an ordinal or ∞, such that for any M ∈ K, p ∈ gS(M),

1. U(p) ≥ 0;

2. For limit ordinal α, U(p) ≥ α iff U(p) ≥ β for all β < α;

3. For an ordinal β, U(p) ≥ β + 1 iff there is M ′ ≥ M , ∥M ′∥ = ∥M∥ and p′ ∈ gS(M ′)

such that p′ is a forking (in the sense of the given independence relation) extension

of p and U(p′) ≥ β;

4. For an ordinal α, U(p) = α iff U(p) ≥ α but U(p) ̸≥ α + 1;

5. U(p) = ∞ iff U(p) ≥ α for all ordinals α.

Through a series of lemmas, they managed to obtain the following fact (Assumption

5.2.1 is not needed).

Fact 5.7.10. [BG17, Theorem 7.9] Let K have a monster model and an independence

relation over types of length one. Suppose the independence relation satisfies invariance

and monotonicity. Let M ∈ K and p ∈ gS(M). The following are equivalent:
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1. U(p) = ∞;

2. There is ⟨pn : n < ω⟩ such that p0 = p and for n < ω, the domain of pn has size ∥M∥,

and pn+1 is a forking extension of pn.

The original proof proceeds with a lemma followed by the theorem statement. Since

the proof of the lemma omitted some details, and that the lemma and the theorem made

reference to each other, we straighten the proof as follows:

Lemma 5.7.11. (2)⇒(1) holds in Fact 5.7.10.

Proof. By induction on each ordinal α, we show that for each α, for each n < ω, U(pn) ≥ α.

The base case α = 0 is by the definition of U . The limit case follows from the inductive

hypothesis. Suppose we have proven the case α, then for each n < ω, inductive hypothesis

gives U(pn+1) ≥ α. By the definition of U , U(pn) ≥ α + 1.

Lemma 5.7.12. Let K have a monster model and an independence relation over types

of length one. Suppose the independence relation satisfies invariance and monotonicity.

Let λ ≥ LS(K). There is an ordinal αλ < (2λ)+ such that for M ∈ Kλ, p ∈ gS(M), if

U(p) ≥ αλ then U(p) = ∞.

Proof. By invariance, there are at most 2λ many U -ranks of types over models of size λ. It

suffices to show that there is no gap in the U -rank: if β is an ordinal, N ∈ Kλ, q ∈ gS(N)

with β < U(q) < ∞, then there is a forking extension q′ of q (with domain of size λ) such

that U(q′) = β. Otherwise pick a counterexample q ∈ gS(N). Since U(q) ≥ β+1, there is a

forking extension q1 of q such that U(q1) ≥ β. As U(q1) cannot be β, U(q1) ≥ β+1. Using

monotonicity of forking, we can inductively build ⟨qn : n < ω⟩ with q0 := q and for n < ω,

qn+1 is a forking extension of qn. By Lemma 5.7.11, U(q0) = U(q) = ∞, contradicting the

assumption on U(q).

Lemma 5.7.13. Let K have a monster model and an independence relation over types of

length one. Suppose the independence relation satisfies invariance and monotonicity. Then

(1)⇒(2) in Fact 5.7.10 holds.
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Proof. Let λ = ∥M∥, αλ as in Lemma 5.7.12 and p0 := p. Define ⟨pn : n < ω⟩ inductively

such that U(pn) = ∞. The base case is by assumption on p. Suppose pn is constructed

with U(pn) = ∞, then in particular U(pn) ≥ αλ + 1. By definition of U , there is a forking

extension pn+1 of pn (with domain of size λ) such that U(pn+1) ≥ αλ. By Lemma 5.7.12

again, U(pn+1) = ∞.

Proof of Fact 5.7.10. Combine Lemma 5.7.11 and Lemma 5.7.13.

We have now arrived at an alternative characterization of superstability. At the end

of [GV17, Section 6], they suggested the use of coheir and show that superstability implies

bounded U -rank. Since we cannot verify the claim, we use instead µ-nonforking as the

independence relation to characterize superstability as bounded U -rank for limit models in

Kµ.

Corollary 5.7.14. Under Assumption 5.2.1, restrict µ-nonforking to limit models in Kµ

ordered by ≤u. Then K is µ-superstable iff U(p) < ∞ for all p ∈ gS(M) and limit model

M ∈ Kµ.

Proof. By Fact 5.7.10, we need to show µ-superstability is equivalent to the negation of

criterion (2) there. By continuity of µ-nonforking (Proposition 5.4.4) and the proof of

Lemma 5.3.7, it suffices to prove that µ-superstability is equivalent to µ-nonforking having

local character ℵ0 (under AP it is always possible to extend an omega-chain of types).

The forward direction is given by Proposition 5.4.9 and the backward direction is given by

Proposition 5.4.2, Proposition 5.4.5 and Proposition 5.4.19.

We look at one more result of U -rank, which shows the equivalence of being a non-

forking extension and having the same U -rank (Fact 5.7.16). The extra assumption of

LS(K)-witness property for singletons was pointed out by [GMA21, Lemma 8.8] to allow

the proof of monotonicity of U -rank [BG17, Lemma 7.3] to go through. We will adapt their

definition of LS(K)-witness property for singletons because our nonforking is originally de-

fined for model-domains while their independence relations assume set-domains (another

approach is perhaps to work in the closure (Definition 5.7.17) of nonforking, but we will

not pursue it here).
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Definition 5.7.15. 1. Let λ be a cardinal. An independence relation |⌣ has the λ-

witness property if the following holds: let a be a singleton and M,N ∈ K. If for

any M ′ with M ≤M ′ ≤ N , ∥M ′∥ ≤ ∥M∥+ λ, we have a |⌣
M

M ′, then a |⌣
M

N .

2. An independence relation satisfies left transitivity if the following holds: let A be a

set, M0 ≤M1 ≤ N with A |⌣
M1

N and M1 |⌣
M0

N , then A |⌣
M0

N .

Fact 5.7.16. [BG17, Theorem 7.7] Let K have a monster model and an independence

relation over types of arbitrary length. Suppose the independence relation satisfies: in-

variance, monotonicity, left transitivity, existence, extension, uniqueness, symmetry and

LS(K)-witness property for singletons. For any p ∈ gS(M0), any q ∈ gS(M1) extending p

such that both U(p), U(q) <∞, then

U(p) = U(q) ⇔ q is a nonforking extension of p

We notice a gap in [BG17, Lemma 7.6] which Fact 5.7.16 depends on (readers can skip

to Fact 5.7.20 if they simply use Fact 5.7.16 as a blackbox; we will also give an alternative

proof that does not depend on the lemma). As usual, their definition of independence

relations assume that the domain contains the base: if we write A |⌣
M

N , we assume M ≤

N . In the proof of [BG17, Lemma 7.6], they applied monotonicity to obtain N2c |⌣
N̄0

N1.

However, N̄0 ̸≤ N1 because c ∈ N̄0 − N1 might happen. We will rewrite the proof in

Proposition 5.7.19 using the idea of a closure of an independence relation, and drawing

results from [BGKV16].

Definition 5.7.17. [BGKV16, Definition 3.4] |̄⌣ is a closure of an independence relation

|⌣ if it satisfies the following properties:

1. |̄⌣ is defined on triples of the form (A,M,B) where M ∈ K, A and B are sets of

elements. We allow M ̸⊆ B.

2. Invariance: if f ∈ Aut(C) and A |̄⌣
M

B, then f [A] |̄⌣
f [M ]

f [B];

3. Monotonicity: if A |̄⌣
M

B, A′ ⊆ A, B′ ⊆ B, then A′ |̄⌣
M

B′;
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4. Base monotonicity: if A |̄⌣
M

B and M ≤M ′ ⊆M ∪B, then A |̄⌣
M ′
B.

The minimal closure of |⌣ (which is the smallest closure of |⌣) is defined by: A |̄⌣
M

C iff there

is N ≥M , N ⊇ C such that A |⌣
M

N .

We quote the following lemma without proof.

Lemma 5.7.18. [BGKV16, Lemmas 5.1, 5.3, 5.4] Let |⌣ be an independence relation for

types of arbitrary length, |̄⌣ be the minimal closure of |⌣.

1. |⌣ has symmetry iff |̄⌣ has symmetry.

2. Suppose |⌣ has extension. Then |⌣ has left transitivity iff |̄⌣ does.

3. |⌣ has extension iff |̄⌣ has extension.

Proposition 5.7.19. Under the same hypothesis as Fact 5.7.10, let N0 ≤ N1 ≤ N̄1;

N0 ≤ N̄0 ≤ N̄1; N0 ≤ N2; c ∈ |N̄0|. If

N1 |⌣
N0

N̄0 and N2 |⌣
N̄0

N̄1

then there is some N3 extending both N1 and N2 such that

c |⌣
N2

N3.

Proof. We write |̄⌣ to mean the minmal closure of the given independence relation |⌣. By

symmetry twice on N2 |⌣
N̄0

N̄1, there is N̄2 containing c and extending N̄0, N2 such that

N̄2 |⌣
N̄0

N̄1. By definition of the minimal closure,

N̄2 |̄⌣
N̄0

N1.

On the other hand, by symmetry (and monotonicity) on N1 |⌣
N0

N̄0, N̄0 |⌣
N0

N1. Then

N̄0 |̄⌣
N0

N1. Applying Lemma 5.7.18(2) to the last two closure independence, we have

N2c |̄⌣
N0

N1. By Lemma 5.7.18(1), there is N ′
3 ≥ N2 and containing c such that N1 |̄⌣

N0

N ′
3.

By definition of the minimal closure, N1 |⌣
N0

N ′
3. (Here we return to the original proof.) By

base monotonicity, N1 |⌣
N2

N ′
3. By symmetry, there is N3 extending N1 and N2 such that

N ′
3 |⌣

N2

N3. By monotonicity, c |⌣
N2

N3 as desired.
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Back to Fact 5.7.16, we would like to know if there are any examples of independence

relations that satisfy its hypotheses. The approach in [BG17] is to consider coheir [BG17,

Definition 3.2], assuming tameness, shortness, no weak order property and that coheir

satisfies extension. More developments of coheir can be found in [Vas16a] but the framework

there is too abstract to handle.

Another natural candidate is µ-nonforking. One obstacle is that the hypotheses in

Fact 5.7.16 require the independence relation to be over types of arbitrary length, while

we have defined it for singletons only. Another obstacles is that if we extend our frame

to longer types, we might not necessarily guarantee type-fullness (existence holds for all

nonalgebraic types), so we cannot invoke Fact 5.7.16. To resolve these, we use the following

fact to extend our frame to types of arbitrary length, while acknowledging that the new

frame might not be type-full. Then we give an alternative proof to Fact 5.7.16 that does

not use existence.

We state the full assumptions of the following facts.

Fact 5.7.20. Let K have a monster model, λ ≥ LS(K).

1. [BV17b, Theorem 1.1] Suppose K is λ-tame and there is a good (≥ λ)-frame perhaps

except the symmetry property. Then the frame can be extended to a (perhaps non-

type-full) good frame for types of arbitrary length and satisfying symmetry.

2. [BGKV16, Lemma 5.9] Let |⌣ be an independence relation for types of arbitrary

length. Suppose |⌣ satisfies symmetry and right transitivity, then it satisfies left

transitivity.

Remark 5.7.21. 1. Fact 5.7.20(1) is achieved by independent sequences. If we simply

build nonforking from nonsplitting for longer types, then some of the results in this

paper do not generalize (for example stability of µ-types in Kµ immediately fails).

One would need extra assumptions (say shortness) and to build the frame in higher

cardinals. See also [Vas17e, Appendix A].

2. Another known approach to get a type-full frame for longer types is via Shelah’s NF.

Vasey [Vas16a, Sections 11, 12] showed that with shortness (which we do not assume
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in this paper), one can extend a nice enough frame by NF, which is type-full.

Under µ-superstability, we can derive an independence relation that satisfies all the

hypotheses of Fact 5.7.16 except for existence for longer types. We will use Assumption

5.2.1.

Proposition 5.7.22. Let K be µ-superstable. Let K′ be the AEC of the limit models in

K≥µ ordered by ≤u. Then µ-nonforking restricted to K′ can be extended to a (perhaps

non-type-full) good frame for types of arbitrary length. Also it satisfies left transitivity and

µ-witness property for singletons.

Proof. By Corollary 5.4.13 and Remark 5.4.14(2), µ-nonforking restricted to K′ forms a

good (≥ µ)-frame perhaps except symmetry (it actually satisfies symmetry by Corollary

5.5.13(2) but we do not need this result here). K′ is also µ-tame because K is µ-tame under

Assumption 5.2.1 and we can extend a model in Kµ to a limit model which is in K ′. By

Fact 5.7.20(1), µ-nonforking can be extended to a good (≥ µ)-frame for types of arbitrary

length.

Since the extended frame enjoys symmetry and right transitivity, by Fact 5.7.20(2)

it satisfies left transitivity. We check the µ-witness property for singletons: let M ≤u N

both in K ′, p ∈ gS(N). Suppose for any M ′ with M ≤u M
′ ≤u N , ∥M ′∥ ≤ ∥M∥ + µ =

∥M∥, we have p ↾ M ′ does not µ-fork over M . We need to show that p does not µ-fork

over M . Without loss of generality assume ∥N∥ > ∥M∥. By existence of µ-nonsplitting

(Proposition 5.3.12), there is N ′ ∈ Kµ, N
′ ≤ N such that p does not µ-split over N ′. As

N is saturated (replace “µ” by ∥N∥ in Corollary 5.6.2(2)), we can obtain N ′′ ∈ K ′
∥M∥ such

that N ′ <u N
′′ <u N andM ≤u N

′′. By definition p does not µ-fork over N ′′. Since p ↾ N ′′

does not µ-fork over M by assumption, Corollary 5.4.8 guaratees that p does not µ-fork

over M .

For comparison purposes, we reproduce the original proof of Fact 5.7.16 that uses

existence for longer types. Then we give an alternative proof that bypasses it, so that we

can utilize the frame in Proposition 5.7.22.
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Original proof of Fact 5.7.16. The forward direction is by definition of U -rank. For the

backward direction, we show that for any ordinal α, U(p) ≥ α iff U(q) ≥ α. It suffices to

consider the successor case: if U(q) ≥ α+1, then it has a forking extension q′ ∈ gS(M2) of

rank ≥ α, with ∥M2∥ = ∥M1∥. By monotonicity of nonforking, q′ is also a forking extension

of p. However, ∥M∥ might not be the same as ∥M2∥ (this was pointed out by [GMA21]).

We claim that there must be some p′ ∈ gS(M ′) such that

� ∥M ′∥ = ∥M∥;

� p ≤ p′ ≤ q′; and

� p′ is a forking extension of p.

Otherwise, every such p′ satisfying the first two requirements must be a nonforking exten-

sion of p. By LS(K)-witness property, q′ is also a nonforking extension of p, contradiction.

Since U(q′) ≥ α, by inductive hypothesis U(p′) ≥ α, and hence U(p) ≥ α + 1.

If U(p) ≥ α+ 1, by definition there is p′ ∈ gS(M2) such that ∥M2∥ = ∥M∥ and p′ is a

forking extension of p of rank ≥ α. We claim that we can choose p′ and M2 so that there

is q′ ∈ gS(M3) with

� q′ extends p and p′;

� M3 extends M1 and M2;

� q′ is a nonforking extension of p′.

Assume that such p′ and M2 are chosen, we show that q′ is a forking extension of q:

otherwise by transitivity, q′ is a nonforking extension of p, and by monotonicity p′ is also

a nonforking extension of p, contradiction. Now q′ is a nonforking extension of p′, so by

inductive hypothesis U(q′) = U(p′) ≥ α. On the other hand, q′ is a forking extension of q,

so by definition U(q) ≥ U(q′) + 1 ≥ α + 1 as desired.

It remains to guarantee such p′ and M2 above exist. Let d realizes q and d′ realizes

p′. Since both p′ and q extends p, there is f ∈ AutM0(C) such that f(d′) = d. Since

gtp(d/M1) does not fork over M0, by symmetry there is M̄0 containing M0 and d such that
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gtp(M1/M̄0) does not fork over M0. Let M̄1 extends both M̄0 and M1 (possible because

we work in C). By existence gtp(f [M2]/M̄0) does not fork over M̄0. By extension there

is M∗
2 such that gtp(M∗

2/M̄1) does not fork over M̄0 and gtp(M∗
2/M̄0) = gtp(f [M2]/M̄0).

Hence there is g ∈ AutM̄0
(C) with g[f [M2]] = M∗

2 . We now invoke Proposition 5.7.19

where we substitute N0, N1, N̄0, N̄1, N2, c by M0,M1, M̄0, M̄1,M
∗
2 , d respectively. Then we

obtain some M3 extending M1 and M∗
2 such that gtp(d/M3) does not fork over M∗

2 . p
′ :=

gtp(d/M∗
2 ) satisfies the requirements.

Alternative proof of Fact 5.7.16. In the original proof, the only place that uses existence

for longer types is to guarantee gtp(f [M2]/M̄0) does not fork over M̄0. Pick any M4 ≤ C

that extends both f [M2] and M1. We will work in the minimal closure of the independence

relation and use Lemma 5.7.18. From the original proof, we have obtained gtp(M1/M̄0)

does not fork overM0. By monotonicity gtp(M1/M̄0) does not fork over M̄0. By symmetry

(for the minimal clsoure), gtp(M̄0/M1) does not fork over M̄0. By extension (see [BGKV16,

Definition 3.5]), there isM∗ and f ∈ AutM̄0M1
(C) such that gtp(M∗/M4) does not fork over

M̄0 and f [M̄0] = M∗. Since f fixes M̄0, M
∗ = M̄0. Therefore, gtp(M̄0/M4) does not fork

over M̄0. By monotonicity, gtp(M̄0/f [M2]) does not fork over M̄0. Symmetry gives the

desired result.

Corollary 5.7.23. Let K be µ-superstable and K′ be the AEC of the limit models in K≥µ

ordered by ≤u. Let |⌣ be the extended frame from Proposition 5.7.22 and define the U-rank

for |⌣. For any M <u M1 ∈ K ′, p ∈ gS(M), any q ∈ gS(M1) extending p such that both

U(p), U(q) <∞, then

U(p) = U(q) ⇔ q is a nonforking extension of p

Proof. Combine Fact 5.7.16 and Proposition 5.7.22. The alternative proof of Fact 5.7.16

(given before Proposition 5.7.22) shows that existence is not necessary.

5.8 THE MAIN THEOREMS AND APPLICATIONS

We summarize our results in two main theorems. The first one concerns stable AECs

while the second one concerns superstable ones. Some of the following items allow µ ≥
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LS(K) but we assume µ > LS(K) for a uniform statement. The proofs will come after the

main theorems.

Main Theorem 5.8.1. Let K be an AEC with a monster model, µ > LS(K), δ ≤ µ both

be regular. Suppose K is µ-tame, stable in µ and has continuity of µ-nonsplitting. The

following statements are equivalent under extra assumptions specified after the list:

1. K has δ-local character of µ-nonsplitting;

2. There is a good frame over the skeleton of (µ,≥ δ)-limit models ordered by ≤u, except

for symmetry and local character δ in place of ℵ0. In this case the frame is canonical;

3. K has uniqueness of (µ,≥ δ)-limit models;

4. For any increasing chain of µ+-saturated models, if the length of the chain has cofi-

nality ≥ δ, then the union is also µ+-saturated;

5. Kµ+ has a δ-superlimit.

(1) and (2) are equivalent. If K is (< µ)-tame, then (3) implies (1). There is λ1 < h(µ)

such that if K is stable in [µ, λ1), then (1) implies (3). Given any ζ ≥ µ+, stability in

[µ, λ1) can be replaced by stability in [µ, ζ) plus no µ-order property of length ζ.

There is λ2 < h(µ+) such that if K is stable in [µ+, λ2) and has continuity of µ+-

nonsplitting, then (1) implies (4). Given any ζ ≥ µ++, stability in [µ+, λ2) can be replaced

by stability in [µ+, ζ) plus no µ+-order property of length ζ. Always (4) and (5) are equiv-

alent and they imply (3).

The following diagram summarizes the implications in Main Theorem 5.8.1. Labels

on the arrows indicate the extra assumptions needed, in addition to a monster model, µ-

tameness, stability in µ and continuity of µ-nonsplitting. As in the theorem statement,

whenever we require stability in the form [ξ, λ), we can replace it by stability in [ξ, ζ) plus

no ξ-order property of length ζ.
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(3)

(2) (1) (4) (5)

(<µ)-tame

stable in [µ,λ1)

stable in [µ,λ1)

cont. of µ+-nonsplitting

Main Theorem 5.8.2. Let K be an AEC with a monster model, µ > LS(K) be regular.

Suppose K is µ-tame, stable in µ and has continuity of µ-nonsplitting. The following

statements are equivalent modulo (< µ)-tameness and a jump in cardinal (specified after

the list):

1. K has ℵ0-local character of µ-nonsplitting;

2. There is a good frame over the limit models in Kµ ordered by ≤u, except for symmetry.

In this case the frame is canonical;

3. Kµ has uniqueness of limit models;

4. For any increasing chain of µ+-saturated models, the union of the chain is also µ+-

saturated;

5. Kµ+ has a superlimit;

6. K is (µ+, µ+)-solvable;

7. K is stable in ≥ µ and has continuity of µ+ω-nonsplitting;

8. U-rank is bounded when µ-nonforking is restricted to the limit models in Kµ ordered

by ≤u.

(1), (2) and (8) are equivalent and each of them implies (3) and (4). If K is (< µ)-

tame, then (3) implies (1). Always (4) and (5) are equivalent and they imply (3). (1)

implies (6) and (7) while (6) implies (4). (7) implies (1)µ+ω : K has ℵ0-local character of

µ+ω-nonsplitting.

The jump in cardinal is due to the lack of a precise bound on λ′(K) in deducing (7)⇒(1) (see

Question 5.7.8(1)). The following diagram summarizes the implications in Main Theorem

5.8.2. “µ+ω” indicates the jump in cardinal.
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(3)

(2)

(8) (1) (4) (5)

(7) (6)

(<µ)-tame

µ+ω

Proof of Main Theorem 5.8.1. (1) and (2) are equivalent by Corollary 5.4.13 and Proposi-

tion 5.4.19. The canonicity of the frame is by Proposition 5.4.18. Suppose (3) holds. Then

the proof of Corollary 5.6.2(2) and Proposition 5.6.12(1) give (1).

Suppose (1) holds. Obtain λ1 = λ from Corollary 5.6.2 and take χ = δ. If K is stable

in [µ, λ1), then it has uniqueness of (µ,≥ δ)-limit models, so (3) holds. The alternative

hypotheses of stability and no-order-property work because we can replace λ in the proof

of Proposition 5.5.9 by ζ.

The direction of (1) to (4) is by Proposition 5.6.6. The alternative hypotheses work

because we can replace λ in the proof of Proposition 5.5.9 by ζ. (4) and (5) are equivalent

by Lemma 5.6.22 and Lemma 5.6.23. They imply (3) by Corollary 5.6.16.

For the proof of Main Theorem 5.8.2, we show the additional directions and refer the

readers to the proof of Main Theorem 5.8.1 for the original directions.

Proof of Main Theorem 5.8.2. Compared to Main Theorem 5.8.1, we do not need the extra

stability and continuity of nonsplitting assumptions because superstability already implies

them (Corollary 5.6.11(1) and Proposition 5.3.16(1)). (1) and (8) are equivalent by Corol-

lary 5.7.14. (1) implies (7) by Corollary 5.6.11(1) while (1) implies (6) by the forward

direction of Proposition 5.6.24. (6) plus (< µ)-tameness implies (4) by the proof of the

backward direction of Proposition 5.6.24. (7) implies (1)µ+ω by Proposition 5.7.5.

Remark 5.8.3. In [GV17, Corollary 5.5], they did not assume continuity of nonsplitting

and showed that: if item (4) in Main Theorem 5.8.2 holds in some ξ ≥ ℶω(χ0 + µ) (see

Fact 5.6.3 for the definition of χ0), then every limit model in Kξ is ℶω(χ0 + µ)-saturated.
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This implies ℵ0-local character of ξ-nonsplitting. Using [BV17b, Theorem 7.1], there is a

λ < h(ξ) such that (3) holds with µ replaced by λ. From hindsight, the last argument can

be improved by quoting Corollary 5.6.11(3) instead and having λ = ξ+. In comparison,

our (4)⇒(3) allows (3) to still be in Kµ and does not have the high cardinal threshold.

Corollary 5.8.4. Let ξ > LS(K) and K have a monster model, continuity of ξ-nonsplitting

and be (< ξ)-tame. Then the following are equivalent:

1. K has uniqueness of limit models in Kξ: for any M0,M1,M2 ∈ Kξ, if both M1 and

M2 are limit over M0, then M1
∼=M0 M2;

2. K has uniqueness of limit models without base in Kξ: any limit models in Kξ are

isomorphic.

Proof. The forward direction is immediate and only requires JEP . For the backward

direction, the proof of (3)⇒(1) in Main Theorem 5.8.2 goes through (JEP is needed) and

we have ξ-superstability. By (1)⇒(3) in Main Theorem 5.8.2, it has uniqueness of limit

models in Kξ.

As applications, we present alternative proofs to the results in [MA20] and [SV18a]

with stronger assumptions. In [MA20], limit models of abelian groups are studied.

Fact 5.8.5. 1. [MA20, Definition 3.1, Fact 3.2] Let Kab be the class of abelian groups

ordered by subgroup relation. ThenKab is an AEC with LS(Kab) = ℵ0, has a monster

model and is (< ℵ0)-tame.

2. [MA20, Fact 3.3(2)] Kab is stable in all infinite cardinals.

3. [MA20, Corollary 3.8] Kab has uniqueness of limit models in all infinite cardinals.

In the original proof of Fact 5.8.5(3), an explicit algebraic expression of limit models

was obtained, so that limit models of the same cardinality are isomorphic to each other.

In [MA20, Remark 3.9], it was remarked that [Vas18c] could be used to obtain uniqueness

of limit models for high enough cardinals (above ≥ ℶ(2ℵ0 )+). We write down the exact

argument using known results. Then we present another proof that covers lower cardinals

using results in this paper (but not any algebraic description of limit models).
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First proof of Fact 5.8.5(3). In Fact 5.7.4(1), pick ξ ≥ (λ′(K))+ + χ1 with cf(ξ) = ℵ0. By

Fact 5.8.5(2), Kab is stable in ξ. So the conclusion of Fact 5.7.4(1) gives superstability

in ≥ λ′(Kab). By [VV17, Corollary 1.4] (which combines [VV17, Fact 2.16, Corollary

6.9]), Kab has uniqueness of limit models in Kab
≥λ′(Kab)

. Notice that by Fact 5.7.3, λ′(Kab) <

h(λ(Kab)) = h(ℵ0) = ℶ(2ℵ0 )+ , so we can guarantee uniqueness of limit models above ℶ(2ℵ0 )+ .

Second proof of Fact 5.8.5(3). By Fact 5.8.5(1)(2), Kab is stable in ℵ0 and is (< ℵ0)-

tame. The latter implies ω-locality. By Proposition 5.3.16(2), Kab has continuity of

ℵ0-nonsplitting. By Remark 5.7.7(1), it is superstable in ≥ ℵ0. By Corollary 5.6.2(1) (or

simply [VV17, Corollary 1.4]), it has uniqueness of limit models in all infinite cardinals.

We turn to look at a strictly stable AEC.

Fact 5.8.6. 1. [MA20, Definition 4.1, Facts 4.2, 4.5] Let Ktf be the class of torsion-

free abelian groups ordered by pure subgroup relation. Then Ktf is an AEC with

LS(Ktf ) = ℵ0, has a monster model and is (< ℵ0)-tame.

2. [MA20, Fact 4.7] Ktf is stable in λ iff λℵ0 = λ. In particular Ktf is strictly stable.

3. [MA20, Corollary 4.18] Let λ ≥ ℵ1. K
tf has uniqueness of (λ,≥ ℵ1)-limit models.

4. [MA20, Theorem 4.22] Let λ ≥ ℵ0. Any (λ,ℵ0)-limit model in Ktf is not algebraically

compact.

5. [MA20, Lemmas 4.10, 4.14] Let λ ≥ ℵ1. Any (λ,≥ ℵ1)-limit model in Ktf is alge-

braically compact. Any two algebraically compact limit models inKtf
λ are isomorphic.

The original proof of the second part of Fact 5.8.6(3) uses an explicit algebraic expres-

sion of algebraically compact groups [MA20, Fact 4.13]. Using the results of this paper, we

give a weaker version but without using any algebraic expression of algebraically compact

groups.

Proposition 5.8.7. Assume CH. If for all stability cardinal λ ≥ ℵ1, K
tf does not have

the λ-order property of length λ+ω, then for all such λ, it has uniqueness of (λ,≥ ℵ1)-limit

models.
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Proof. By CH and Fact 5.8.6(2), Ktf is stable in ℵ1. By Fact 5.8.6(1), Ktf is (< ℵ0)-tame,

hence it has ω-locality. By Proposition 5.3.16(2), Ktf has continuity of ℵ1-nonsplitting.

Proposition 5.3.9 and Lemma 5.6.7 give ℵ1-local character of λ-nonsplitting for all stability

cardinals λ. By Fact 5.6.10(1), Ktf is stable in [λ, λ+ω). By Corollary 5.6.2(1) and Remark

5.6.8(1), Ktf has uniqueness of (λ,≥ ℵ1)-limit models for all λ ≥ ℵ1.

Question 5.8.8. Is it true that Ktf does not have ℵ1-order property of length ℵω?

For Fact 5.8.6(4), the original proof argued that uniqueness of limit models eventually

leads to superstability for large enough λ (from an older result in [GV17]). Then a specific

construction deals with small λ. In [MA20, Remark 4.23], it was noted that [Vas18c,

Lemma 4.12] could deal with both cases of λ. We give a full proof here (the algebraic

description of limit models is needed):

Proof of Fact 5.8.6(4). Let λ ≥ ℵ0 and M be a (λ,ℵ0)-limit model. Then Ktf is stable

in λ and by Fact 5.8.6(2) λ > ℵ0. Suppose M is algebraically compact, by Fact 5.8.6(5)

and Corollary 5.6.2(2) M is isomorphic to (λ,≥ ℵ1)-limit models and is saturated. By

Proposition 5.6.12(2) (where ⟨Mi : i ≤ ℵ0⟩ witnesses that M is (λ,ℵ0)-limit), ℵ0-local

character of λ-nonsplitting applies to M . Since M is arbitrary, Ktf has ℵ0-local character

of λ-nonsplitting, which implies stability in ≥ λ by Fact 5.6.10(2), contradicting Fact

5.8.6(2).

Remark 5.8.9. [Vas18c, Lemma 4.12] happened to work because we do not care about

the case ℵ0 (which is not stable) and we can always apply item (2) in Proposition 5.6.12.

In [SV18a], ℵ0-stable AECs with ℵ0-AP , ℵ0-JEP and ℵ0-NMM were studied. They

built a superlimit model in ℵ0 by connecting limit models with sequentially homogeneous

models [SV18a, Theorem 4.4]. Then they defined splitting over finite sets where types have

countable domains and obtained finite character assuming categoricity in ℵ0 [SV18a, Fact

5.3]. This allowed them to build a good ℵ0-frame over models generated by the superlimit.

These methods are absent in our paper because we studied AECs with a general LS(K),

and our splitting is defined for types over model-domains.
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In [SV18a, Corollary 5.9], they showed the existence of a superlimit in ℵ1 assuming

weak (< ℵ0,ℵ0)-locality among other assumptions. We will strengthen the locality assump-

tion to ω-locality, and work in a monster model to give an alternative proof. This allows us

to bypass the machinery in [SV18a] that are sensitive to the cardinal ℵ0, and the technical

manipulation of symmetry in [SV18a, Section 3]. Also, our result extends to a general

LS(K).

Proposition 5.8.10. Let K is an ℵ0-stable AEC with a monster model and has ω-locality.

Then there is a superlimit in ℵ1. In general, let λ ≥ LS(K), and if K is stable in λ instead

of ℵ0, then it has a superlimit in λ+.

Proof. Apply Main Theorem 5.8.2(1)⇒(5) where µ = LS(K) (that direction does not

require µ > LS(K)). Notice that ω-locality implies LS(K)-tameness.

Tracing our proof, we require global assumptions of a monster model and ω-locality in

order to use our symmetry results, especially Proposition 5.5.9. We end this section with

the following:

Question 5.8.11. Instead of global assumptions like monster model and no-order-property,

is it possible to obtain local symmetry properties in Section 5.5 using more local assump-

tions?
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CHAPTER 6

CATEGORICITY TRANSFER FOR TAME AECS WITH

AMALGAMATION OVER SETS

ABSTRACT

Let K be an LS(K)-tame abstract elementary class and assume amalgamation

over sets and arbitrarily large models. Suppose K is categorical in some µ > LS(K),

then it is categorical in all µ′ ≥ µ. At the cost of using amalgamation over sets

instead of over models, our result removes the successor requirement of µ made by

Grossberg-VanDieren [GV06a], and the primes requirement by Vasey [Vas17b]. As

a corollary, we obtain an alternative proof of the upward categoricity transfer for

first-order theories [Mor65a, She74]. In our construction, we simplify Vasey’s results

[Vas16a, Vas17e] to build a weakly successful frame. This allows us to use Shelah-

Vasey’s argument [SV18b] to obtain primes for sufficiently saturated models. If we

replace the categoricity assumption by LS(K)-superstability, K is already excellent

for sufficiently saturated models. This sheds light on the investigation of the main

gap theorem for uncountable first-order theories within ZFC.

6.1 INTRODUCTION

For first-order theories, we have the following categoricity theorems:

Theorem 6.1.1. 1. [Mor65a] Let T be a countable first-order theory. If T is categorical

in some uncountable cardinal, then it is categorical in all uncountable cardinals.

2. [She74] Let T be a first-order theory. If T is categorical in some cardinal > |T |, then

it is categorical in all cardinals > |T |.

In the late seventies after Shelah completed his book [She90], he came up with a far

reaching program: develop classification theory for non-elementary classes. Thus he titled

his papers [She83a, She83b, She87] “Classification theory for non-elementary classes”. In

the summer of 1976, Shelah proposed as a test question for such a theory (which appeared

in [She83a, Conjecture 2]):
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Conjecture 6.1.2 (Categoricity conjecture for Lω1,ω). Let ψ be a sentence of Lω1,ω in a

countable language. If ψ is categorical in some µ ≥ ℶω1 , then ψ is categorical in all µ ≥ ℶω1 .

In the second edition of his book [She90], the conjecture was generalized to:

Conjecture 6.1.3 (Categoricity conjecture for Lλ+,ω). Let ψ be a sentence of Lλ+,ω in

a language of size λ. If ψ is categorical in some µ ≥ ℶ(2λ)+ , then ψ is categorical in all

µ ≥ ℶ(2λ)+ .

In [She00, Section 6], Shelah stated that classification theory for abstract elementary

classes (AECs) is the most important direction of model theory. He conjectured:

Conjecture 6.1.4 (Categoricity conjecture for AECs). Let K be an AEC and λ = LS(K).

The threshold for categoricity transfer is ℶ(2λ)+ (the Hanf number).

The importance of these conjectures is the structural theory that needs to be devel-

oped. The main concept of the previously-developed structural theory for first-order the-

ories is forking : a canonical notion that generalizes combinatorial geometries (also called

matroids when they are finitely generated).

In about 3000 pages of publications towards these conjectures indeed such a theory

evolved (see the table at the end of this section for a partial list of results). We can divide

the approaches into three types:

a. Assuming tameness and other model theoretic properties: Grossberg and VanDieren

[GV06a, GV06c] extracted the notion of tameness from [She99] and derived categoric-

ity transfer from a successor cardinal for tame AECs with a monster model. Many

subsequent results were obtained by Boney and Vasey but the successor assumption

from [GV06a] still could not be removed. Vasey [Vas18b] building upon Shelah’s

results, showed that categoricity transfer holds for AECs with amalgamation and

primes (without starting from a successor cardinal) and managed to prove that the

eventual categoricity conjecture is true for universal classes [Vas17e, Vas17f].

b. Assuming non-ZFC axioms and model theoretic properties: Shelah [She83a, She83b]

showed that under WGCH, if a countable theory in Lω1,ω is excellent and has few
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models in ℵn for n < ω, then categoricity transfers up from an uncountable cardinal.

[She09a] also developed heavy machinery such as good frames to derive categoricity

transfers. However many of his results have technical assumptions which are not easy

to verify. Later Shelah and Vasey [SV18b] generalized the notion of excellence to

AECs and derived categoricity transfers assuming WGCH and restricting the spec-

trum in an interval of cardinals. A few variations were given in [SV18b, Vas19] where

they replaced the spectrum requirements by other model theoretic properties.

Meanwhile, Makkai and Shelah [MS90] proved that the eventual categoricity conjec-

ture is true for an Lκ,ω theory starting at successor cardinals, where κ is strongly

compact. Boney [Bon14b] showed that tameness holds for compact AECs (assuming

the existence of strongly compact cardinals), thus by [GV06a, GV06c] the eventual

categoricity is true starting at successor cardinals. Eventually [SV18b] used the ex-

cellence argument to remove the successor assumption.

c. Using specific constructions: Cheung [Che21] showed that given a free notion of

amalgamation and the existence of prime models, the AEC behaves like strongly

minimal theories, which allows one to manipulate the AEC algebraically.

Mazari-Armida [MA22] combined decomposition results from algebra and categoricity

transfer from [Vas17b] to characterize algebraically the property of being categorical

in a tail. In particular, let R be an associative ring with unity, he proved that the

threshold of categoricity transfer is (|R|+ ℵ0)
+ for the class of locally pure-injective

modules, flat modules and absolutely pure modules.

Esṕındola [Esp22] used topos-theoretic argument to show that the eventual categoric-

ity conjecture holds. However, there is no explicit bound to the threshold cardinal

µ.

In this paper we follow approach (a) above and focus on AECs that have a monster

model, satisfy amalgamtion over sets and tameness. In doing so we can remove the successor

assumption in (2) in the table. In our proof, we rely heavily on many recent papers and

replace the use of WGCH in (8) by amalgamation over sets to obtain excellence. Then
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using [SV18b] that excellence implies primes, we can invoke the categoricity transfer in

(3). A main application of this result is the removal of the successor requirement in the

categorical transfer in [MS90] (see also [She00, Question 6.14] for the problem statement).

Our work was motivated by a simple question: using the common model theoretic

assumptions and techniques, can we recover the upward1 categoricity transfer in Theorem

6.1.1? [Les00] and [HK11] have relevant results but they require LS(K) = ℵ0 and sev-

eral additional assumptions (say simplicity : there is a strong example by Shelah that in

the context of homogeneous model theory, simplicity is not a consequence of ℵ0-stability

[HL02]). Such results might not be easy to check and generalize to uncountable LS(K).

Meanwhile, Vasey [Vas18b, Section 4] adopted a hybrid approach where he quoted syntac-

tic results from [She71, HS00] to conclude that a homogeneous diagram has primes and a

nonforking relation over sets, and then combined it with the categoricity transfer for AECs

with amalgamation and primes. In comparison, our result is cleaner because we do not

invoke primeness or stability results from [She71, HS00]. The assumptions of tameness and

amalgamation over sets are immediate to check.

When we show excellence, we only require tameness, amalgamation over sets, arbi-

trarily large models and superstability. This way of obtaining excellence does not use any

non-ZFC axioms and might shed light on the main gap theorem for uncountable first-order

theories: [GL05] used an axiomatic framework to obtain the abstract decomposition the-

orem, a key step to the main gap theorem. The results from [SV18b] provide us with a

multidimensional independence relation, which satisfies some of the axioms in [GL05]. For

future work, one may look at the axioms on regular types (see [GL05, Axioms 8-10]).

We now list some of the known results on categoricity transfer for AECs. The number-

ing is for reference only and is not chronological. We strengthen some of the assumptions to

a monster model “C” for readability (unless they assumed a local frame). Here a monster

model means amalgamation, joint embedding and no maximal models. We write “Cset”

1Downward transfer is a much harder problem for AECs: the currently known transfer with common

assumptions is down to the first Hanf number. Example 6.6.15 shows that the first categoricity cardinal

can go up to the first Hanf number, but such example fails amalgamation and joint-embedding.
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if we also require amalgamation over sets. We strengthen instances of WGCH in an in-

terval of cardinals to full WGCH. Throughout we let λ = LS(K). Except for (5)(12), we

assume that the categoricity cardinal µ < h(λ) (so we can omit the downward transfer

to the first Hanf number h(λ)). Some of the results can be combined but we highlight

the new parts. The key results of categoricity transfers within ZFC are (2), (3) and (4).

By assuming amalgamation over sets, we remove the successor assumption in (2) and (4),

while removing the prime triples assumption in (3).

This paper was written while the author was working on a Ph.D. under the direction of

Rami Grossberg at Carnegie Mellon University and we would like to thank Prof. Grossberg

for his guidance and assistance in my research in general and in this work in particular.
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Assumptions on K If I(µ,K) = 1 for some Then I(µ′,K) = 1 for all

λ-tame, Cset µ ≥ λ+ µ′ ≥ µ (Theorem 6.6.13)

1. Homogeneous diagram with Cset µ ≥ |T |+ µ′ ≥ µ [Vas18b, Theorem 4.22]

2. λ-tame, C successor µ ≥ λ+ µ′ ≥ µ [GV06a, Theorem 5.3]

3. λ-tame, C, has primes µ ≥ λ+ µ′ ≥ µ [Vas17b, Theorem 10.9]

4. Has a type-full good [µ1, µ2]- µ1, µ2 as on the left µ′ ∈ [µ1, µ2]

frame where µ2 is a successor > µ1 ≥ λ [Vas17b, Theorem 6.14]

5. λ < κ for some strongly compact κ successor µ ≥ κ+ µ′ ≥ µ [Bon14b, Theorem 7.4]

6. Compact µ ≥ λ+ µ′ ≥ µ [SV18b, Theorem 14.5]

7. Excellent µ ≥ λ+ µ′ ≥ µ [SV18b, Theorem 14.2]

8. WGCH, has a (< ω)-extendible µ2 ≥ µ+
1 µ′ ≥ µ+

1

categorical good µ1-frame [SV18b, Corollary 14.4]

9. WGCH, Kλ++ ̸= ∅ and for n < ω, µ = λ, λ+ µ′ ≥ λ [SV18b, Theorem 14.11]

I(λ+n,K) < µunif(λ
+n, 2λ

+(n−1)
)

10. WGCH, C µ1, µ2 ≥ λ µ′ ∈ [µ1, µ2] [Vas19, Lemma 9.5]

11. WGCH, C µ > λ+ω µ′ ≥ µ [Vas19, Lemma 9.6]

12. Universal class µ ≥ ℶh(λ) µ′ ≥ µ [Vas17f, Theorem 7.3]

13. PCℵ0 , ℵ0-tame, has primes, 2ℵ0 < 2ℵ1 µ = ℵ1 µ′ ≥ µ [MAV18, Theorem 4.4]

14. WGCH, PCℵ0 , 1 ≤ I(ℵ1,K) < 2ℵ1 , µ ≥ ℵ1 and µ = ℵ0 µ′ ≥ ℵ0

and few models in ℵn [SV18b, Theorem 14.12]

15. Atomic models of a countable first-order µ ≥ ℵ1 [She83a, She83b]

theory, WGCH, few models in ℵn

16. Universal Lω1,ω sentence Tail of [LS(K),ℶω) µ′ ≥ ℶω [Vas20, Corollary 5.10]

17. Has prime and small models µ ≥ µ(K) + λ µ′ ≥ µ(K) + λ+ I(λ,K)+

and a free notion of amalgamation [Che21, Theorem 5.7]

18. The class of locally pure-injective modules/ µ ≥ (|R|+ ℵ0)
+ [MA22]

flat modules/absolutely pure modules

19. None (no explicit bound) [Esp22]
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6.2 PRELIMINARIES

In this section, we will define the main notions used in this paper (see Definition 4.2.2

for the definition of AECs). Relevant results will be discussed in the subsequent sections.

Definition 6.2.1. Let K be an AEC and λ ≥ LS(K). The functions f mentioned below

will be K-embeddings.

1. K has the λ-amalgamation property (λ-AP ) if for any M0,M1,M2 ∈ Kλ, M0 ≤K M1,

M0 ≤K M2, there is M3 ∈ Kλ and f : M1 −−→
M0

M3 such that M2 ≤K M3. K has the

amalgamation property (AP ) when the above is true without the cardinal restriction.

2. K has the amalgamation property over set bases (AP over sets) if for anyM1,M2 ∈ K,

any A ⊆ |M1| ∩ |M2|, there is M3 ∈ K and f :M1 −→
A
M3 such that M2 ≤K M3.

3. K has the λ-joint embedding property (λ-JEP ) if for any M1,M2 ∈ K, there is

M3 ∈ Kλ and f : M1 → M3 such that M2 ≤K M3. K has the joint embedding

property (JEP ) when the above is true without the cardinal restriction.

4. K has no maximal models (NMM) if for any M ∈ K, there is N ∈ K such that

M ≤K N but M ̸= N .

5. K has arbitrarily large models (AL) if for any cardinal µ ≥ LS(K), there isM ∈ K≥µ.

6. K has a monster model C if it has AP , JEP and NMM .

7. K has Cset if it has AP over sets (which implies JEP ) and NMM .

Remark 6.2.2. All the properties except for (2)(7) in the above definition hold in complete

first-order theories because of the compactness theorem. (2)(7) hold if we also fix a monster

model and they will only be used in Section 6.6. See also the discussions around [Bal09,

Definition 4.34, Lemma 18.8].

Definition 6.2.3. Let α ≥ 2 be an ordinal.

1. We denote Galois types (orbital types) of length (< α) as gS<α(·) (see [Vas16c, Def-

inition 2.16]; we will not need the precise definition in this paper). The argument
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can be a set A in some model M ∈ K. In general gS<α(A) :=
⋃
{gS<α(A;M) : M ∈

K, |M | ⊇ A} (under AP , the choice of M does not matter).

2. K is (< α)-stable in λ if for any set A in some model M ∈ K, |A| ≤ λ, then

|gS<α(A;M)| ≤ λ. We omit “(< α)” if α = 2, while we omit “in λ” if there exists

such a λ ≥ LS(K). Similarly K is α-stable in λ if for any such A and M above, we

have |gSα(A)| ≤ λ.

The notion of tameness was introduced by Grossberg and VanDieren [GV06a] as an

extra assumption to an AEC. Later Boney [Bon14b] introduced a dual property named

shortness. Tameness is a locality property on the domain of types while shortness is a

locality property on the tuples that realize the types.

Definition 6.2.4. Let κ be an infinite cardinal.

1. Let p = gtp(a/A,N) where a = ⟨ai : i < α⟩ may be infinite, I ⊆ α, A0 ⊆ A. We

write l(p) := l(a), p ↾ A0 := gtp(a/A0, N), aI = ⟨ai : i ∈ I⟩ and pI := gtp(aI/A,N).

2. K is (< κ)-tame for (< α)-types if for any subset A in some model of K, any

p ̸= q ∈ gS<α(A), there is A0 ⊆ A, |A0| < κ with p ↾ A0 ̸= q ↾ A0. We omit (< α) if

α = 2.

3. K is (< κ)-short if for any α ≥ 2, any subset A in some model of K, p ̸= q ∈ gS<α(A),

there is I ⊆ α, |I| < κ with pI ̸= qI .

4. κ-tame means (< κ+)-tame. Similarly for shortness.

Remark 6.2.5. By [Vas16c, Corollary 3.18], (< κ)-shortness implies (< κ)-tameness.

First-order theories are trivially (< ℵ0)-short, while a theorem due to Boney shows that

universal classes are also (< ℵ0)-short [Vas17e, Theorem 3.7].

The notion of a good frame was introduced in [She09a, Chapter II]. The definition was

extended for domains of sizes from an interval of cardinals (instead of a single cardinal)

in [Vas16b] while for longer types in [BV17b]. We follow the notation in [BV17b] but

specialize it in our context, where the types are always type-full (basic types coincide with
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nonalgebraic types) and we work inside a monster model. [Vas16a], building on numerous

papers, defined many more properties of a frame which cater for his coheir construction,

which will not be considered here.

Definition 6.2.6. Let K be an AEC with a monster model C, µ ≥ LS(K) be a cardinal

and α ≥ 2 be an ordinal or ∞. A (< α,≥ µ)-good frame is a ternary relation |⌣ such that:

1. If (a,M0,M1) ∈ |⌣, then a ∈ |M1|<α, M0 ≤K M1 and M0,M1 ∈ K≥µ. We write

a |⌣
M0

M1 and say gtp(a/M1) does not fork over M0 (well-defined by invariance below).

2. (Invariance) If f ∈ Aut(C) and a |⌣
M0

M1, then f(a) |⌣
f(M0)

f(M1).

3. (Monotonicity) If a |⌣
M0

M1, M0 ≤K N0 ≤K N1 ≤K M1, a
′ ⊆ a and a′ ∈ |N ′|, then

a′ |⌣
N0

N1.

4. (Stability) For M ∈ K≥µ, | gS(M)| ≤ ∥M∥.

5. (Existence) For M ∈ K≥µ and a ∈ |M |<α, a |⌣
M

M .

6. (Extension) If p ∈ gS<α(M1) does not fork over M0, M1 ≤K M2 and l(p) ≤ β < α,

then there is q ∈ gSβ(M2) such that qβ ↾M = p and q does not fork over M0.

7. (Uniqueness) If p, q ∈ gS<α(M1) do not fork over M0 and p ↾ M0 = q ↾ M0, then

p = q.

8. (Transitivity) If a |⌣
M0

M1 and a |⌣
M1

M2, then a |⌣
M0

M2.

9. (Local character) If δ is regular, ⟨Mi ∈ K≥µ : i ≤ δ⟩ is increasing and continuous,

p ∈ gS<δ(Mδ), then there is i < δ such that p does not fork over Mi.

10. (Continuity) If δ is a limit ordinal, both ⟨Mi ∈ K≥µ : i ≤ δ⟩ and ⟨αi < α : i ≤ δ⟩

both increasing and continuous, pi ∈ gSαi(Mi) increasing in i < δ, then there is some

p ∈ gSαδ(Mδ) such that for all i < δ, pαi ↾Mi = pi. If each pi does not fork over M0,

then neither does p.
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11. (Symmetry) If a2 |⌣
M0

M1 and a1 ∈ |M1|<α, then there is M2 containing a2 such that

a1 |⌣
M0

M2.

We define (< α, µ)-frame similarly when the models must have size µ. We omit “(< α)”

when α = 2. We call |⌣ an independence relation if it only has invariance and monotonicity.

Remark 6.2.7. There are weaker versions of a good frame which still have nice properties

(for example [JS13, MA19] and Chapter 3), which will not be discussed here because we

will focus on the full strength of a good frame (and more under categoricity).

6.3 A (<∞,≥ (2LS(K))+)-NONFORKING RELATION

Assuming superstability and shortness, we will build a (<∞,≥ (2LS(K))+)-nonforking

relation with nice properties. This will allow us to use [Vas16a, Section 11] to conclude

that the underlying good frame is weakly successful. The result was sketched in [Vas17e,

Lemma A.14] but it drew technical results from [Vas16a, Sections 1-10]. In this section,

we will construct the nonforking relation and derive its properties directly. Readers can

blackbox this section and skip to Section 6.4.

Definition 6.3.1. Let K be an AEC with a monster model, λ ≥ LS(K).

1. Let M ≤K N , we say that N is an universal extension of M if for any N ′ ∈ K∥M∥

withM ≤K N ′, there is f : N ′ −→
M

N . We say a chain ⟨Mi ∈ Kλ : i ≤ δ⟩ is universally

increasing if for each i < δ, Mi+1 is a universal extension of Mi.

2. Let N ∈ K and p ∈ gS(N), we say that p λ-splits over M if there exists N1, N2 ∈ Kλ

such that M ≤K N1, N2 ≤K N , f : N1 −→
M

N2 with f(p) ↾ N2 ̸= p ↾ N2.

3. K is superstable in λ if K is stable in λ and the following holds: for any limit ordinal

δ < λ+, any universally increasing and continuous ⟨Mi ∈ Kλ : i ≤ δ⟩, p ∈ gS(Mδ),

there is i < δ such that p does not λ-split over Mi.

Remark 6.3.2. In item (1), if M ≤K N and N is ∥M∥+-saturated, then N is a universal

extension over M . In addition, N realizes all (< ∥M∥+)-types over M . In item (3),

by [Vas16a, Proposition 10.10] or Corollary 5.6.11, λ-tameness and λ-superstability imply

λ′-superstability for λ′ ≥ λ.
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Under tameness and superstability, we can build a good frame in the successor cardinal.

We remark that the original item (2) did not show whether the µ+-saturated models form

an AEC (in particular whether they are closed under unions). It was only later in item (1)

that the question was fully settled.

Fact 6.3.3. Let K be an AEC with a monster model and µ ≥ LS(K). Suppose K is

µ-tame and superstable in µ.

1. [VV17, Corollary 6.10] For λ > µ, Kλ-sat is an AEC with LS(Kλ-sat) = λ.

2. [Vas16b, Theorem 7.1] The relation defined by: p ∈ gS(N) does not fork overM ≤ N

if there is M0 ∈ Kµ such that M is a universal extension over M0 and p does not

µ-split over M0, induces a good (≥ µ+)-frame for Kµ+-sat (by (1) the µ+-saturated

models form a sub-AEC of K).

Remark 6.3.4. � Coheir in [BG17] is another candidate for a good frame, but one

has to assume in addition the no weak order property and the extension property of

coheir. To remove these assumptions, one has to raise the starting cardinal very high,

so the threshold cardinal of categoricity transfer is way above µ+. See also item 2(a)

after this remark.

� One might wonder if it is possible to define the frame for Kµ. [Vas18a, Corollary

13.16] gave a weaker version where the underlying models are limit models while

local character and continuity are for universally increasing chains (this argument

was generalized to the strictly stable context in 3). Alternatively, [Vas19, Section 6]

built a good µ-frame by assuming WGCH and drawing heavily from [JS13] (WGCH

is used to establish that the frame is weakly successful, see Definition 6.4.4).

Now we have a good (≥ µ)-frame and would like to extend it to longer types. However,

there are difficulties in terms of proving extension and local character. Besides the use of

WGCH as in the above remark, we list three main approaches in literature:

1. Using independent sequences and tameness, [BV17b] developed on [She09a, Exercise

III.9.4.1] to extend the frame to longer types. But such frame is not necessarily

type-full, which is assumed in other results.
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2. Extend the good (≥ µ)-frame to a (< ∞,≥ µ)-nonforking relation, which might

not be a good frame itself. [Vas16a, Section 11] gave sufficient conditions of the

nonforking relation in order for the original frame to be weakly successful. Then one

can quote [JS13] to extend the original frame by NF, which is a good frame. To build

the nonforking relation, there are two ways:

(a) [Vas16a, Sections 1-10] built an axiomatic framework that allows one to use

coheir to produce a good (≥ µ)-frame (instead of using nonsplitting). To obtain

the sufficient conditions above, he went on with a highly convoluted construction,

which also uses canonicity to obtain properties from nonsplitting. Moreover, the

threshold cardinal µ is very high (fixed points of the beth function) in order to

use the no-order property.

(b) Using nonsplitting (Fact 6.3.3), [Vas17e, Lemma A.14] sketched that it can be

extended to a nonforking relation that satisfies the sufficient conditions. How-

ever, the details were sparse (about two paragraphs) and he invoked technical

results from [Vas16a, Sections 1-10], which have numerous definitions and go

back and forth between coheir and nonsplitting.

We will adopt approach 2(b), but give an alternative proof that such nonforking relation

satisfies the desired properties. In particular we do not need [Vas16a] in this section but

refer to the simple construction in Fact 6.3.3(2). Our starting cardinal is µ+ for the same

reason as the successor cardinal in Fact 6.3.3(2). Meanwhile [Vas17e, Lemma A.14] starts

at µ, but we cannot verify the claims there. At the end it does not affect the categoricity

transfer by virtue of Fact 6.6.12(2).

Definition 6.3.5. Let K be an AEC with a monster model, µ = 2LS(K) and assume K is

LS(K)-short and superstable in LS(K).

1. Since shortness implies tameness (Remark 6.2.5), we can define the nonforking re-

lation as in Fact 6.3.3(2) but for < (LS(K)+)-types (instead of 1-types). This is a

(< LS(K)+,≥ µ+)-nonforking relation |⌣ over the µ+-saturated models.
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2. Extend |⌣ to a (< ∞,≥ µ+)-nonforking relation |̄⌣ by coheir : a |̄⌣
M0

M1 iff for any

subsequence a′ ⊆ a of length < LS(K)+, we have a′ |⌣
M0

M1.

The following collection of facts helps us establish local character properties. The sec-

ond item below is from [Bon17, Theorem 3.5], which was usually cited as [Bon17, Theorem

3.1] (the issue was clarified in Theorem 3.2.2). The statement of the third item can be

found in [Vas17e, Lemma A.12] and is essentially [GV06b, Fact 4.6].

Fact 6.3.6. Let K be an AEC with a monster model, µ ≥ LS(K) and α ≥ 1.

1. [She99, Lemma 3.3] If K is stable in µ, M ∈ K≥µ and p ∈ gS(M), then there is

M0 ≤K M , ∥M∥ = µ such that p does not µ-split over M0.

2. If K is stable in µ and µ = µα, then it is α-stable in µ.

3. If κ satisfies µ = µ<κ, then item (1) is still true for p ∈ gS<κ(M).

Proof. We sketch (3): by stability and (2), K is (< κ)-stable in µ. The proof of (1) shows

that if the conclusion of (1) fails, one can build a tree of types and models to contradict

1-stability in µ, where “1” comes from l(p). The same proof goes through for (3) because

we now have (< κ)-stability in µ.

We now state the nice properties of |̄⌣ we constructed. Items (c) and (d) can be

strengthened but they are sufficient for the next section. Notice that shortness is the key

to obtain uniqueness in item (e) below.

Proposition 6.3.7. Let K be an AEC with a monster model, µ = 2LS(K) and assume K

is LS(K)-short and LS(K)-superstable. The relation |̄⌣ defined in Definition 6.3.5 satisfies

the following:

a. |̄⌣ is a (<∞,≥ µ+)-nonforking relation over the µ+-saturated models.

b. When restricted to 1-types, |̄⌣ is a good (≥ µ+)-frame.

c. For n ≥ 2, Kµ+n-sat is an AEC with LS(Kµ+n-sat) = µ+n.
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d. For n ≥ 2, |̄⌣ restricted to (≤ µ+n)-types has local character for chains of length

≥ µ+(n+1). Namely, for any a of length (≤ µ+n), any regular δ ≥ µ+(n+1), any

increasing and continuous chain ⟨Mi : i ≤ δ⟩ ⊆ Kµ+-sat, there is i < δ such that

a |̄⌣
Mi

Mδ.

e. |̄⌣ has uniqueness.

f. |̄⌣ has the left (≤ µ+)-witness property: a |̄⌣
M0

M1 iff for any a′ ⊆ a of length ≤ µ+, we

have a′ |̄⌣
M0

M1.

g. |̄⌣ has the right (≤ µ+)-model witness property: a |̄⌣
M0

M iff for any M1 ∈ Kµ+-sat with

M0 ≤K M1 ≤K M , ∥M1∥ ≤ µ+, we have a |̄⌣
M0

M1.

Proof. Items (a) and (b) follow from the construction of |̄⌣ which extends the original

frame. Item (c) is by Fact 6.3.3(1).

For item (d), we first assume that a has length < LS(K)+. Since µ = µ<LS(K)+ , by

Fact 6.3.6(3) there isM∗ ≤K Mδ, ∥M∗∥ = µ such that gtp(a/Mδ) does not µ-split overM
∗.

Since δ ≥ µ+n > µ, there is i < δ such that M∗ ≤K Mi. Since Mi is ∥M∗∥+-saturated, by

Remark 6.3.2Mi is universal overM
∗. By definition, a |⌣

Mi

Mδ as desired. Now for general a

of length (≤ µ+n), there are at most (µ+n)LS(K), which is µ+n many subsequences of length

< LS(K)+, therefore we can take the maximum i from the previous case, which is still less

than δ by a cofinality argument.

For item (e), let M ≤K N ∈ Kµ+-sat, p, q ∈ gS<∞(N) both do not fork over M

and p ↾ M = q ↾ M . By shortness we may assume that p, q ∈ gS<LS(K)+(N). Then

the uniqueness proof for the case of 1-types in Fact 6.3.3(2) goes through, because it uses

universal extensions only and our types p, q have length < LS(K)+ less than the sizes of

the models.

Item (f) is true by coheir in the construction, in particular we have (≤ LS(K))-witness

property which is stronger. We show the backward direction of item (g): by coheir and

monotonicity, it suffices to consider the case l(a) < LS(K)+. By Fact 6.3.6(3), there is

M∗ ≤K M , ∥M∗∥ = µ such that gtp(a/M) does not µ-split over M∗. Pick N0 ∈ Kµ+-sat
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such that M0 ≤K N0 ≤K M and N0 is a universal extension over M∗. By definition,

gtp(a/M) does not fork over N0. Since ∥N0∥ = µ+, by assumption gtp(a/N0) does not fork

over M0. Now we can quote the transitivity proof for the case of 1-types in Fact 6.3.3(2),

which generalizes to < LS(K)+-types for the same reason as in the previous paragraph.

Thus we have gtp(a/M) does not fork over M0 as desired.

6.4 A WEAKLY SUCCESSFUL FRAME

By Proposition 6.3.7, we will show that the nonforking relation in Definition 6.3.5

satisfies [Vas16a, Hypothesis 11.1]. This allows us to quote results from [Vas16a, Sections

11, 12] and conclude that the underlying good (≥ (2LS(K))+)-frame is weakly successful, can

be extended by NF, is ω-successful and has full model continuity (in the third successor

cardinal). This will allow us to do categoricity transfer in Section 6.6. On the other

hand, we compare our extended frame with the results in [Vas16a, Section 15], which was

constructed from coheir (instead of nonsplitting).

Proposition 6.4.1. Let K be an AEC with a monster model, µ = 2LS(K) and assume K

is LS(K)-short and LS(K)-superstable. The relation |̄⌣ defined in Definition 6.3.5 satisfies

[Vas16a, Hypothesis 11.1].

Proof. The hypothesis is a list of requirements on the nonforking relation |̄⌣. By substi-

tuting “λ” and “µ” there by µ++ and µ+ respectively. We check the items in the same

numbering as in the hypothesis.

1. This is exactly Proposition 6.3.7(a). There they use the term “independence relation”

to allow the right hand side of |̄⌣ to be sets (instead of models), which is just a

generalization and does not affect the rest of the proof.

2. This is Proposition 6.3.7(b).

3. By the substitution above, clearly µ++ > µ+.

4. This is Proposition 6.3.7(c)(d).

5. Base monotonicity is built in our definition of nonforking relation. Uniqueness is by

Proposition 6.3.7(e).
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6. This is Proposition 6.3.7(f)(g).

Under [Vas16a, Hypothesis 11.1], Vasey imitated the proofs in [MS90] and showed that

the underlying good (≥ µ++)-frame has domination triples (see Definition 6.4.2). Then he

connected domination triples with uniqueness triples, which allowed him to conclude that

the frame is weakly successful. In the following we state the relevant definitions and results.

The term “domination triples” came from the later [Vas17e, Definition A.17] and

[Vas17a, Definition 2.9] even though [Vas16a, Definition 11.5] had already investigated the

idea of domination.

Definition 6.4.2. Let λ > LS(K) and |⌣ be a (< ∞,≥ λ)-nonforking relation over the

λ-saturated models.

1. A triple (a,M,N) is a domination triple if M ≤K N both λ-saturated, a ∈ |N |\|M |

and for any λ-saturated N ′, a |⌣
M

N ′ implies N |⌣
M

N ′.

2. |⌣ has the λ-existence property for domination triples if for any M saturated in Kλ,

any nonalgebraic p ∈ gS(M), there exists a domination triple (a,M,N) such that

p = gtp(a/M ;N).

The following fact [Vas16a, Lemma 11.12] shows the existence property for domination

triples. It will be applied to Corollary 6.5.3 to show that the sufficiently saturated models

have primes.

Fact 6.4.3. In Proposition 6.4.1, for λ > µ+, |̄⌣ has the λ-existence property for domina-

tion triples.

Now we look at uniqueness triples and weak successfulness.

Definition 6.4.4. [Vas16a, Definition 11.4]. Let λ > LS(K) and |⌣ be a good λ-frame

over the saturated models in Kλ. Let M0 ≤K M1 and M0 ≤K M2 all λ-saturated.

1. An amalgam of M1 and M2 over M0 is a triple (f1, f2, N) such that N is λ-saturated,

fi :Mi −−→
M0

N for i = 1, 2.
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2. Two amalgams (fa
1 , f

a
2 , N

a), (f b
1 , f

b
2 , N

b) ofM1 andM2 overM0 are equivalent if there

are N ∈ Kλ-sat
λ , fa : Na → N and fa : Na → N such that the following diagram

commutes:

N b N

M1 Na

M0 M2

fb

fa
1

fb
1

fa

fb
2

fa
2

3. A triple (a,M,N) is a uniqueness triple if M,N are saturated models in Kλ, a ∈

|N |\|M | and for any M1 saturated in Kλ, there exists an amalgam (f1, f2, N1) of

N and M1 over M such that gtp(f1(a)/f2[M1];N1) does not fork over M and the

amalgam is unique up to equivalence (see item (2)).

4. |⌣ is weakly successful if it has the existence property for uniqueness triples: for any

M saturated in Kλ, any nonalgebraic p ∈ gS(M), we can find a uniqueness triple

(a,M,N) such that p = gtp(a/M ;N).

The following fact translates [Vas16a, Theorem 11.13] into our context.

Fact 6.4.5. Under [Vas16a, Hypothesis 11.1], the relation |̄⌣ defined in Definition 6.3.5

(when restricted to 1-types and µ++-saturated models) induces a weakly successful good

µ++-frame over the µ++-saturated models.

Corollary 6.4.6. Let K be an AEC with a monster model and µ = 2LS(K). Suppose K

is LS(K)-short and superstable in LS(K). Then the good (≥ µ+)-frame defined in Fact

6.3.3(2) induces a weakly successful good µ++-frame over the µ++-saturated models.

Proof. Since K is LS(K)-short and superstable in LS(K), it is also µ-short and superstable

in µ and we can use Fact 6.3.3(2) to build a good (≥ µ+)-frame |⌣. By Definition 6.3.5,

Proposition 6.3.7 and Proposition 6.4.1, we can extend |⌣ to a nonforking relation |̄⌣ that

satisfies [Vas16a, Hypothesis 11.1]. By Fact 6.4.5, |̄⌣ induces a weakly successful good µ++-

frame over the µ++-saturated models. But this frame is just |⌣ restricted to µ++-saturated

models.
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One more ingredient for categoricity transfer is the property of full model continuity.

Vasey drew results from [She09a, JS13, Jar16] and showed that the weakly successful frame

we obtained is ω-successful. And if we move up by three successors (so we consider µ+5-

saturated models), then it can be extended to a good frame with full model continuity.

Definition 6.4.7. Let K be an AEC with a monster model, λ ≥ LS(K) and |⌣ be a

(<∞,≥ λ)-nonforking relation on K≥λ. |⌣ has full model continuity if the following holds:

for any limit ordinal δ, any ⟨Mk
i : i ≤ δ⟩ increasing and continuous in K≥λ where k = 0, 1, 2,

if M1
i |⌣

M0
i

M2
i for each i < δ, then M1

δ
|⌣

M0
δ

M2
δ .

We sum up the previous paragraph in the following fact. The original results were

from [Vas16a, Sections 11, 12] but applied them to our context (in the same spirit as

Corollary 6.4.6). In particular item (1) is from [Vas16a, Theorem 11.21]; item (2) is from

[Vas16a, Theorem 12.16]. We will not define ω-successfulness because under amalgamation

and tameness, it coincides with weak successfulness [Vas16a, Facts 11.15, 11.19]. Also,

good+ will be automatically satisfied by the new frame [Vas16a, Fact 11.17] so we skip its

definition.

Fact 6.4.8. Let K be an AEC with a monster model and µ = 2LS(K). Suppose K is

LS(K)-short and superstable in LS(K).

1. The weakly successful good µ++-frame from Corollary 6.4.6 is also ω-successful.

2. Let λ = (µ++)+3 = µ+5. The frame can be extended by NF (defined for quadruples

of models) and then closed to a good (≤ λ,≥ λ)-frame over the λ-saturated models.

Moreover, the new frame is good+ and has full model continuity.

The rest of this section discusses what happens if we combine our results with [Vas16a,

Sections 13-15]. Readers only interested in categoricity transfer can skip to Fact 6.5.5 which

will be used in Section 6.6.

After obtaining a good (≤ λ,≥ λ)-frame with full model continuity, Vasey [Vas16a,

Sections 13,14] went on extending the right hand side of |⌣ to arbitrary sets, and then the

left hand side to arbitrary lengths. Such results still apply to our construction because
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we have shortness and amalgamation in our background assumptions (see also [Vas16a,

Hypotheses 13.1, 14.1]). We first state what Vasey had obtain in [Vas16a, Theorem 15.6].

Fact 6.4.9. Let K be a (< κ)-short AEC with a monster model. Suppose there are λ, θ

such that

1. LS(K) < κ = ℶκ < λ = ℶλ ≤ θ;

2. cf(λ) ≥ κ;

3. K is categorical in θ;

then there is a (<∞,≥ λ+4)-good frame over the λ+4-saturated models except that exten-

sion holds over saturated models only. Moreover it has full model continuity.

We state one more fact from [She99] about categoricity. A complete proof can be

found in [BGVV17].

Fact 6.4.10. Let K be an AEC with a monster model. Suppose K is categorical in some

λ > LS(K), then K is superstable in LS(K).

To compare Fact 6.4.9 with our results, we replace our assumptions of LS(K)-shortness

by κ-shortness, and superstability in LS(K) by superstability in κ.

Corollary 6.4.11. Let K be a κ-short AEC with a monster model where κ ≥ LS(K).

Suppose K is categorical in some θ > κ (superstability in κ is sufficient), then there is a

(<∞,≥ (2κ)+5)-good frame over the (2κ)+5-saturated models models except that extension

holds over saturated models only. Moreover it has full model continuity.

Proof sketch. By categoricity and Fact 6.4.10, K is superstable in κ. By Fact 6.4.8 (replac-

ing LS(K) there by κ), there is a (< (2κ)+5,≥ (2κ)+5)-good frame over the (2κ)+5-saturated

models. Extend the frame to arbitrarily long types as in [Vas16a, Sections 13,14].

As we can see, using nonsplitting to build a good frame has a much lower threshold

than using coheir in obtaining Fact 6.4.9. The fixed points of beth function are to guarantee

no order property (see [Vas16a, Fact 2.21]), which currently lacks a good upper bound

(under amalgamation and stability). [Vas17e, Corollary A.16] claimed a result similar to

our corollary and we highlight the differences here:

173



1. The threshold he obtained is (LS(K)<κ)+5 while ours is (2κ)+5.

2. He used (< κ)-shortness directly but we weakened it to κ-shortness. We did so both

for convenience and to readily apply Fact 6.4.8.

3. In verifying [Vas16a, Hypothesis 11.1], he drew heavy machinery from [Vas16a, Sec-

tions 1-10] but we proved them directly in Proposition 6.4.1.

6.5 PRIMES FOR SATURATED MODELS

We will combine the results from the previous section and Fact 6.5.2 below to conclude

thatK has primes for saturated models. However, it is not clear whether this implies primes

for models in general, so we cannot invoke categoricity transfer of AECs with primes and

amalgamation. Readers only interested in categoricity transfer can skip to Fact 6.5.5 which

will be used in the next section.

Definition 6.5.1. [Vas17a, Definition 2.13] Let K be an AEC.

1. A triple (a,M,N) is a prime triple ifM ≤K N , a ∈ |N |\|M |, and the following holds:

for any N ′ ∈ K with a′ ∈ |N ′| and gtp(a/M ;N) = gtp(a′/M ;N ′) then there exists

f : N −→
M

N ′ such that f(a) = a′.

2. K has primes if for each M ∈ K and each nonalgebraic p ∈ gS(M), there exists a

prime triple (a,M,N) such that p = gtp(a/M ;N).

The original statement of the following fact is about K∗ only but we strengthen the

monster model assumption to K. Vasey allowed the right hand side of |⌣ to be sets (and

had extra axioms) but we stick to models (see also the proof of Proposition 6.4.1(1)).

Fact 6.5.2. [Vas17a, Theorem 3.6] Let K be an AEC with a monster model. Suppose

there is λ0 ≥ LS(K) and K∗ such that:

1. K∗ ⊆ K is a sub-AEC of K;

2. K∗ is categorical in λ0;

3. There is a good (<∞,≥ λ0)-frame with full model continuity over K∗;
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4. K∗
λ0

has the λ0-existence property for domination triples (see Definition 6.4.2);

Then for any λ > λ0, the saturated models of K∗
λ has primes.

Corollary 6.5.3. Let K be an AEC with a monster model and λ0 = (2LS(K))+5. Suppose

K is LS(K)-short and superstable in LS(K), then for λ > λ0, K
λ-sat
λ has primes.

Proof. Let K∗ = Kλ0-sat. K∗ is a sub-AEC of K by Fact 6.3.3(1) and is categorical in λ0

by a back-and-forth argument. Substituting κ = LS(K) in Corollary 6.4.11, there is a good

(<∞,≥ λ0)-frame with full model continuity over K∗. We would like to invoke Fact 6.4.3

(substituting λ there by λ0) and say that the good frame has λ0-existence property for

domination triples. While the good frame might not agree with the nonforking relation in

Fact 6.4.3 for longer types, they both extend the good (< 2,≥ λ0)-frame from Fact 6.3.3(2).

Since domination triples are about 1-types only, we can conclude that the nonforking

relation from Fact 6.4.3 and hence the good frame from Corollary 6.4.11 has the λ0-existence

property for domination triples. By Fact 6.5.2, for λ > λ0, (K
∗)λ-satλ = Kλ-sat

λ has primes.

Remark 6.5.4. The above proof went back to the notion of domination triples (instead of

uniqueness triples) to quote Fact 6.4.3 because it was used in the assumptions of [Vas17a].

We suspect that one can derive a version of Fact 6.5.2(4) with uniqueness triples, which

can simplify the proof because we have the existence property of the latter (see Fact 6.4.5).

In the original construction, [Vas16a, Section 11] built domination triples and showed that

they are also uniqueness triples. [Vas16a, Remark 11.8] claimed that if the nonforking

relation has extension (to longer types), then uniqueness triples are domination triples.

[Vas17e, Fact A.18] cited [Vas16a, Lemma 11.7] without proof that it is true in general

(without assuming extension). We cannot verify those claims so we follow the longer route

to obtain the existence property for domination triples.

It would be ideal if Corollary 6.5.3 concluded that Kλ, instead of Kλ-sat
λ , has primes,

because we have the following fact:
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Fact 6.5.5. [Vas17b, Corollary 10.9] Let K∗ be an LS(K∗)-tame AEC with primes and

arbitrarily large models. If K∗ is categorical in some λ > LS(K∗), then it categorical in all

λ′ ≥ min(λ, h(LS(K∗))).

The main component of the proof came from [Vas17e] (or see [Vas18a] for a written-up

version). The idea is that K to show categoricity λ′ > λ, one can pick a bigger categorical

cardinal λ′′ (guaranteed by [Vas17b, Theorem 9.8]). Suppose K∗
λ′ is not categorical, then

one can use primes to transfer non-saturation from λ′ to λ′′. Since we cannot assume K∗
λ′

is categorical in the first place, we need primes for K∗
λ′ rather than the saturated models

of K∗
λ′ .

Question 6.5.6. Using the assumptions in Corollary 6.5.3 (or more), is it possible to

obtain primeness for sufficiently saturated models? A positive answer will simplify the rest

of the proof and remove the assumption of amalgamation over sets to obtain categoricity

transfer.

6.6 AP OVER SETS AND MULTIDIMENSIONAL DIAGRAMS

In this section, we will add the extra assumption of amalgamation over sets (Definition

6.2.1) to obtain excellence (Definition 6.6.8) over sufficiently saturated models. This allows

us to use [SV18b] and show that those models have primes. Then we can invoke Fact 6.5.5

to do categoricity transfer.

In [SV18b, Section 7], given a categorical good λ-frame (for example a good frame

over the λ-saturated models), they defined when a frame reflects down, is extendible, very

good etc. We do not need the precise definitions but only the following fact:

Fact 6.6.1. LetK be a LS(K)-short AEC with a monster model. SupposeK is superstable

in LS(K) and let λ = (2κ)+5, then there is a (< ω)-extendible categorical good (≥ λ)-frame

over the λ-saturated models.

Proof sketch. Readers familiar with [SV18b] and Vasey’s papers can consult [SV18b, Fact

7.21], which applied the same idea on compact AECs. Notice that “LS(K)+6” there should

be κ+6.
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Alternatively, we use the frame from Corollary 6.4.11 and verify directly the extra conditions

(see [SV18b, Section 7] for relevant definitions):

1. There is a two-dimensional nonforking relation that extends our frame: this is wit-

nessed by NF in Fact 6.4.8(2).

2. The two-dimensional nonforking relation is good : namely the frame it extends is a

good frame; the nonforking relation has long transitivity and local character. Our

NF satisfies these by [Vas16a, Facts 12.2, 12.10].

3. The two-dimensional nonforking relation reflects down: by [SV18b, Remark 7.8] it

suffices to check that it is good and extends to λ+. This is true again by Fact 6.4.8(2).

4. The two-dimensional nonforking relation has full model continuity (which makes the

relation very good). This is true by Fact 6.4.8(2).

5. The frame is (< ω)-extendible: by [SV18b, Fact 7.20], it suffices to show that it is

ω-successful and good+, which is true by Fact 6.4.8(1)(2).

Given a (< ω)-extendible good frame, [SV18b, Sections 8-11] went on to build mul-

tidimensional independence relations from the two-dimensional nonforking relation (which

extends the good frame). Basically a multidimensional independence relation takes in mod-

els indexed by a general partial order instead of P(2) as in a two-dimensional nonforking

relation (see [SV18b, Definition 8.11] for a precise definition). We state some relevant

definitions:

Definition 6.6.2. Let K be an abstract class and (I,≤) be a partial order.

1. [SV18b, Definition 8.1] An (I,K)-system is a sequence m = ⟨Mu : u ∈ I⟩ such that

u ≤ v ⇒ Mu ≤K Mv. We omit K if the context is clear. Usually I = P(n) or

I = P(n)\{n} for some n < ω.

2. [SV18b, Definition 8.8] The language of (I,K)-systems is τ I := L(K) ∪ {Pi : i ∈ I}

where each Pi is a unary predicate. The abstract class of (I,K)-systems is KI =
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(KI ,≤KI ) where for each m ∈ KI , ⟨(Pi)
M : i ∈ I⟩ forms a disjoint system and the

models in KI are ordered by disjoint extensions (see [SV18b, Definition 8.6]).

Remark 6.6.3. For our purpose, we only need to know that if m ∈ KP(n), then ⟨(Pi)
m :

i ∈ P(n)⟩ is an P(n)-system whose models are at least ordered by ≤K.

We now define a generalized version of amalgamation as well as higher-dimensional

uniqueness properties. These were key to establish excellence and to build primes.

Definition 6.6.4. 1. [SV18b, Definition 5.6] Let K be an abstract class in τ and let ϕ

be a first-order quantifier-free formula in τ .

(a) M,N ∈ K are ϕ-equal if ϕ(M) = ϕ(N) and the induced partial τ -structures

by ϕ on M,N are equal: for each relation and function symbol R ∈ τ , RM ↾

ϕ(M) = RN ↾ ϕ(N).

(b) A ϕ-span is a triple (M0,M1,M2) such thatM0 ≤K M1,M0 ≤K M2; andM1,M2

are ϕ-equal.

(c) A ϕ-amalgam of a ϕ-span (M0,M1,M2) is a triple (N, f1, f2) such that N ∈ K,

fi :Mi −−→
M0

N for i = 1, 2 and f1 ↾ ϕ(M1) = f2 ↾ ϕ(M2).

(d) M ∈ K is a ϕ-amalgamation base if every ϕ-span of the form (M,M1,M2) has

a ϕ-amalgam.

2. [SV18b, Definition 10.14] For n < ω, let ϕn be the formula in the language of (n,K)-

systems such that for any m = ⟨Mu : u ∈ P(n)⟩, a ∈ |m|, we have m ⊨ ϕn[a] iff

a ∈
⋃

u∈P(n)\{n}Mu.

3. [SV18b, Definition 10.2]

(a) For n < ω, let In be the class of all partial orders isomorphic to an initial

segment of P(n) and let I<ω =
⋃

n<ω In.

(b) Let i be a multidimensional independence relation and P be either existence,

extension or uniqueness (see [SV18b, Definitions 8.11, 8.16]; we do not need the

precise descriptions here). Let I ⊆ I<ω be a partial order and λ ≥ LS(K).
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i. i has n-P if I is defined on P(n)-systems and i ↾ In has P .

ii. i has (λ, n)-P if i ↾ Kλ has n-P .

We will adapt the proof of item (2) below to transfer uniqueness to higher dimensions.

They used WGCH and we will replace it by amalgamation over sets. The construction of

Kproper,∗
i,i∗,P(n) is very complicated and spans several sections. We only need to know that it is a

sub-abstract class of KP(n).

Fact 6.6.5. Let n < ω, i be a very good (see [SV18b, Definition 11.2]) multidimensional

independence relation defined on P(n + 1)-systems, i∗ be its restriction to limit models

ordered by universal extensions. Write K∗ = Kproper,∗
i,i∗,P(n).

1. [SV18b, Lemma 10.15(5)] Let (m0,m1,m2) be a ϕn-span in K∗ and write mi = ⟨M i
u :

u ∈ P(n)⟩ for i = 0, 1, 2. Then (m0,m1,m2) has a ϕn-amalgam in K∗ iff there exists

N ∈ K, fi :M
i
P(n) −−→

m0
N for i = 1, 2 such that f1 ↾M1

u = f2 ↾M2
u for u ∈ P(n)\{n}.

2. [SV18b, Lemma 11.16(2)] Let λ, λ+ be in the domain of i. Suppose 2λ < 2λ
+
and for

µ = λ, λ+, i∗ has (µ, n)-existence and (µ, n)-uniqueness. Then i∗ also has (λ, n + 1)-

uniqueness.

Corollary 6.6.6. Let n < ω, i be a very good multidimensional independence relation

defined on P(n + 1)-systems, i∗ be its restriction to limit models ordered by universal ex-

tensions. Let λ, λ+ be in the domain of i. Suppose K has amalgamation over sets and

for µ = λ, λ+, i∗ has (µ, n)-existence and (µ, n)-uniqueness. Then i∗ also has (λ, n + 1)-

uniqueness.

Proof. WGCH was used in the proof of Fact 6.6.5(2) to show that there is a ϕn-

amalgamation base K∗
λ. It suffices to show that the second part of Fact 6.6.5(1) is always

true under amalgamation over sets, which will imply that any m0 is a ϕn-amalgamation

base.

Let (m0,m1,m2) as in Fact 6.6.5(1). We observe the following:

1. The models in m0 are K-substructures of M0
P(n) ≤ M i

P(n) for i = 1, 2. In particular

m0 is a common subset of the latter two.

179



2. Since (m0,m1,m2) is a ϕn-span, m1 and m2 agree on ϕn, which means that for

u ∈ P(n)\{n}, M1
u =M2

u .

Now take A be the union of the models in m0 as well as M i
u for u ∈ P(n)\{n}, i = 1, 2.

Then we can invoke amalgamation over sets to obtain fi : M
i
P(n) −→A N for some N ∈ K.

By (2), f1 ↾M1
u = id = f2 ↾M2

u .

Remark 6.6.7. 1. In the above proof, we can relax amalgamation over sets to amalga-

mation over multiple models. Namely, let ⟨Mu : u ∈ I⟩ be a finite set of models in

K. Suppose each Mu is a K-substructure of N1 and N2, then there are N ∈ K and

fi : Ni −−−−−→⋃
u∈I Mu

N for i = 1, 2. The point in the original proof of Fact 6.6.5(2) is to

restrict the class to a nice enough K∗ so that WGCH is sufficient.

2. A natural question is whether we can simply work in a usual monster model to

dispense with amalgamation over sets. One difficulty is in the proof of [SV18b, Lemma

12.4] where they claimed to be “similar” to that of [Vas17a, Theorem 3.6]. The latter

makes use of saturated models being model-homogeneous. If we generalize this to

higher-dimensional systems, we need to justify the notion of saturation over sets or

set-homogeneity (the set comes from a system of models). While we are not able to

infer how they close this gap, a strong enough monster model (with amalgamation

over sets) is sufficient for the proof to proceed.

We will show that the frame in Fact 6.6.1 guarantees that the AEC of sufficiently

saturated models is excellent, has primes and hence allows categoricity transfer.

Definition 6.6.8. [SV18b, Definition 13.1]

1. Let i be a multidimensional independence relation. i is excellent if

(a) i is defined on an AEC K∗;

(b) i is very good [SV18b, Definition 11.2];

(c) i has extension and uniqueness [SV18b, Definitions 8.11, 8.16].

2. An AEC K∗ is excellent if there is an excellent multidimensional independence rela-

tion defined on K∗.
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Fact 6.6.9. 1. [SV18b, Theorem 13.6] Let K be an AEC. Suppose there is a (< ω)-

extendible categorical very good λ-frame s defined on some Ks. Let K
∗ be the AEC

generated by Ks. If WGCH holds, then K∗ is excellent.

2. [SV18b, Theorem 13.9] Let K∗ be an AEC. If K∗ is excellent, then KLS(K∗)+-sat has

primes.

Corollary 6.6.10. Let K be a LS(K)-short AEC with amalgamation over sets and arbi-

trarily large models. Suppose K is superstable in LS(K) and let λ = (2LS(K))+6, then Kλ-sat

is excellent and has primes.

Proof. Let λ− be the predecessor cardinal of λ. By Fact 6.6.1, there is a (< ω)-extendible

categorical very good (≥ λ−)-frame s defined on K∗ := Kλ−-sat (which is also the AEC

generated by Kλ−-sat
λ− ; see Fact 6.3.3(1)). In the proof of Fact 6.6.9(1), the only usage of

WGCH is to show Fact 6.6.5(2), which can be replaced by amalgamation over sets due to

Corollary 6.6.6. Hence K∗ is excellent. By Fact 6.6.9(2), Kλ-sat has primes. Restart the

whole proof with λ− replaced by λ to obtain excellence for Kλ-sat.

Remark 6.6.11. Excellence (a nice enough multidimensional independence relation) is an

important tool to generalize the main gap theorem to uncountable theories. [SV18b, Section

1.3] already hinted that their result (with non-ZFC assumptions) satisfies (part of) the

axioms of [GL05]. Here we obtain a ZFC version of excellence by assuming amalgamation

over sets. This is perhaps not a strong assumption because we still do not have a proof of

the main gap theorem for uncountable first-order theories. Future work in this direction

could be verifying [GL05, Axioms 8-10] on regular types. Relevant results can be found in

[She09a, III] but the definitions are different from those in [GL05].

We state three last facts before proving the categoricity transfer in the abstract. The

proof of the first fact uses orthogonality calculus while the proof of the second fact uses

Shelah’s omitting type theorem in [MS90] (see also [Bon20]).

Fact 6.6.12. 1. [Vas17b, Theorem 0.1] Let K be an AEC and LS(K) ≤ λ < θ. Suppose

K has a (type-full) good [λ, θ]-frame and is categorical in λ, θ+, then it is categorical

in all µ ∈ [λ, θ].
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2. [Vas17b, Theorem 9.8] Let K be an LS(K)-tame AEC with amalgamation and ar-

bitrarily large models. If it is categorical in some λ > LS(K), then the categoricity

spectrum contains h(LS(K)) and is unbounded.

3. If an AEC K is LS(K)-tame and has amalgamation over sets, then it is LS(K)-short.

Proof sketch of (3). Let ā = ⟨ai : i < α⟩ and b̄ = ⟨bi : i < α⟩ such that gtp(ā′/∅) =

gtp(b̄′/∅) for small ā′ ⊆ ā and small b̄′ ⊆ b̄. It suffices to define ⟨fj : j < α⟩ increasing and

continuous such that fj(ai) = bi for i ≤ j < α. We handle the successor case: Suppose

fj is defined. Extend it to an automorphism of C. Observe that gtp(fj(aj+1)/fj[{ai : i ≤

j}]) = gtp(fj(aj+1)/{bi : i ≤ j}) so it remains to check that gtp(fj(aj+1)/{bi : i ≤ j}) =

gtp(bj+1/{bi : i ≤ j}). By tameness, we can replace {bi : i ≤ j} by a small subsequence c̄.

Apply a′ = ⟨aj+1⟩⌢f−1
j [c̄] and b′ = ⟨bj+1⟩⌢c̄ in the assumption.

Theorem 6.6.13. Let K be an AEC which is LS(K)-tame, has amalgamation over sets and

arbitrarily large models. Suppose K is categorical in some ξ > LS(K), then it is categorical

in all ξ′ ≥ min(ξ, h(LS(K))).

Proof. By Fact 6.6.12(3), we have LS(K)-shortness. We follow the same idea in [Vas17b,

SV18b], where we obtain primes for sufficiently saturated models by the results in this

section, then transfer categoricity by Section 6.5 and the above fact. Categoricity also

bootstraps the original AEC to be eventually categorical.

1. By Fact 6.4.10, K is superstable in LS(K). Let λ = (2LS(K))+6. By Corollary 6.6.10,

K∗ := Kλ-sat has primes.

2. By Fact 6.6.12(2), we may assume that K (hence K∗) is categorical in some θ >

λ = LS(K∗). By Fact 6.5.5, K∗ is categorical in all λ′ ≥ min(θ, h(LS(K∗))) =

min(θ, h(LS(K))). In particular it is categroical in θ+.

3. Since K∗ is categorical in λ (by saturation) and θ+, by Fact 6.6.12(1) it is categorical

in all λ′ ∈ [λ, θ]. Combining with (2), it is categorical in all λ′ ≥ λ.

4. By Fact 6.6.12(2), we may assume ξ ≤ h(LS(K)). We consider two cases:
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(a) ξ ≥ λ: the models in Kξ are saturated, in particular λ-saturated. Hence K≥ξ =

K∗
≥ξ is totally categorical as desired.

(b) ξ < λ: by Fact 6.3.3(2), there is a good (≥ ξ)-frame over K∗∗ := Kξ-sat. K∗∗ is

categorical in ξ by saturation. By substituting ξ by h(LS(K)) in (a), we have

K, and hence K∗∗ is categorical in all ξ′ ≥ h(LS(K)). In particular K∗∗ is

categorical in h(LS(K))+. By the same argument as (3), K∗∗ is categorical in

all ξ′ ≥ ξ. Now we end up in the scenario of (a) with the new “λ” being ξ so

K≥ξ = K∗∗
≥ξ which is totally categorical.

We apply our theorem to prove known results:

Example 6.6.14. 1. Complete first-order theories: by compactness the models of a

complete first-order theory T satisfy amalgamation over sets, joint-embedding and

no maximal models. It has Löwenheim-Skolem number |T | and is (< ℵ0)-short.

Therefore, we can use Theorem 6.6.13 transfer categoricity in any µ > |T | to all

µ′ ≥ µ. However, we cannot conclude categoricity down to all µ′ > |T | as in [Mor65a,

She74] which used syntactic proofs.

2. Homogeneous diagrams with a monster model: let T be a first-order theory and D be

a subset of syntactic T -types over the empty set. Let KD be the class of models of T

such that the only types over the empty set they realize are from D, where the models

are ordered by elementary substructures. Assuming the existence of a monster model

(see the precise statements in [GL02, Hypothesis 2.5] or [Vas18b, Definition 4.2]), we

have the same properties as those in (1). Hence we can transfer categoricity in any

µ > |T | to all µ′ ≥ µ. [Vas18b, Theorem 4.22] proved the same result using Fact 6.5.5

but also syntactic results from [She71]. Our approach is purely semantic.

3. Classes with intersections, assuming tameness, amalgamation and arbitrarily large

models: we need to justify amalgamation over sets. Work in a monster model C, let

M,N ≤K C and A ⊆ |M | ∩ |N |. By [Vas17e, Proposition 2.14(4)], the closure of A is
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the same amongM , N and C. Hence amalgamation over A amounts to amalgamation

over the closure of A, which is a model. Although this approach is more convoluted

than [Vas17e, Remark 5.3] (classes with intersections immediately have primes), we

can show the extra property of excellence which [Vas17e] could not. In the special

case of universal classes, tameness is for free [Vas17e, Theorem 3.7]. Hence we can

conclude that universal classes with amalgamation and arbitrarily large models can

transfer categoricity upwards, recovering [Vas17b, Corollary 10.11] ([Vas17f] removed

the assumption of amalgamation and arbitrarily large models, but at the expense of

a high categoricity threshold).

Our theorem does not exclude the possibility that the first categoricity cardinal to be

arbitrarily close to h(LS(K)). The following example shows such categoricity behavior but

unfortunately it fails amalgamation and joint-embedding.

Example 6.6.15. Let λ ≥ ℵ0 and λ ≤ α < (2λ)+. By the construction of K0 and K1 in

Proposition 3.4.1, there is Kα, an AEC that encodes the cumulative hierarchy Vα(α). K
α

is ordered by L(Kα)-substructures, LS(Kα) = λ and the models have sizes up to ℶα(λ).

Also, Kα has joint-embedding but not amalgamation. Taking the disjoint union of Kα with

a totally categorical AEC, we obtain an AEC K whose first categoricity cardinal is ℶα(λ),

but it fails amalgamation and joint-embedding.

Remark 6.6.16. [Vas19, Example 9.10(2)] claimed that by encoding the cumulative hier-

archy, one could get such an example with amalgamation (which would provide a complete

list of examples for his categoricity spectra). However, he did not provide the exact en-

coding or the ordering (which amalgamation is sensitive to), so we cannot verify his claim.

A similar problem occurs in [Vas19, Example 9.10(3)] when he encoded an AEC K cate-

gorical only in [LS(K)+m,LS(K)+n] where m,n < ω. If we use L(K)-substructures as the

ordering, amalgamation again fails because the functions (see F in [Vas19, Fact 9.8]) might

be computed differently.

Question 6.6.17. Let κ ≥ ℵ0. For µ < h(κ), is there an AEC K with LS(K) = κ which

is κ-short, has amalgamation over sets and arbitrarily large models such that the first
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categoricity cardinal (exists and) is greater than µ? What if we replace amalgamation over

sets by the usual amalgamation property (see also table(10)(11))?
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CHAPTER 7

ADDITIONAL RESULTS ON CATEGORICITY TRANSFER

Using topos theory, Esṕındola proved:

Fact 7.0.1. [Esp22, Theorems 8.3, 9.1, 10.1] Let K be an AEC.

1. Suppose K has amalgamation everywhere and is categorical in some µ > κ ≥ LS(K).

Then it is categorical in all cardinals between κ and µ.

2. Suppose µ > 2κ and K is categorical in both κ and µ. Then K≥µ has amalgamation.

In [Esp22, Corollary 9.6], he obtained the threshold of categoricity transfer to be the

maximum of the Hanf numbers for categoricity and for non-categoricity. Amalgamation

and tameness were not assumed. Here we give a variation on his result by assuming

amalgamation and tameness.

Recall the following result by Vasey (it was cited in Chapter 6 but in a weaker form):

Fact 7.0.2. [Vas17b, Theorem 9.8] Let K be an LS(K)-tame AEC with amalgamation

and arbitrarily large models. If it is categorical in some λ > LS(K), then it is categorical

in all ℶδ where δ is divisible by (2LS(K))+.

Combining Esṕındola’s and Vasey’s results, we obtain:

Corollary 7.0.3. Let K be an LS(K)-tame AEC with amalgamation and arbitrarily large

models. Suppose K is categorical in some µ > LS(K), then it is categorical in all µ′ ≥

min(µ, h(LS(K))).

Proof. By Fact 7.0.2, K is categorical in all ℶδ where δ is divisible by (2LS(K))+, including

h(LS(K)). Apply Fact 7.0.1 to any two categoricity cardinals. We obtain categoricity for

cardinals greater than or equal to min(µ, h(LS(K))).

This corollary is stronger than Theorem 6.6.13 because it assumes amalgamation over

models but not amalgamation over sets. The price is to borrow powerful results from topos

theory and tell little about the good frames and primes of the AECs.
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We look at an application of the above corollary. Mazari-Armida [MA22] used alge-

braic techniques to obtain categoricity transfer for several classes of modules:

Fact 7.0.4. Let R be an associative ring with unity.

1. [MA22, Theorem 3.4] Let K be the class of locally pure-injective modules ordered by

pure submodule. The following are equivalent:

(a) K is categorical in all λ > |R|+ ℵ0;

(b) K is categorical in some λ > 2|R|+ℵ0 .

2. [MA22, Theorem 3.11] Let K be the class of absolutely pure modules ordered by pure

submodule. The following are equivalent:

(a) K is categorical in all λ > |R|+ ℵ0;

(b) K is categorical in some λ > |R|+ ℵ0.

3. [MA22, Theorem 3.19] Let K be the class of locally injective modules ordered by pure

submodule. The following are equivalent:

(a) K is categorical in all λ > |R|+ ℵ0;

(b) K is categorical in some λ > 2|R|+ℵ0 .

He asked [MA22, Question 4.3] whether the above results could be achieved by model-

theoretic techniques only. We give a positive answer to the upward transfers if we are also

allowed to use Fact 7.0.1 which is topos-theoretic.

Corollary 7.0.5. Let K be one of the three classes in Fact 7.0.4. If K is categorical in

some λ > 2|R|+ℵ0, then it is categorical in all λ′ ≥ λ.

Proof. Using [MA22, Facts 3.3, 3.10] and the proof of [MA22, Theorem 3.19], each of the

class K in Fact 7.0.4 is an LS(K)-tame AEC with amalgamation and arbitrarily large

models. Also, |R|+ ℵ0 ≤ LS(K) ≤ 2|R|+ℵ0 . Apply Corollary 7.0.3.
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