Axiomatizing AECs and Applications Panglobal Algebra and Logic Seminar

Samson Leung

Carnegie Mellon University

October 18, 2022

э

1/17

Overview

- Main results
- Abstract elementary classes (AECs)
- Proof idea
- Other results
- Open questions

< ∃⇒

э

2/17

Main results

Definition

Let $L \subseteq L'$ be first-order languages, T be a first-order theory in L', Γ be a set of L'-types.

 $M' \in EC(T, \Gamma) \Leftrightarrow (M' \vDash T \text{ and } M' \text{ omits } \Gamma)$ $M \in PC(T, \Gamma, L) \Leftrightarrow (\exists M' \in EC(T, \Gamma) \text{ and } M = M' \upharpoonright L)$

Main results

Definition

Let $L \subseteq L'$ be first-order languages, T be a first-order theory in L', Γ be a set of L'-types.

$$M' \in EC(T, \Gamma) \Leftrightarrow (M' \vDash T \text{ and } M' \text{ omits } \Gamma)$$

 $M \in PC(T, \Gamma, L) \Leftrightarrow (\exists M' \in EC(T, \Gamma) \text{ and } M = M' \upharpoonright L)$

Theorem (Shelah)

٨

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then K is $PC_{\lambda,2^{\lambda}}$.

イロト イポト イヨト イヨト

Main results

Definition

Let $L \subseteq L'$ be first-order languages, T be a first-order theory in L', Γ be a set of L'-types.

$$M' \in EC(T, \Gamma) \Leftrightarrow (M' \vDash T \text{ and } M' \text{ omits } \Gamma)$$

 $M \in PC(T, \Gamma, L) \Leftrightarrow (\exists M' \in EC(T, \Gamma) \text{ and } M = M' \upharpoonright L)$

Theorem (Shelah)

٨

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then K is $PC_{\lambda,2^{\lambda}}$. Namely, there are $L' \supseteq L(\mathbf{K})$, T and Γ such that **a** $K = PC(T, \Gamma, L(\mathbf{K}));$ **a** $|T| \le \lambda$ and $|\Gamma| \le 2^{\lambda}$.

э

イロト 不良 トイヨト イヨト

・ロト ・四ト ・ヨト ・ヨト

æ

Theorem (4.1,4.10)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then K is $PC_{\chi,\chi}$ where $\chi = \lambda + l_2(\lambda, \mathbf{K})$.

イロト 不得 トイヨト イヨト

3

Theorem (4.1,4.10)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then K is $PC_{\chi,\chi}$ where $\chi = \lambda + I_2(\lambda, \mathbf{K})$. Moreover, if **K** is categorical in λ^+ , stable in λ , has λ -AP and $I(\lambda, \mathbf{K}) \leq \lambda$, then **K** is $PC_{\lambda,\lambda}$.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Theorem (4.1,4.10)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then K is $PC_{\chi,\chi}$ where $\chi = \lambda + I_2(\lambda, \mathbf{K})$. Moreover, if **K** is categorical in λ^+ , stable in λ , has λ -AP and $I(\lambda, \mathbf{K}) \leq \lambda$, then **K** is $PC_{\lambda,\lambda}$.

Relevant result in the literature (using descriptive set theory):

Theorem (Shelah-Vasey)

Let **K** be an AEC with $LS(\mathbf{K}) = \aleph_0$. If **K** is stable in \aleph_0 , has \aleph_0 -AP and $I(\aleph_0, \mathbf{K}) \leq \aleph_0$, then K is PC_{\aleph_0, \aleph_0} .

Let's also look at axiomatizations within the same language $L(\mathbf{K})$.

Theorem (Shelah-Villaveces)

Let **K** be an AEC, $L = L(\mathbf{K})$ and $\lambda = LS(\mathbf{K})$. Then **K** can be axiomatized by a sentence in $L_{(2^{2\lambda^+})^{+++},\lambda^+}$.

Let's also look at axiomatizations within the same language $L(\mathbf{K})$.

Theorem (Shelah-Villaveces)

Let **K** be an AEC, $L = L(\mathbf{K})$ and $\lambda = LS(\mathbf{K})$. Then **K** can be axiomatized by a sentence in $L_{(2^{2\lambda^+})^{+++},\lambda^+}$.

Their proof used partition theorem to color an ω -tree of models. Can we provide a simpler proof?

Let's also look at axiomatizations within the same language $L(\mathbf{K})$.

Theorem (Shelah-Villaveces)

Let **K** be an AEC, $L = L(\mathbf{K})$ and $\lambda = LS(\mathbf{K})$. Then **K** can be axiomatized by a sentence in $L_{(2^{2\lambda^+})^{+++},\lambda^+}$.

Their proof used partition theorem to color an ω -tree of models. Can we provide a simpler proof?

Theorem (3.7)

Let **K** be an AEC, $L = L(\mathbf{K})$, $\lambda = LS(\mathbf{K})$ and $\chi = \lambda + I_2(\lambda, \mathbf{K})$. Then **K** can be axiomatized by a sentence in $L_{\chi^+,\lambda^+}(\omega \cdot \omega)$ (game quantification of $\omega \cdot \omega$ steps).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Shelah developed an axiomatic framework to contain certain classes of models, including models of first-order theories.

Shelah developed an axiomatic framework to contain certain classes of models, including models of first-order theories.

Definition

Let *L* be a finitary (first-order) language. An abstract elementary class $\mathbf{K} = \langle K, \leq_{\mathbf{K}} \rangle$ in $L = L(\mathbf{K})$ satisfies the following axioms:

- **(**) *K* is a class of *L*-structures and $\leq_{\mathbf{K}}$ is a partial order on $K \times K$.
- ② For $M_1, M_2 \in K$, $M_1 \leq_{\mathbf{K}} M_2$ implies $M_1 \subseteq M_2$ (as *L*-substructure).

Definition (Continued)

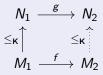
- Isomorphism axioms:
 - **a** If $M \in K$, N is an L-structure, $M \cong N$, then $N \in K$.

→

< (17) > < (17) > <

Definition (Continued)

- Isomorphism axioms:
 - **a** If $M \in K$, N is an L-structure, $M \cong N$, then $N \in K$.
 - Let $M_1, M_2, N_1, N_2 \in K$. If $f : M_1 \cong M_2$, $g : N_1 \cong N_2$, $g \supseteq f$ and $M_1 \leq_{\mathbf{K}} N_1$, then $M_2 \leq_{\mathbf{K}} N_2$.



► < Ξ ►</p>

7/17

Definition (Continued)

• Coherence: Let $M_1, M_2, M_3 \in K$. If $M_1 \leq_{\mathbf{K}} M_3$, $M_2 \leq_{\mathbf{K}} M_3$ and $M_1 \subseteq M_2$, then $M_1 \leq_{\mathbf{K}} M_2$.

→

< A > < E

Definition (Continued)

- Coherence: Let $M_1, M_2, M_3 \in K$. If $M_1 \leq_{\mathbf{K}} M_3$, $M_2 \leq_{\mathbf{K}} M_3$ and $M_1 \subseteq M_2$, then $M_1 \leq_{\mathbf{K}} M_2$.
- Solution Solution Solution: There exists an infinite cardinal $\lambda \ge |L(\mathbf{K})|$ such that: for any $M \in K$, $A \subseteq |M|$, there is some $N \in K$ with $A \subseteq |N|$, $N \le_{\mathbf{K}} M$ and $||N|| \le \lambda + |A|$. We call the minimum such λ the Löwenheim-Skolem number LS(**K**).

Definition (Continued)

- Coherence: Let $M_1, M_2, M_3 \in K$. If $M_1 \leq_{\mathbf{K}} M_3$, $M_2 \leq_{\mathbf{K}} M_3$ and $M_1 \subseteq M_2$, then $M_1 \leq_{\mathbf{K}} M_2$.
- Solution Solution Solution: There exists an infinite cardinal λ ≥ |L(K)| such that: for any M ∈ K, A ⊆ |M|, there is some N ∈ K with A ⊆ |N|, N ≤_K M and ||N|| ≤ λ + |A|. We call the minimum such λ the Löwenheim-Skolem number LS(K).
- Chain axioms: Let α be an ordinal and $\langle M_i : i < \alpha \rangle \subseteq K$ such that for $i < j < \alpha$, $M_i \leq_{\mathbf{K}} M_j$.
 - Then $M = \bigcup_{i < \alpha} M_i$ is in K and for all $i < \alpha$, $M_i \leq_{\mathbf{K}} M$.
 - **2** Let $N \in K$. If in addition for all $i < \alpha$, $M_i \leq_{\mathbf{K}} N$, then $M \leq_{\mathbf{K}} N$.

Definition

Let **K** be an AEC and $\lambda \geq LS(\mathbf{K})$.

$$I(\lambda, \mathbf{K}) = |\{M/_{\cong} : M \in K_{\lambda}\}|$$

イロト イボト イヨト イヨト

э

Definition

Let **K** be an AEC and $\lambda \geq \mathsf{LS}(\mathbf{K})$.

$$I(\lambda, \mathbf{K}) = |\{M/_{\cong} : M \in K_{\lambda}\}|$$

 $I_2(\lambda, \mathbf{K}) = |\{(M, N)/_{\cong} : M \leq_{\mathbf{K}} N \text{ both in } K_{\lambda}\}|$

where $(M_1, N_1) \cong (M_2, N_2)$ iff $M_1 \leq_{\mathbf{K}} N_1$, $M_2 \leq_{\mathbf{K}} N_2$ and there is $g : N_1 \cong N_2$ such that $g \upharpoonright M_1 : M_1 \cong M_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

Let **K** be an AEC and $\lambda \geq \mathsf{LS}(\mathbf{K})$.

$$I(\lambda, \mathbf{K}) = |\{M/_{\cong} : M \in K_{\lambda}\}|$$

 $I_2(\lambda, \mathbf{K}) = |\{(M, N)/\cong : M \leq_{\mathbf{K}} N \text{ both in } K_{\lambda}\}|$

where $(M_1, N_1) \cong (M_2, N_2)$ iff $M_1 \leq_{\mathbf{K}} N_1$, $M_2 \leq_{\mathbf{K}} N_2$ and there is $g : N_1 \cong N_2$ such that $g \upharpoonright M_1 : M_1 \cong M_2$.

Fact

 $I_2(\lambda, \mathbf{K}) \leq 2^{\lambda}.$

In the main results, we had $\chi = \lambda + I_2(\lambda, \mathbf{K})$, and bypassed I_2 under more assumptions.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Adapt the original proof by Shelah!

Definition

Let I be an index set. A directed system $\langle M_i : i \in I \rangle \subseteq K$ indexed by I satisfies the following: for any $i, j \in I$, there is $k \in I$ such that $M_i \leq_{\mathbf{K}} M_k$ and $M_j \leq_{\mathbf{K}} M_k$.

э

Adapt the original proof by Shelah!

Definition

Let I be an index set. A directed system $\langle M_i : i \in I \rangle \subseteq K$ indexed by I satisfies the following: for any $i, j \in I$, there is $k \in I$ such that $M_i \leq_{\mathbf{K}} M_k$ and $M_j \leq_{\mathbf{K}} M_k$.

Given $M \in K$, we index the system by finite tuples of elements in M, ordered by inclusion.

く 何 ト く ヨ ト く ヨ ト

Adapt the original proof by Shelah!

Definition

Let I be an index set. A directed system $\langle M_i : i \in I \rangle \subseteq K$ indexed by I satisfies the following: for any $i, j \in I$, there is $k \in I$ such that $M_i \leq_{\mathbf{K}} M_k$ and $M_j \leq_{\mathbf{K}} M_k$.

Given $M \in K$, we index the system by finite tuples of elements in M, ordered by inclusion.

Fact

Let $\langle M_i : i \in I \rangle \subseteq K$ be a directed system. Then

$$M = \bigcup_{i \in I} M_i \in K;$$

- **2** For all $i \in I$, $M_i \leq_{\mathbf{K}} M$;
- **③** Let $N \in K$. If in addition for all $i \in I$, $M_i \leq_{\mathbf{K}} N$, then $M \leq_{\mathbf{K}} N$.

3

10 / 17

イロト 不良 トイヨト イヨト

Let M be an L(K)-structure, $\lambda = LS(K)$. Strategy: to ensure that $M \in K$, we require M to be the union of a directed system in K.

 Expand L(K) by adding λ-many functions. They map a finite tuple to a K-structure containing it:

 $a \in |M|^{<\omega} \mapsto \{f_i(a) : i < \lambda\} = |M_a| \text{ with } M_a \in K.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *M* be an L(**K**)-structure, $\lambda = LS(\mathbf{K})$.

Strategy: to ensure that $M \in K$, we require M to be the union of a directed system in K.

 Expand L(K) by adding λ-many functions. They map a finite tuple to a K-structure containing it:

 $a \in |M|^{<\omega} \mapsto \{f_i(a) : i < \lambda\} = |M_a| \text{ with } M_a \in K.$

• " $M_a \in K$ " is by listing all the isomorphism types in K_λ , there are $I(\lambda, \mathbf{K})$ -many.

(人間) トイヨト イヨト ニヨ

Let *M* be an L(**K**)-structure, $\lambda = LS(\mathbf{K})$.

Strategy: to ensure that $M \in K$, we require M to be the union of a directed system in K.

 Expand L(K) by adding *\lambda*-many functions. They map a finite tuple to a K-structure containing it:

 $a \in |M|^{<\omega} \mapsto \{f_i(a) : i < \lambda\} = |M_a| \text{ with } M_a \in K.$

- " $M_a \in K$ " is by listing all the isomorphism types in K_{λ} , there are $I(\lambda, \mathbf{K})$ -many.
- Stipulate that $\langle M_a : a \in |M|^{<\omega} \rangle$ forms a directed system: If $a \cup b \subseteq c$ then $M_a \leq_{\mathbf{K}} M_c$ and $M_b \leq_{\mathbf{K}} M_c$.

Let *M* be an L(**K**)-structure, $\lambda = LS(\mathbf{K})$.

Strategy: to ensure that $M \in K$, we require M to be the union of a directed system in K.

 Expand L(K) by adding λ-many functions. They map a finite tuple to a K-structure containing it:

 $a \in |M|^{<\omega} \mapsto \{f_i(a) : i < \lambda\} = |M_a| \text{ with } M_a \in K.$

- " $M_a \in K$ " is by listing all the isomorphism types in K_λ , there are $I(\lambda, \mathbf{K})$ -many.
- Stipulate that $\langle M_a : a \in |M|^{<\omega} \rangle$ forms a directed system: If $a \cup b \subseteq c$ then $M_a \leq_{\mathbf{K}} M_c$ and $M_b \leq_{\mathbf{K}} M_c$.
 - " $\leq_{\mathbf{K}}$ " is by listing all the isomorphism types of pairs $N_0 \leq_{\mathbf{K}} N_1$ in K_{λ} , there are $I_2(\lambda, \mathbf{K})$ -many.

11/17

We have axiomatized **K** in an $L'_{\chi^+,\omega}$ -sentence σ where L' contains extra functions than $L(\mathbf{K})$ and $\chi = \lambda + I_2(\lambda, \mathbf{K})$. To convert this to a PC-class, we use the following fact:

We have axiomatized **K** in an $L'_{\chi^+,\omega}$ -sentence σ where L' contains extra functions than $L(\mathbf{K})$ and $\chi = \lambda + I_2(\lambda, \mathbf{K})$. To convert this to a PC-class, we use the following fact:

Chang's presentation theorem

Let θ be an infinite cardinal, L be a language of size $\leq \theta$, T be an $L_{\theta^+,\omega}$ -theory contained in a fragment of size $\leq \theta$, then the models of T is a $PC_{\theta,\theta}$ -class.

We have axiomatized **K** in an $L'_{\chi^+,\omega}$ -sentence σ where L' contains extra functions than $L(\mathbf{K})$ and $\chi = \lambda + l_2(\lambda, \mathbf{K})$. To convert this to a PC-class, we use the following fact:

Chang's presentation theorem

Let θ be an infinite cardinal, L be a language of size $\leq \theta$, T be an $L_{\theta^+,\omega}$ -theory contained in a fragment of size $\leq \theta$, then the models of T is a $PC_{\theta,\theta}$ -class.

Taking $T = \{\sigma\}$, we obtain **K** as a $PC_{\chi,\chi}$ -class.

くぼう くほう くほう しゅ

Theorem (4.10)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. If **K** is categorical in λ^+ , stable in λ , has λ -AP and $I(\lambda, \mathbf{K}) \leq \lambda$, then **K** is $PC_{\lambda,\lambda}$.

э

Theorem (4.10)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. If **K** is categorical in λ^+ , stable in λ , has λ -AP and $I(\lambda, \mathbf{K}) \leq \lambda$, then **K** is $PC_{\lambda,\lambda}$.

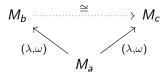
 $I(\lambda, \mathbf{K}) \leq \lambda$ allows us to list at most λ individual models. Unfortunately, we do not know how to obtain a better bound of I_2 .

く 何 ト く ヨ ト く ヨ ト

Theorem (4.10)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. If **K** is categorical in λ^+ , stable in λ , has λ -AP and $I(\lambda, \mathbf{K}) \leq \lambda$, then **K** is $PC_{\lambda,\lambda}$.

 $I(\lambda, \mathbf{K}) \leq \lambda$ allows us to list at most λ individual models. Unfortunately, we do not know how to obtain a better bound of I_2 . We bypass this by building limit models. Recall that N is (λ, ω) -limit over M_0 if $N = \bigcup_{i < \omega} M_i$ where $M_{i+1} \in K_\lambda$ is universal over M_i .



In other words, if $I(\lambda, \mathbf{K}) = \lambda$ and $\leq_{\mathbf{K}}$ is replaced by " (λ, ω) -limit", then $I_2(\lambda, \mathbf{K}) = \lambda!$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

Definition

Let λ be an infinite cardinal and $\kappa \geq 1$. $\delta(\lambda, \kappa)$ is the minimum ordinal δ such that:

イロト イボト イヨト イヨト

3

Definition

Let λ be an infinite cardinal and $\kappa \geq 1$. $\delta(\lambda, \kappa)$ is the minimum ordinal δ such that:

- For any first-order language L that contains a binary relation < and a unary predicate Q,
- any first-order theory T in L of size $\leq \lambda$,
- any set of T-types Γ of size $\leq \kappa$,
- if there exists $M \in EC(T, \Gamma)$ with $(Q^M, <^M)$ of order type $\geq \delta$,
- then there is $N \in EC(T, \Gamma)$ with $(Q^N, <^N)$ ill-founded.

Definition

Let λ be an infinite cardinal and $\kappa \geq 1$. $\delta(\lambda, \kappa)$ is the minimum ordinal δ such that:

- For any first-order language L that contains a binary relation < and a unary predicate Q,
- any first-order theory T in L of size $\leq \lambda$,
- any set of T-types Γ of size $\leq \kappa$,
- if there exists $M \in EC(T, \Gamma)$ with $(Q^M, <^M)$ of order type $\geq \delta$,
- then there is $N \in EC(T, \Gamma)$ with $(Q^N, <^N)$ ill-founded.

Definition

Let **K** be an AEC. $K^{<} = \{ \langle |M|, |N| \rangle \mid N <_{\mathbf{K}} M \}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Shelah)

Let **K** be an AEC, $\theta \ge LS(\mathbf{K})$. Suppose the following hold:

• $K, K^{<}$ are both $PC_{\theta,\theta}$;

2 K is categorical in both θ and θ^+ ;

• $\delta(\theta, 1) = \theta^+$ (true for \aleph_0 and strong limits of countable cofinality). Then $K_{\theta^{++}} \neq \emptyset$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (Shelah)

Let **K** be an AEC, $\theta \ge LS(\mathbf{K})$. Suppose the following hold:

• $K, K^{<}$ are both $PC_{\theta,\theta}$;

2 K is categorical in both θ and θ^+ ;

• $\delta(\theta, 1) = \theta^+$ (true for \aleph_0 and strong limits of countable cofinality). Then $K_{\theta^{++}} \neq \emptyset$.

Corollary (Shelah)

(1) is true for $\theta \geq 2^{\lambda}$ where $\lambda = \mathsf{LS}(\mathsf{K})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Shelah)

Let **K** be an AEC, $\theta \ge LS(\mathbf{K})$. Suppose the following hold:

• $K, K^{<}$ are both $PC_{\theta,\theta}$;

2 K is categorical in both θ and θ^+ ;

• $\delta(\theta, 1) = \theta^+$ (true for \aleph_0 and strong limits of countable cofinality). Then $K_{\theta^{++}} \neq \emptyset$.

Corollary (Shelah)

(1) is true for $\theta \geq 2^{\lambda}$ where $\lambda = \mathsf{LS}(\mathsf{K})$.

Corollary (4.8)

(1) is true for $\theta \ge \lambda + l_2(\lambda, \mathbf{K})$. Moreover, under λ -AP and stability in λ , (2) already implies (1) for $\theta = \lambda$.

イロト イヨト イヨト イヨト 三日

Let $\mu \geq \aleph_0$. Define PC^{μ} as before except that the underlying languages L, L' are $(<\mu)$ -ary.

K is	K is axiomatizable in	K is
An AEC	$L_{\chi^+,\lambda^+}(\omega\cdot\omega)$	$PC_{\chi,\chi}$
A μ -AEC	$L_{\chi^+,\lambda^+}(\mu\cdot\mu)$	$PC^{\mu}_{\chi,\chi}$

< 4³ ► <

э

Open questions

Question

Let **K** be an AEC and $\lambda = \mathsf{LS}(\mathbf{K})$.

- Under extra assumptions (categoricity, stability, etc), is it possible to bound l₂(λ, K) strictly below 2^λ ?
 - We bypassed I_2 and used other arguments.

→

Open questions

Question

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$.

- Under extra assumptions (categoricity, stability, etc), is it possible to bound l₂(λ, K) strictly below 2^λ ?
 - We bypassed I_2 and used other arguments.
- Can we relate the infinitary logics $L_{\alpha,\beta}$ and $L_{\gamma,\epsilon}(\delta)$?
 - This might remove the game quantification in our axiomatization.

Open questions

Question

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$.

 Under extra assumptions (categoricity, stability, etc), is it possible to bound l₂(λ, K) strictly below 2^λ ?

We bypassed I_2 and used other arguments.

• Can we relate the infinitary logics $L_{\alpha,\beta}$ and $L_{\gamma,\epsilon}(\delta)$?

This might remove the game quantification in our axiomatization.

- Does the Hanf number exist for µ-AECs?
 - Hanf number is the threshold cardinal for arbitrarily large models. In AECs, the Hanf number is $\beth_{(2^{\lambda})^{+}}$.

17/17

<日

<</p>