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Abstract. Let (K; +, ·, D, 0, 1) be a differentially closed field with field of constants C.
In the first part of the paper we explore the connection between Ax-Schanuel type theorems

(predimension inequalities) for a differential equation E(x, y) and the geometry of the fibres
Us := {y : E(s, y) ∧ y /∈ C} where s is a non-constant element. We show that certain types of
predimension inequalities imply strong minimality and geometric triviality of Us. Moreover, the
induced structure on the Cartesian powers of Us is given by special subvarieties. In particular,
since the j-function satisfies an Ax-Schanuel inequality of the required form (due to Pila and
Tsimerman), our results give a new proof for a theorem of Freitag and Scanlon stating that
the differential equation of j defines a strongly minimal set with trivial geometry (which is not
ℵ0-categorical though).

In the second part of the paper we study strongly minimal sets in the j-reducts of dfferentially
closed fields. Let Ej(x, y) be the (two-variable) differential equation of the j-function. We prove
a Zilber style classification result for strongly minimal sets in the reduct KEj

:= (K; +, ·, Ej)
assuming an Existential Closedness (EC) conjecture for Ej . More precisely, assuming EC we
show that in KEj

all strongly minimal sets are geometrically trivial or non-orthogonal to C.
The EC conjecture states roughly that if for a system of equations in terms of Ej having a
solution does not contradict Ax-Schanuel then it does have a solution.

1. Introduction

Throughout the paper we let K = (K; +, ·, D, 0, 1) be a differentially closed field with field
of constants C.

Let E(x, y) be (the set of solutions of) a differential equation f(x, y) = 0 with rational (or,
more generally, constant) coefficients. A general question that we are interested in is whether E
satisfies an Ax-Schanuel type inequality. A motivating example is the exponential differential
equation Dy = yDx. We know that (the original) Ax-Schanuel ([Ax71]) gives a predimension
inequality (in the sense of Hrushovski [Hru93]) which governs the geometry of our equation.
In this case the corresponding reduct of a differentially closed field can be reconstructed by a
Hrushovski-style amalgamation-with-predimension construction ([Kir09]). Zilber calls this kind
of predimension inequalities adequate (see [Asl17b, Asl18a] for a precise definition). This means
that the reduct satisfies an existential closedness property which asserts roughly that a system of
exponential equations which is not overdetermined has a solution. Being overdetermined means
that the existence of a solution would contradict Ax-Schanuel. Thus, having an adequate Ax-
Schanuel inequality for E will give us a complete understanding of its model theory. For more
details on this and related problems see [Asl17b, Asl18a, Kir09, Zil04, Zil05]. Ax-Schanuel
type statements can also be applied to diophantine geometry. Indeed, they can be used to
prove a weak version of the famous Zilber-Pink conjecture in the appropriate setting (see
[Zil02, PT16, Kir09, Asl18b]).

Thus, we want to classify differential equations of two variables with respect to the property
of satisfying an Ax-Schanuel type inequality. The present work should be seen as a part of that
more general project. In the first part of the paper we explore the connection between Ax-
Schanuel type theorems (predimension inequalities) for a differential equation E(x, y) and the
geometry of the fibres of E. More precisely, given a predimension inequality (not necessarily
adequate) for solutions of E of a certain type (which is of the form “td−d” where d is a
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dimension of trivial type) we show that the fibres of E are strongly minimal and geometrically
trivial (after removing constant points). Moreover, the induced structure on the Cartesian
powers of those fibres is given by special subvarieties.

One of the main results of the first part is as follows (for the definition of weakly special
varieties see Section 3.1).

Theorem 1.1. Let E(x, y) be defined by R(x, y, ∂xy, . . . , ∂
m
x y) = 0 where ∂x = D

Dx
for a non-

constant x and R(X, Ȳ ) is an algebraic polynomial over C, irreducible over C(X)alg. Assume
E satisfies the following Ax-Schanuel condition for a collection P of algebraic polynomials
P (X, Y ) ∈ C[X, Y ]:

let x1, . . . , xn, y1, . . . , yn be non-constant elements of K with E(xi, yi). If P (yi, yj) 6= 0
for all P ∈ P and i 6= j then

tdC C(x1, y1, ∂x1y1, . . . , ∂
m−1
x1

y1, . . . , xn, yn, ∂xnyn, . . . , ∂
m−1
xn

yn) ≥ mn+ 1.

Then for every s ∈ K \ C the set Us := {y : E(s, y) ∧ y /∈ C} is strongly minimal with
trivial geometry. Furthermore, every definable subset of a Cartesian power of Us is a Boolean
combination of weakly P-special subvarieties.

In particular, let Fj(y,Dy,D
2y,D3y) = 0 be the differential equation of the j-function (see

Section 2). Consider its two-variable version Ej(x, y) given by Fj(y, ∂xy, ∂
2
xy, ∂

3
xy) = 0 (where,

as above, ∂x = 1
Dx
·D). It is known (due to Pila and Tsimerman [PT16]) that Ej satisfies an

Ax-Schanuel inequality of the above form where P is the collection of all modular polynomials.
Hence the above result implies that the set Fj(y,Dy,D

2y,D3y) = 0 is strongly minimal and
geometrically trivial thus giving a new proof for a theorem of Freitag and Scanlon [FS18]. In
fact, the Pila-Tsimerman inequality is the main motivation for this paper.

Thus we get a necessary condition for E to satisfy an Ax-Schanuel inequality of the given
form. This is a step towards the solution of the problem described above. In particular it
gives rise to a converse problem: given a one-variable differential equation which is strongly
minimal and geometrically trivial, can we say anything about the Ax-Schanuel properties of
its two-variable analogue (see Section 3.4 for more details)?

On the other hand, understanding the structure of strongly minimal sets in a given theory
is a central problem in geometric model theory. In DCF0 there is a nice classification of
strongly minimal sets. Namely, they satisfy the Zilber trichotomy, that is, such a set must be
either geometrically trivial or non-orthogonal to a Manin kernel1 (this is the locally modular
non-trivial case) or non-orthogonal to the field of constants which corresponds to the non-
locally modular case ([HuS93]). Hrushovski [Hru95] also gave a full characterisation of strongly
minimal sets of order 1 proving that such a set is either non-orthogonal to the constants or it is
trivial and ℵ0-categorical. However there is no general classification of trivial strongly minimal
sets of higher order and therefore we do not fully understand the nature of those sets. From
this point of view the set J defined by the differential equation of j is quite intriguing since it is
the first example of a trivial strongly minimal set in DCF0 which is not ℵ0-categorical. Before
Freitag and Scanlon established those properties of J in [FS18], it was mainly believed that
trivial strongly minimal sets in DCF0 must be ℵ0-categorical. The reason for this speculation
was Hrushovski’s aforementioned theorem on order 1 strongly minimal sets (and the lack of
counterexamples).

Thus, the classification of strongly minimal sets in DCF0 can be seen as another source of
motivation for the work in this paper, where we show that these two problems (Ax-Schanuel
type theorems and geometry of strongly minimal sets) are in fact closely related.

In the second part of the paper we use Ax-Schanuel for the j-function to classify strongly
minimal sets in a “j-reduct” of a differentially closed field (this problem was asked by Zilber
in a private communication). More precisely, the problem is to classify strongly minimal sets

1More precisely, it is non-orthogonal to the Manin kernel A# of a simple abelian variety A of C-trace zero.
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in the reduct KEj
:= (K; +, ·, Ej) where Ej is the two-variable differential equation of the j-

function described above. It turns out that if we assume Ej satisfies an Existential Closedness
statement ([Asl18a]), which essentially states that if for a system of equations in KEj

having
a solution does not contradict Ax-Schanuel then it does have a solution, then we can prove a
dichotomy result for strongly minimal sets in KEj

.

Theorem 1.2. Assume the Existential Closedness conjecture for Ej. Then in KEj
all strongly

minimal sets are geometrically trivial or non-orthogonal to C (the latter being definable in KEj
).

The Existential Closedness conjecture is related to the question of adequacy of the Ax-
Schanuel theorem for the j-function (see [Asl18a], we also give some details in Section 4.2).
Adequacy means that the Ax-Schanuel inequality governs the geometry of the reduct, hence it
is not surprising that it leads to a classification of strongly minimal sets there.

We also study strongly minimal sets in a more basic reduct, namely KC := (K; +, ·, C) where
C is the field of constants (this is just a pair of algebraically closed fields). Actually, this is the
first example that we deal with in the second part of this paper. For this reduct we do not have
any Ax-Schanuel type statement and we do not need one since it is quite easy to understand
definable sets in such a structure. In this case we have the following result.

Theorem 1.3. All strongly minimal sets in KC are non-orthogonal to C.

Most of our observations on pairs of algebraically closed fields are well known and we merely
present our approach as a prelude to the aforementioned classification of strongly minimal sets
in j-reducts.

The paper is organised as follows. In Section 2 we give a brief account of the j-function.
Section 3 is the “first part” of the paper where we study strong minimality and geometric
triviality of definable sets in DCF0. Section 4, the “second part”, is devoted to the classification
of strongly minimal sets in j-reducts of DCF0. Appendix A contains some preliminaries on
strongly minimal sets.

Notation and conventions.
• The length of a tuple ā will be denoted by |ā|.
• For fields L ⊆ K the transcendence degree of K over L is denoted by td(K/L) or tdLK.
The algebraic locus (Zariski closure) of a tuple ā ∈ K over L will be denoted by LocL(ā)
or Loc(ā/L).
• The algebraic closure of a field L is denoted by Lalg.
• Algebraic varieties defined over an (algebraically closed) field K will be identified with
the sets of their K-rational points.
• In a differential field (K; +, ·, D) and a non-constant element x the differentiation with
respect to x is a derivation ∂x of K defined by ∂x : y → Dy

Dx
.

• For differential fields L ⊆ K and a subset A ⊆ K the differential subfield ofK generated
by L and A will be denoted by L〈A〉, and K{X} is the ring of differential polynomials
over K.

2. Background on the j-function

The j-function is a modular function of weight 0 for the modular group SL2(Z), which is
defined and analytic on the upper half-plane H := {z ∈ C : Im(z) > 0}.

Let GL+
2 (Q) be the subgroup of GL2(Q) consisting of matrices with positive determinant

(this group acts on the upper half-plane via the linear fractional transformations). For g ∈
GL+

2 (Q) we let N(g) be the determinant of g scaled so that it has relatively prime integral
entries. For each positive integer N there is an irreducible polynomial ΦN(X, Y ) ∈ Z[X, Y ]
such that whenever g ∈ GL+

2 (Q) with N = N(g), the function ΦN(j(z), j(gz)) is identically
zero. Conversely, if ΦN(j(x), j(y)) = 0 for some x, y ∈ H then y = gx for some g ∈ GL+

2 (Q)
with N = N(g). The polynomials ΦN are called modular polynomials (see [Lan73]). It is
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well known that Φ1(X, Y ) = X − Y and all the other modular polynomials are symmetric.
Two elements w1, w2 ∈ C are called modularly independent if they do not satisfy any modular
relation ΦN(w1, w2) = 0. This definition makes sense for arbitrary fields (of characteristic zero)
as the modular polynomials have integer coefficients.

The j-function satisfies an order 3 algebraic differential equation over Q, and none of lower
order (i.e. its differential rank over C is 3). Namely, Fj(j, j

′, j′′, j′′′) = 0 where

Fj(Y0, Y1, Y2, Y3) =
Y3

Y1

− 3

2

(
Y2

Y1

)2

+
Y 2

0 − 1968Y0 + 2654208

2Y 2
0 (Y0 − 1728)2

· Y 2
1 .

Thus
Fj(Y, Y

′, Y ′′, Y ′′′) = SY +R(Y )(Y ′)2,

where S denotes the Schwarzian derivative defined by SY = Y ′′′

Y ′ − 3
2

(
Y ′′

Y ′

)2
and R(Y ) =

Y 2−1968Y +2654208
2Y 2(Y−1728)2

. All functions j(gz) with g ∈ SL2(C) satisfy this equation and all solutions
are of that form (if one wants a solution to be defined on H then one takes g ∈ SL2(R)).

Here ′ denotes the derivative of a complex function. Below when we work in an abstract
differential field we will always denote its derivation by D and for an element a in that field
a′, a′′, . . . will be some other elements and not necessarily the derivatives of a.

In an abstract differential field (K; +, ·, D, 0, 1) the differential equation of j is the equation
Fj(y,Dy,D

2y,D3y) = 0. Consider its two-variable version.

fj(x, y) := Fj

(
y, ∂xy, ∂

2
xy, ∂

3
xy
)

= 0.

Theorem 2.1 (Ax-Schanuel for j, [PT16]). Let zi, ji ∈ K \ C, i = 1, . . . , n, be such that
fj(zi, ji) = 0. If ji’s are pairwise modularly independent then

tdC C(zi, ∂ziji, ∂
2
zi
ji : 1 ≤ i ≤ n) ≥ 3n+ 1.

3. Ax-Schanuel and geometry of strongly minimal sets in DCF0

3.1. Setup and main results. Recall that K = (K; +, ·, D, 0, 1) is a differentially closed
field with field of constants C. We may assume (without loss of generality) K is sufficiently
saturated if necessary. Fix an element t with Dt = 1. Let E(x, y) be (the set of solutions of)
a differential equation f(x, y) = 0 with constant coefficients.

We give several definitions and then state the main results of the first part of the paper.

Definition 3.1. Let P be a non-empty collection of algebraic polynomials P (X, Y ) ∈ C[X, Y ].
We say two elements a, b ∈ K are P-independent if P (a, b) 6= 0 and P (b, a) 6= 0 for all P ∈ P .
The P-orbit of an element a ∈ K is the set {b ∈ K : P (a, b) = 0 or P (b, a) = 0 for some P ∈ P}
(in analogy with a Hecke orbit). Also, P is said to be trivial if it consists only of the polynomial
X − Y .

Recall that f(x, y) = 0 is the differential equation defining E and denote m := ordY f(X, Y )
(the order of f with respect to Y ).

Definition 3.2. We say E(x, y) has the P-AS (Ax-Schanuel with respect to P) property if the
following condition is satisfied.

Let x1, . . . , xn, y1, . . . , yn be non-constant elements of K with f(xi, yi) = 0. If the yi’s are
pairwise P-independent then
(3.1) tdC C

(
x1, y1, ∂x1y1, . . . , ∂

m−1
x1

y1, . . . , xn, yn, ∂xnyn, . . . , ∂
m−1
xn

yn
)
≥ mn+ 1.

We say E has the P-ALW (Ax-Lindemann-Weierstrass with respect to P) property if the
inequality (3.1) is satisfied under an additional assumption tdC C(x̄) = 1.

The P-AS property can be reformulated as follows: for any non-constant solutions (xi, yi) of
E the transcendence degree in (3.1) is strictly bigger than m times the number of different P-
orbits of yi’s. Note that (3.1) is motivated by the known examples of Ax-Schanuel inequalities
([Ax71, PT16, Asl17a]).



AX-SCHANUEL AND STRONG MINIMALITY FOR THE j-FUNCTION 5

Remark 3.3. Having the P-AS property for a given equation E may force P to be “closed” in
some sense. Firstly, X − Y (or a polynomial divisible by X − Y ) must be in P . Secondly,
if P1, P2 ∈ P then P1(y1, y2) = 0, P2(y2, y3) = 0 impose a relation on y1 and y3 given by
Q(y1, y3) = 0 for some polynomial Q. Then the P-AS property may fail if Q /∈ P . In that
case one has to add Q to P in order to allow the possibility of an Ax-Shcanuel property with
respect to P .

Similar conditions on P are required in order for P-independence to define a dimension
function (number of distinct P-orbits) of a pregeometry (of trivial type), which would imply
that the P-AS property is a predimension inequality. Note that the collection of modular
polynomials has all those properties. However, the shape of P is not important for our results
since we assume that a given equation E has the P-AS property.

Definition 3.4. A P-special variety (in Kn for some n) is an irreducible (over C) component
of a Zariski closed set in Kn defined by a finite collection of equations of the form Pik(yi, yk) = 0
for some Pik ∈ P . For a subfield L ⊆ K a weakly P-special variety over L is an irreducible
(over Lalg) component of a Zariski closed set in Kn defined by a finite collection of equations
of the form Pik(yi, yk) = 0 and yi = a for some Pik ∈ P and a ∈ Lalg. For a definable set V , a
(weakly) P-special subvariety (over L) of V is an intersection of V with a (weakly) P-special
variety (over L).

A P-special variety S may have a constant coordinate defined by an equation P (yi, yi) = 0
for some P ∈ P . If no coordinate is constant on S then it is said to be strongly P-special.

Let C0 ⊆ C be the subfield of C generated by the coefficients of f and let K0 = C0〈t〉 = C0(t)
be the (differential) subfield of K generated by C0 and t (clearly U is defined over K0). We fix
K0 and work over it (in other words we expand our language with new constant symbols for
elements (generators) of K0).

Now we can formulate one of our main results (see Appendix A for definitions of geometric
triviality and strict disintegratedness).

Theorem 3.5. Assume E(x, y) satisfies the P-AS property for some P. Assume further that
the differential polynomial g(Y ) := f(t, Y ) is absolutely irreducible.2 Then

• U := {y : g(y) = 0 ∧Dy 6= 0} is strongly minimal with trivial geometry.
• If, in addition, P is trivial then U is strictly disintegrated and hence it has ℵ0-categorical
induced structure.
• All definable subsets of Un over a differential field L ⊇ K0 are Boolean combinations of
weakly P-special subvarieties over L.

Remark 3.6. If the polynomials from P have rational coefficients then P-special varieties are
defined over Qalg. Furthermore, if E satisfies the P-AS property then U ∩ C(t)alg = ∅ and so
P-special subvarieties of U over C(t) are merely P-special subvarieties (over C).

As the reader may guess and as we will see in the proof, this theorem holds under weaker
assumptions on E. Namely, it is enough to require that (3.1) hold for x1 = . . . = xn = t which
is a weak form of the P-ALW property. However, we prefer the given formulation of Theorem
3.5 since the main object of our interest is the Ax-Schanuel inequality (for E).

Further, we deduce from Theorem 3.5 that if E has some special form, then all fibres E(s, y)
for a non-constant s ∈ K have the above properties (over C0〈s〉).
Theorem 3.7. Let E(x, y) be defined by R(x, y, ∂xy, . . . , ∂

m
x y) = 0 where R(X, Ȳ ) is an al-

gebraic polynomial over C, irreducible over C(X)alg (as a polynomial of Ȳ ). Assume E(x, y)
satisfies the P-AS property for some P and let s ∈ K be a non-constant element. Then

• Us := {y : E(s, y) ∧Dy 6= 0} is strongly minimal with trivial geometry.
• If, in addition, P is trivial then any distinct non-algebraic (over C0〈s〉) elements are
independent and Us is ℵ0-categorical.

2Recall that t is an element with Dt = 1.
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• All definable subsets of Un
s over a differential field L ⊇ C0〈s〉 are Boolean combinations

of weakly P-special subvarieties over L.

Remark 3.8. Since Us∩C = ∅, in Theorems 3.5 and 3.7 the induced structure on Un
s is actually

given by strongly special subvarieties (over L), which means that we do not allow any equation
of the form yi = c for c a constant. In particular we also need to exclude equations of the form
P (yi, yi) = 0 for P ∈ P .

We also prove a generalisation of Theorem 3.5.

Theorem 3.9. Assume E(x, y) satisfies the P-AS property and let p(Y ) ∈ C(t)[Y ]\C, q(Y ) ∈
C[Y ] \ C be such that the differential polynomial f(p(Y ), q(Y )) is absolutely irreducible. Then
the set

Up,q := {y : E(p(y), q(y)) ∧ y /∈ C}
is strongly minimal and geometrically trivial.

As an application of Theorem 3.5 we obtain a result on the differential equation of the
j-function which was established by Freitag and Scanlon in [FS18].

Theorem 3.10 ([FS18]). The set J ⊆ K defined by Fj(y,Dy,D
2y,D3y) = 0 is strongly

minimal with trivial geometry. Furthermore, J is not ℵ0-categorical.

Strong minimality and geometric triviality of J follow directly from Theorem 3.5 combined
with the Ax-Schanuel theorem for j (see Section 2). Moreover, as we pointed out above in the
proof of Theorem 3.5 we only use the P-ALW property. In the case of j it is equivalent to
Pila’s modular Ax-Lindemann-Weierstrass with derivatives theorem ([Pil13]). Of course the
“furthermore” clause does not follow from Theorem 3.5 but it is not difficult to prove. Theorem
3.5 also gives a characterisation of the induced structure on the Cartesian powers of J . Again,
that result can be found in [FS18].

The proof of Theorem 3.10 by Freitag and Scanlon is based on Pila’s modular Ax-Lindemann-
Weierstrass with derivatives theorem along with Seidenberg’s embedding theorem and Nish-
ioka’s result on differential equations satisfied by automorphic functions ([Nis89]). They also
make use of some tools of stability theory such as the “Shelah reflection principle”. However, as
one may guess, we cannot use Nishioka’s theorem (or some analogue of that) in the proof of 3.5
since we do not know anything about the analytic properties of the solutions of our differential
equation. Thus, we show in particular that Theorem 3.10 can be deduced from Pila’s result
abstractly. The key point that makes this possible is stable embedding, which means that if
M is a model of a stable theory and X ⊆ M is a definable set over some A ⊆ M then every
definable (with parameters from M) subset of Xn can in fact be defined with parameters from
X ∪ A (see Appendix A).

Let us stress once more that the set J is notable for being the first example of a strongly
minimal set (definable in DCF0) with trivial geometry that is not ℵ0-categorical. Indeed the
aforementioned result of Hrushovski on strongly minimal sets of order 1 led people to believe
that all geometrically trivial strongly minimal sets must be ℵ0-categorical. Nevertheless, it is
not true as the set J illustrates.

3.2. Proofs of the main results.

Proof of Theorem 3.5. Taking x1 = . . . = xn = t in the P-AS property we get the following
weak version of the P-ALW property for U which in fact is enough to prove Theorem 3.5.

Lemma 3.11. P-AS implies that for any pairwise P-independent elements u1, . . . , un ∈ U the
elements ū, Dū, . . . , Dm−1ū are algebraically independent over C(t) and hence over K0.

We show that every definable (possibly with parameters) subset V of U is either finite
or co-finite. Since U is defined over K0, by stable embedding there is a finite subset A =
{a1, . . . , an} ⊆ U such that V is defined over K0 ∪ A. It suffices to show that U realises
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a unique non-algebraic type over K0 ∪ A, i.e. for any u1, u2 ∈ U \ acl(K0 ∪ A) we have
tp(u1/K0 ∪ A) = tp(u2/K0 ∪ A). Let u ∈ U \ acl(K0 ∪ A). We know that acl(K0 ∪ A) =
K0〈A〉alg = K0(ā, Dā, . . . , Dm−1ā)alg. Since u /∈ K0〈A〉alg, u is transcendental over K0(A) and
hence it is P-independent from each ai. We may assume without loss of generality that ai’s are
pairwise P-independent (otherwise we could replace A by a maximal pairwise P-independent
subset). Applying Lemma 3.11 to ā, u, we deduce that u,Du, . . . , Dm−1u are algebraically
independent over K0〈A〉. Hence tp(u/K0∪A) is determined uniquely (axiomatised) by the set
of formulae

{g(y) = 0} ∪ {h(y) 6= 0 : h(Y ) ∈ K0〈A〉{Y }, ord(h) < m}
(Recall that g is absolutely irreducible and hence it is irreducible over any field). In other
words g(Y ) is the minimal differential polynomial of u over K0〈A〉.

Thus U is strongly minimal. A similar argument shows also that if A ⊆ U is a (finite) subset
and u ∈ U ∩ acl(K0A) then there is a ∈ A such that u ∈ acl(K0a). This proves that U is
geometrically trivial.

If P is trivial then distinct elements of U are independent, hence U is strictly disintegrated.
The last part of Theorem 3.5 follows from the following lemma.

Lemma 3.12. Every irreducible (relatively) Kolchin closed (over C(t)) subset of Un is a P-
special subvariety of Un.

Proof. Let V ⊆ Un be an irreducible relatively closed subset (i.e. it is the intersection of Un

with an irreducible Kolchin closed set in Kn). Pick a generic point v̄ = (v1, . . . , vn) ∈ V and
let W ⊆ Kn be the Zariski closure of v̄ over C. Let d := dimW and assume v1, . . . , vd are
algebraically independent over C. Then vi ∈ (C(v1, . . . , vd))

alg for each i = d + 1, . . . , n. By
Lemma 3.11 each vi with i > d must be in a P-relation with some vki with ki ≤ d. Let
Pi(vi, vki) = 0 for i > d. The algebraic variety defined by the equations Pi(yi, yki) = 0, i =
d + 1, . . . , n, has dimension d and contains W . Therefore W is a component of that variety
and so it is a P-special variety.

We claim that W ∩ Un = V . Since v1, . . . , vd ∈ U are algebraically independent over
C, by Lemma 3.11 v̄, Dv̄, . . . , Dm−1v̄ are algebraically independent over C(t). Moreover, the
(differential) type of each vi, i > d, over v1, . . . , vd is determined uniquely by an irreducible
algebraic equation. Therefore tp(v̄/C(t)) is axiomatised by formulas stating that v̄ is Zariski
generic in W and belongs to Un. In other words v̄ is Kolchin generic in W ∩ Un. Now V and
W ∩ Un are both equal to the Kolchin closure of v̄ inside Un and hence they are equal. �

Thus definable (over C(t)) subsets of Un are Boolean combinations of special subvarieties.
Now let L ⊆ K be an arbitrary differential subfield over which U is defined. Then definable
subsets of Un over L can be defined with parameters from L̃ = K0 ∪ (U ∩ Lalg) (see Appendix
A). Then Lemma 3.12 implies that irreducible Kolchin closed subsets of Un defined over L̃ are
weakly P-special subvarities of Un over L.

Finally, note that since U does not contain any algebraic elements over C(t), the type of any
element u ∈ U over C(t) is isolated by the formula f(t, y) = 0 ∧Dy 6= 0.

Proof of Theorem 3.9. We argue as above and show that for a finite set A = {a1, . . . , an} ⊆ Up,q

there is a unique non-algebraic type over K0〈A〉 realised in Up,q. Here we will use the full Ax-
Lindemann-Weierstrass.

If u ∈ Up,q \ (K0〈A〉)alg then q(u) is transcendental over K0(A) and so q(u) is P-independent
from each q(ai). Moreover, we may assume {q(a1), . . . , q(an)} is P-independent. Then by the
P-AS property

tdC C
(
p(u), q(u), . . . , ∂m−1

p(u) q(u), p(ai), q(ai), . . . , ∂
m−1
p(ai)

q(ai)
)
i=1,...,n

≥ m(n+ 1) + 1.

But then

tdC C
(
t, u,Du, . . . , Dm−1u, ai, Dai, . . . , D

m−1ai
)
i=1,...,n

≥ m(n+ 1) + 1,
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and hence u,Du, . . . , Du are algebraically independent over K0〈A〉. This determines the type
tp(u/K0A) uniquely as required. It also shows triviality of the geometry.

Proof of Theorem 3.7. Consider the differentially closed field Ks = (K; +, ·, ∂s, 0, 1). The given
form of the differential equation E implies that Us is defined over C0(s) in Ks. However, in
general it may not be defined over C0(s) in K, it is defined over C0〈s〉 = C0(s,Ds,D2s, . . .).
As s /∈ C, it is transcendental over C and so R(s, Ȳ ) is irreducible over C(s)alg. Therefore
R(s, Y, ∂sY, . . . , ∂

m
s Y ) is absolutely irreducible. Since ∂ss = 1, we know by Theorem 3.5 that

Us is strongly minimal in Ks. On the other hand the derivations ∂s and D are inter-definable
(with parameters) and so a set is definable in K if and only if it is definable in Ks (possibly
with different parameters). This implies that every definable subset of Us in K is either finite
or co-finite, hence it is strongly minimal.

Further, Theorem 3.5 implies that Us is geometrically trivial over C0(s) in Ks. By Theorem
A.2, Us is also geometrically trivial over C0〈s〉 in Ks. On the other hand for any subset A ⊆ Us

the algebraic closure of C0〈s〉 ∪A is the same in K and Ks. This implies geometric triviality of
Us in Ks.

The same argument (along with the remark after Theorem A.2) shows that the second and
the third parts of Corollary 3.7 hold as well.

3.3. Application to the j-function. Recall that the differential equation of the j-function
is given by

(3.2) Fj(y,Dy,D
2y,D3y) = Sy +R(y)(Dy)2 = 0,

where S denotes the Schwarzian derivative defined by Sy = D3y
Dy
− 3

2

(
Dy
Dy

)2

and R(y) =

y2−1968y+2654208
2y2(y−1728)2

. Let J be the set defined by (3.2). Note that Fj is not a polynomial but a
rational function. In particular constant elements do not satisfy (3.2) for Sy is not defined for
a constant y. We can multiply our equation through by a common denominator and make it
into a polynomial equation

(3.3) F ∗j (y,Dy,D2y,D3y) = q(y)DyD3y − 3

2
q(y)(D2y)2 + p(y)(Dy)4 = 0,

where p and q are respectively the numerator and the denominator of R. Let J∗ be the set
defined by (3.3). It is not strongly minimal since C is a definable subset. However, as we will
see shortly, J = J∗ \C is strongly minimal and MR(J∗) = 1, MD(J∗) = 2. Thus whenever we
speak of the formula Fj(y,Dy,D

2y,D3y) = 0 (which, strictly speaking, is not a formula in the
language of differential rings) we mean the formula F ∗j (y,Dy,D2y,D3y) = 0 ∧Dy 6= 0.

Let Φ := {ΦN(X, Y ) : N > 0} be the collection of modular polynomials. Then two elements
are modularly independent iff they are Φ-independent. For an element a ∈ K its Hecke orbit
is its Φ-orbit.

Consider the two-variable analogue of the equation (3.3):

(3.4) f ∗j (x, y) := F ∗j (y, ∂xy, ∂
2
xy, ∂

3
xy) = 0.

Theorem 2.1 states that (3.4) has the Φ-AS property. As a consequence of Theorems 3.5
and 2.1 we get strong minimality and geometric triviality of J (note that F ∗j (Y0, Y1, Y2, Y3) is
absolutely irreducible for it depends linearly on Y3) which was first established by Freitag and
Scanlon in [FS18].

Lemma 3.11 for j is of course a special case of the Ax-Schanuel theorem for j. Nevertheless it
can also be deduced from Pila’s modular Ax-Lindemann-Weierstrass with derivatives theorem
([Pil13]) by employing Seidenberg’s embedding theorem. Therefore only Pila’s theorem is
enough to prove strong minimality and geometric triviality of J . Moreover, Theorem 3.7
shows that all non-constant fibres of (3.4) are strongly minimal and geometrically trivial (after
removing constant points) and the induced structure on the Cartesian powers of those fibres
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is given by (strongly) special subvarieties. Note that it is proven in [FS18] that the sets
Fj(y,Dy,D

2y,D3y) = a have the same properties for any a.

Remark 3.13. To complete the proof of Theorem 3.10, that is, to show that J is not ℵ0-
categorical, one argues as follows (see [FS18]). The Hecke orbit of an element j ∈ J is infinite
and is contained in J . Therefore J realises infinitely many algebraic types over an arbitrary
element j ∈ J and hence is not ℵ0-categorical.

3.4. Some remarks. An interesting question is whether there are differential equations with
the P-AS property with trivial P . As we showed here, if E(x, y) has such a property then the
corresponding U (and other fibres too) must be strongly minimal and strictly disintegrated.
There are quite a few examples of this kind of strongly minimal sets in DCF0. The two-variable
versions of those equations will be natural candidates of equations with the required P-AS
property. (Note that since in our proofs we only used the P-ALW part of the P-AS property,
it would be more reasonable to expect those equations to satisfy the P-ALW property for trivial
P . However, as it was mentioned earlier, we are mainly interested in the P-AS properties of
differential equations.)

For example, the geometry of the sets of the form Dy = r(y), where r is a rational function
over C, is well understood. The nature of the geometry is determined by the partial fraction
decomposition of 1/r. As an example consider the equation

(3.5) Dy =
y

1 + y
.

One can show that it defines a strictly disintegrated strongly minimal set ([Mar05]). The two
variable analogue of this equation is

(3.6) ∂xy =
y

1 + y
.

But this is equivalent to the equation Dy
y

= D(x−y). Denoting z = x−y we get the exponential
differential equation Dy = yDz. It is easy to deduce from this that (3.6) does not satisfy the P-
AS property with any P (it satisfies a version of the original exponential Ax-Schanuel inequality
though). Indeed, the fibre of (3.6) above x = t is of trivial type but the section by x = t + y
is non-orthogonal to C. So according to Theorem 3.9 the equation (3.6) does not satisfy any
P-AS property. Clearly, all the sets Dy = r(y) can be treated in the same manner and hence
they are not appropriate for our purpose. Thus, one needs to look at the behaviour of all the
sets E(p(y), q(y)), and if they happen to be trivial strongly minimal sets then one can hope for
a P-AS inequality.

The classical Painlevé equations define strongly minimal and strictly disintegrated sets as
well. For example, let us consider the first Painlevé equation D2y = 6y2 + t. Strong minimality
and algebraic independence of solutions of this equation were shown by Nishioka in [Nis04]
(note that strong minimality was discovered earlier by Kolchin (see [Mar05])). We consider its
two-variable version

(3.7) ∂2
xy = 6y2 + x.

The goal is to find an Ax-Schanuel inequality for this equation. Observe that (3.7) does
not satisfy the P-AS property with trivial P . Indeed, if ζ is a fifth root of unity then the
transformation x 7→ ζ2x, y 7→ ζy sends a solution of (3.7) to another solution. If one believes
these are the only relations between solutions of the above equation, then one can conjecture
the following.

Conjecture 3.14 (Ax-Schanuel for the first Painlevé equation). If (xi, yi), i = 1, . . . , n, are
solutions to the equation (3.7) and (xi/xj)

5 6= 1 for i 6= j then

td(x̄, ȳ, ∂x̄ȳ) ≥ 2n+ 1.
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One could in fact replace x’s with y’s in the condition (xi/xj)
5 6= 1 as those are equivalent.

Hence the above conjecture states that (3.7) has the {X5 − Y 5}-AS property.
Nagloo and Pillay showed in [NP14] that the other generic Painlevé equations define strictly

disintegrated strongly minimal sets as well. So we can analyse relations between solutions of
their two-variable analogues and ask similar questions for them too.

4. Strongly minimal sets in j-reducts of DCF0

First we study strongly minimal sets in pairs of algebraically closed fields. It will serve as a
simple example of the methods that we are going to use in j-reducts.

4.1. Pairs of algebraically closed fields. Model theory of pairs of algebraically closed fields
is well studied (see, for example, [AvdD16, Kei64]). Therefore, most of the results of this section
are well known.

Let KC := (K; +, ·, C) be an algebraically closed field of characteristic 0 with a distinguished
algebraically closed subfield C (C is a unary predicate in the language). It is easy to prove
that this structure is ω-stable of Morley rank ω. We assume KC is sufficiently saturated.

Let ā ∈ Km and b ∈ K.

Lemma 4.1. MR(b/ā) < ω iff b ∈ C(ā)alg.

Proof. If b is transcendental over C(ā) then for any b′ /∈ C(ā)alg there is a field automorphism
of K fixing C(ā) pointwise and mapping b to b′. In particular, it is an automorphism of KC

and so tp(b/ā) = tp(b′/ā), and this type is the generic type over ā. �

Now let b ∈ C(ā)alg. Then for some polynomial p the equality p(ā, c̄, b) = 0 holds for some
finite tuple c̄ ∈ C l. Let W := LocQ(ā)(c̄) ⊆ K l be the algebraic locus (Zariski closure) of c̄ over
Q(ā). For every proper subvariety U ( W defined over ā consider the formula

(4.8) ϕU(y) = ∃x̄(x̄ ∈ C l ∩ (W \ U) ∧ p(ā, x̄, y) = 0).

Notice that for every U ( W the formula ϕU(b) holds. Observe also that the set C l∩(W (K)\
U(K)), being a subset of C l, is actually definable with parameters from C. This follows from
the stable embedding property.

Proposition 4.2. The collection of all formulas ϕU(y) determines (axiomatises) tp(b/ā).

Proof. Assume b′ |= ϕU(y) for all U ( W . The collection of formulas

{x̄ ∈ C l ∩ (W \ U) ∧ p(ā, x̄, b′) = 0 : U ( W}
(over ā, b′) is finitely satisfiable so it has a realisation c̄′. Evidently c̄′ is generic in W over ā.
Therefore there is an automorphism π of C(ā) which fixes ā pointwise, fixes C setwise and
sends c̄ to c̄′. This automorphism can be extended to an automorphism of KC which sends b
to b′. �

Remark 4.3. This shows, in particular, that the first-order theory3 of KC is nearly model
complete, that is, every formula is equivalent to a Boolean combination of existential formulas
modulo that theory. One can also show that it is not model complete. Indeed, pick three
algebraically independent (over Q) elements a, b, x and set y := ax+ b. Let

C0 := Qalg, C1 := Q(a, b)alg, K0 := Q(x, y)alg, K1 := Q(a, b, x)alg.

Then K0 ∩ C1 = C0 so (K0, C0) ⊆ (K1, C1) but the extension is not elementary since the
formula ∃u, v ∈ C(y = ux + v) (with parameters x, y) holds in (K1, C1) but not in (K0, C0).
Note that this argument is adapted from a standard proof of non-modularity of algebraically
closed fields of transcendence degree at least 3.

Theorem 4.4. A strongly minimal set definable in KC is non-orthogonal to C.
3This theory is axiomatised by axiom schemes stating that K is an algebraically closed field and C is an

algebraically closed subfield.
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Proof. Let S ⊆ K be strongly minimal defined by some formula ϕU (a conjucntion of formulas
of the form (4.8) is again of the same form). Then S ⊆ C(ā)alg ⊆ acl(C ∪ ā) and therefore
S 6⊥ C. �

Remark 4.5. Let S ⊆ K be strongly minimal defined by some formula ϕU . As we pointed out
above V := W (K) \ U(K) ∩ C l is defined over C. So V is a constructible set over C. Define
an equivalence relation E ⊆ V × V by

c̄1Ec̄2 iff ∀y(p(ā, c̄1, y) = 0↔ p(ā, c̄2, y) = 0).

By the stable embedding property E is definable in the pure field structure of C. Moreover,
there is a natural finite-to-one map from S to V/E. By elimination of imaginaries in alge-
braically closed fields V/E can be regarded as a constructible set in some Cartesian power Ck.
The latter must have dimension 1 since S is strongly minimal. Thus, in the formula ϕU we
may assume that the constants live on a curve defined over C. This gives a characterisation of
strongly minimal formulas.

4.2. Predimension for the differential equation of the j-function. Now we study the
differential equation of the j-function. This and the next subsections are preliminary. The
reader is referred to [Asl18a] for details and proofs of the results.

Let fj(x, y) = 0 be the two-variable differential equation of the j-function (see Section 2).
We consider a binary predicate Ej(x, y) which will be interpreted in a differential field as the
set of solutions of the equation fj(x, y) = 0. This equation excludes the possibility of x or y
being a constant. However, if we multiply fj(x, y) by a common denominator and make it a
differential polynomial then x and y would be allowed to be constants as well. So we add C2

to Ej, i.e. any pair of constants is in Ej. Further, let E×j be the set of all Ej-points with no
constant coordinates.

The following is an immediate consequence of Theorem 2.1.

Theorem 4.6 (Ax-Schanuel without derivatives). If zi, ji are non-constant elements in a dif-
ferential field K with fj(zi, ji) = 0, then

tdC C(z̄, j̄) ≥ n+ 1,

unless for some N, i 6= k we have ΦN(ji, jk) = 0.

Definition 4.7. The theory T 0
j consists of the following first-order statements about a structure

K in the language Lj := {+, ·, Ej, 0, 1}.
A1 K is an algebraically closed field of characteristic 0.
A2 C := CK = {c ∈ K : Ej(0, c)} is an algebraically closed subfield. Further, C2 ⊆ Ej(K)

and if (z, j) ∈ Ej(K) and one of z, j is constant then both of them are constants.
A3 If (z, j) ∈ Ej then for any g ∈ SL2(C), (gz, j) ∈ Ej. Conversely, if for some j we have

(z1, j) , (z2, j) ∈ Ej then z2 = gz1 for some g ∈ SL2(C).
A4 If (z, j1) ∈ Ej and ΦN(j1, j2) = 0 for some j2 and some modular polynomial ΦN(X, Y )

then (z, j2) ∈ Ej.
AS If (zi, ji) ∈ Ej, i = 1, . . . , n, with

tdC C (z̄, j̄) ≤ n,

then ΦN(ji, jk) = 0 for some N and some 1 ≤ i < k ≤ n, or ji ∈ C for some i.

Definition 4.8. An Ej-field is a model of T 0
j . If K is an Ej-field, then a tuple (z̄, j̄) ∈ K2n is

called an Ej-point if (zi, ji) ∈ Ej(K) for each i = 1, . . . , n. By abuse of notation, we let Ej(K)
denote the set of all Ej-points in K2n for any natural number n.

It is easy to see that reducts of differential fields to the language Lj are Ej-fields.
Let C be an algebraically closed field with td(C/Q) = ℵ0 and let C be the collection of all

Ej-fields K with CK = C. Note that C is an Ej-field with Ej(C) = C2 and it is the smallest
structure in C. From now on, by an Ej-field we understand a member of C.
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Definition 4.9. For B ∈ C and X ⊆ B the C-closure of X inside B (or the C-substructure of
B generated by X) is the structure4

〈X〉B :=
⋂

A∈C:X⊆A⊆B

A.

A structure A ∈ C is finitely generated if A = 〈X〉A for some finite X ⊆ A. The collection of
all finitely generated structures from C will be denoted by Cf.g.. Further, A ⊆f.g. B means that
A is a finitely generated structure of B.

Note that for some X ⊆ A ∈ C we have 〈X〉A = C(X)alg (with the induced structure from
A) and Cf.g. consists of those Ej-fields that have finite transcendence degree over C (which, in
fact, are not finitely generated as Lj-structures).

Definition 4.10. For A ⊆ B ∈ Cf.g. an Ej-basis of B over A is an Ej-point b̄ = (z̄, j̄) from B
of maximal length satisfying the following conditions:

• ji and jk are modularly independent for all i 6= k,
• (zi, ji) /∈ A2 for each i.

We let σ(B/A) be the length of j̄ in an Ej-basis of B over A (equivalently, an Ej-basis of
B over A has length 2σ(B/A)). When A = C we write σ(B) for σ(B/C). It is easy to see
that for A ⊆ B ∈ Cf.g. one has σ(B/A) = σ(B) − σ(A). Further, for A ∈ Cf.g. we define the
predimension by

δ(A) := tdC A− σ(A).

Note that the Ax-Schanuel inequality implies that σ is finite for finitely generated structures.
Moreover, for A,B ⊆ G ∈ Cf.g. the inequality

σ(〈A ∪B〉G) ≥ σ(A) + σ(B)− σ(A ∩B)

holds.5 Hence δ is submodular, that is, for all A,B,G as above we have
δ(〈A ∪B〉G) + δ(A ∩B) ≤ δ(A) + δ(B).

In terms of the predimension the Ax-Schanuel inequality states exactly that δ(A) ≥ 0 for all
A ∈ Cf.g. with equality holding if and only if A = C.

Definition 4.11. For A,B ∈ Cf.g. the relative predimension of A overB is defined as δ(B/A) :=
δ(AB) − δ(A). This depends on a common extension of A and B, so we work in such a
common extension without explicitly mentioning it. When A ⊆ B we work in B and define
δ(B/A) = δ(B)− δ(A).

Observe that for A ⊆ B ∈ Cf.g.

δ(B/A) = δ(B)− δ(A) = td(B/A)− σ(B/A).

In the next definition B is the ambient structure that we work in.

Definition 4.12. Let A ⊆ B ∈ C. We say A is strong (or self-sufficient) in B, denoted A ≤ B,
if for all X ⊆f.g. B we have δ(X ∩A) ≤ δ(X). One also says B is a strong extension of A. An
embedding A ↪→ B is strong if the image of A is strong in B.

For M ∈ C and a finite set ā ⊆M we say ā is strong in M if 〈ā〉M ≤M .

Definition 4.13. For B ∈ C and X ⊆ B we define the self-sufficient closure (or strong closure)
of X in B by

dXeB :=
⋂

A∈C:X⊆A≤B

A.

4In the differential setting 〈A〉 stands for the differential subfield generated by a set A. The meaning of this
notation will be clear from the context.

5Here and later we need to embed two structures into a third one in order to speak of the structure generated
by those two structures (as well as their intersection). Often, when it does not cause any confusion, we will not
mention the ambient structure explicitly ˙
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A finite intersection of strong substructures is easily seen to be strong. An infinite intersection
of algebraically closed fields of finite transcendence degree over C is actually a finite intersection,
hence an infinite intersection of finitely generated strong substructures is strong as well. It
follows from this that dXeB ≤ B. Note also that ≤ is transitive.

Lemma 4.14. If B ∈ C and X ⊆f.g. B then
• dXeB is finitely generated, and
• δ(dXeB) = min{δ(Y ) : X ⊆ Y ⊆f.g. B}.

The predimension gives rise to a dimension (of a pregeometry) in the following way.

Definition 4.15. For X ⊆f.g. B define
dB(X) := min{δ(Y ) : X ⊆ Y ⊆f.g. B} = δ(dXeB).

For a finite subset X ⊆fin B set dB(X) := dB(〈X〉B).

Define the operator clB : P(B)→ P(B) (the latter is the power set of B) by
clB(X) = {b ∈ B : dB(b/X) = 0}.

Then (B, clB) is a pregeometry and dB is its dimension function.
Self-sufficient embeddings can be defined in terms of d. Indeed, if A ⊆ B then A ≤ B if and

only if for any X ⊆fin A one has dA(X) = dB(X).

Proposition 4.16. The class C is a strong amalgamation class, that is, the following conditions
hold.

C1 Every A ∈ Cf.g. has at most countably many finitely generated strong extensions up to
isomorphism.

C2 C is closed under unions of countable strong chains A0 ≤ A1 ≤ . . ..
SAP Cf.g. has the strong amalgamation property, that is, for all A0, A1, A2 ∈ Cf.g. with strong

embeddings A0 ↪→ Ai, i = 1, 2, there is B ∈ Cf.g. such that A1 and A2 can be strongly
embedded into B over A, i.e. the corresponding diagram commutes.

The following is a standard theorem.

Theorem 4.17 (Amalgamation theorem). There is a unique (up to isomorphism) countable
structure U ∈ C with the following properties.

U1 U is universal with respect to strong embeddings, i.e. every countable A ∈ C can be
strongly embedded into U .

U2 U is saturated with respect to strong embeddings, i.e. for every A,B ∈ Cf.g. with strong
embeddings A ↪→ U and A ↪→ B there is a strong embedding of B into U over A.6

Furthermore, U is homogeneous with respect to strong substructures, that is, any isomorphism
between finitely generated strong substructures of U can be extended to an automorphism of U .

This U is called the (strong) Fraïssé limit or the Fraïssé-Hrushovski limit of Cf.g.. It has
a natural pregeometry associated with the predimension function as described above. It is
also saturated and ω-stable of Morley rank ω (as Lj-reducts of differentially closed fields). For
each n there is a unique generic n-type over any finite set which is realised by any n-tuple of
dimension n.

Conjecture 4.18 ([Asl18a]). Let K be the countable saturated differentially closed field. Then
its reduct KEj

is isomorphic to U .

In the terminology of [Asl18a] this conjecture states that the Ax-Schanuel inequality for the
differential equation of the j-function is (strongly) adequate (which was also mentioned in the
introduction). In the next section we will formulate an algebraic equivalent of this conjecture
known as Existential Closedness.

6U2 is normally known as the richness property in the literature and it implies U1.
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4.3. Existential closedness. Now we describe the Existential Closedness axiom scheme which,
along with the above axioms, gives a complete axiomatisation of Th(U). We will also need it
for our classification of strongly minimal sets in KEj

.

Definition 4.19. Let n be a positive integer, k ≤ n and 1 ≤ i1 < . . . < ik ≤ n. Denote
ī = (i1, . . . , ik) and define the projection map prī : Kn → Kk by

prī : (x1, . . . , xn) 7→ (xi1 , . . . , xin).

Further, define (by abuse of notation) prī : K2n → K2k by

prī : (x̄, ȳ) 7→ (prī x̄, prī ȳ).

It will be clear from the context in which sense prī should be understood.

Definition 4.20. Let K be an algebraically closed field. An irreducible algebraic variety
V ⊆ K2n is normal if and only if for any 1 ≤ k ≤ n and any 1 ≤ i1 < . . . < ik ≤ n we have
dim prī V ≥ k. We say V is strongly normal if the strict inequality dim prī V > k holds.

Lemma 4.21. If A ≤ B ∈ Cf.g. and b̄ is an Ej-basis of B over A then LocA(b̄) is normal over
A.

Now consider the following properties of an Ej-field K.
EC For each normal variety V ⊆ K2n the intersection Ej(K) ∩ V (K) is non-empty.

SEC For each normal variety V ⊆ K2n defined over a finite tuple ā ⊆ K, the intersection
Ej(K) ∩ V (K) contains a point Zariski generic in V over ā.

NT K ) C.
EC, SEC and NT stand for Existential Closedness, Strong Existential Closedness and Non-

Triviality respectively. Denote Tj := T 0
j +EC+NT (EC is first-order).

Proposition 4.22. The strong Fraïssé limit U satisfies SEC (and hence EC).

In fact, Tj = Th(U) and all ℵ0-saturated models of Tj satisfy SEC.

Conjecture 4.23. (Lj-reducts of) differentially closed fields satisfy EC.

This is equivalent to Conjecture 4.18. It states that if for a system of equations in KEj

having a solution does not contradict Ax-Schanuel, then there is a solution. We will refer to
both conjectures as the Existential Closedness conjecture or, briefly, EC conjecture.

4.4. Types in KEj
. In this and the next sections we assume the EC conjecture.

From now on we work in KEj
, the Lj-reduct of the countable saturated differentially closed

field K. Recall that by EC KEj
is isomorphic to the strong Fraïssé limit U . We will drop the

subscript K from the the notations introduced in Section 4.2.

Lemma 4.24. Let ā ⊆ K. If (ū, v̄) is an Ej-basis of dāe then the latter is generated by ā, ū, v̄.

Proof. Let A = C(ā, ū, v̄)alg ⊆ dāe. Then td(dāe/C) ≥ td(A/C) and σ(dāe) = |v̄| = σ(A).
Hence δ(A) ≤ δ(dāe) and so δ(A) = δ(dāe). Therefore td(dāe/C) = td(A/C) and A = dāe. �

Let ā = (a1, . . . , am) ∈ Km be a tuple with d(ā) = k and b ∈ K with d(b/ā) = 0, i.e.
b ∈ cl(ā). This means that d(āb) = k. Pick an Ej-basis (z̄, j̄) of B := dā, be. By Lemma 4.24
B = C(ā, b, z̄, j̄)alg. We claim that b ∈ C(ā, z̄, j̄)alg. Indeed, if it is not true then

k = d(āb) = δ(B) > δ(C(ā, z̄, j̄)alg) ≥ d(ā) = k.

Thus, B = C(ā, z̄, j̄)alg. Let p(ā, c̄, z̄, j̄, b) = 0 for some irreducible polynomial p and c̄ ∈ Cs.
Denote l := |j̄| = σ(B) and V := LocC(ā)(z̄, j̄) ⊆ K2l and assume (by extending c̄ if necessary)
it is defined over c̄, ā. In order to stress that V is defined over ā, c̄, we denote it by Vā,c̄ (it is a
member of a parametric family of varieties). Notice that

(4.9) dimVā,c̄ = td(B/C)− td(ā/C) = δ(B) + σ(B)− td(ā/C) = k + l − td(ā/C).
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Also, denote W := LocQ(ā)(c̄). For each proper Zariski closed subvariety U ( W , defined
over Q(ā), and each positive integer N consider the formulae

ξU,N(ē, ū, v̄) :=

(
ē ∈ C |c̄| ∩ (W \ U) ∧ (ū, v̄) ∈ Vā,ē ∩ E×j ∧

N∧
n=1

∧
i 6=r

Φn(vi, vr) 6= 0

)
,

ψU,N(ē, ū, v̄, y) := ξU,N(ē, ū, v̄) ∧ p(ā, ē, ū, v̄, y) = 0,

ϕU,N(y) := ∃ē, ū, v̄ ψU,N(ē, ū, v̄, y).

Observe that ϕU,N is defined over ā and ϕU,N(b) holds in KEj
.

Proposition 4.25. The formulae ϕU,N axiomatise the type tp(b/ā), that is, if for some b′ ∈ K
the formula ϕU,N(b′) holds for each U ( W and each N > 0 then tp(b/ā) = tp(b′/ā).

Proof. Consider the type q(ē, ū, v̄) over ā, b′ consisting of all formulae ψU,N(ē, ū, v̄, b′) for all
U ( V and N > 0. Then q is finitely satisfiable and hence there is a realisation of q in KEj

which we denote by c̄′, z̄′, j̄′.
Observe that c̄′ is generic in W over ā. Hence c̄ and c̄′ have the same algebraic type over ā.

In particular, dimVā,c̄ = dimVā,c̄′ . Further, j′1, . . . , j′l are pairwise modularly independent. So
if B′ := C(ā, z̄′, j̄′)alg then σ(B′) ≥ l. On the other hand

(4.10) td(B′/C) = td(ā/C) + td(z̄′, j̄′/C(ā)) ≤ td(ā/C) + dimVā,c̄′ = k + l,

where the last equality follows from (4.9). Therefore δ(B′) ≤ (k + l) − l = k. However, B′
contains ā and since d(ā) = k, δ(B′) cannot be smaller than k. Thus, δ(B′) = k and σ(B′) = l
and the inequality in (4.10) must be an equality, i.e. td(z̄′, j̄′/C(ā)) = dimVā,c̄′ . This means
that z̄′, j̄′ is generic in Vā,c̄′ over C(ā). Therefore, there is a field isomorphism π : B → B′ which
fixes ā pointwise, fixes C setwise, sends c̄ to c̄′ and sends (z̄, j̄) to (z̄′, j̄′). Since σ(B′) = l, the
tuple (z̄′, j̄′) is an Ej-basis of B′ and π is an isomorphism of B and B′ as Ej-fields.

Finally, as p(ā, c̄, z̄, j̄, b) = 0 and p(ā, c̄′, z̄′, j̄′, b′) = 0, we could have chosen π so that π(b) =
π(b′). Now both B and B′ are strong in KEj

and the latter is homogeneous with respect to
strong substructures, hence π can be extended to an automorphism of KEj

. This shows that b
and b′ have the same type over ā. �

Remark 4.26. In general, all types in KEj
are determined by formulas of the above form

and their negations. In particular, every formula is equivalent to a Boolean combination of
existential formulas in KEj

and hence its theory is nearly model complete.

Theorem 4.27. If ā ≤ K then acl(C(ā)) = C(ā)alg.

Proof. It suffices to prove that for ā ≤ K we have acl(ā) ⊆ C(ā)alg. Assume b ∈ acl(ā). Then
d(b/ā) = 0 and tp(b/ā) is determined by existential formulas ϕU,N(y). Since b ∈ acl(ā), some
formula ϕU,N(y) ∈ tp(b/ā) has finitely many realisations in KEj

.
We use the above notation. The point (z̄, j̄) ∈ Vā,c̄ is generic over ā, c̄. Observe that (z̄, j̄)

must contain an Ej-basis of A = C(ā)alg. Denote it by (z̄ā, j̄ā) and (z̄0, j̄0) := (z̄, j̄) \ (z̄ā, j̄ā),
i.e. (z̄0, j̄0) consists of all coordinates (zi, ji) of (z̄, j̄) for which (zi, ji) /∈ A2. In other words,
(z̄0, j̄0) is an Ej-basis of B = dA(b)e over A. Let W be an irreducible component over L :=
Q(ā, c̄, z̄ā, j̄ā)

alg of the fibre of Vā,c̄ above (z̄ā, j̄ā) containing (z̄0, j̄0). Then it is defined over L
and (z̄0, j̄0) is generic in W over L.

Since ϕU,N(b) holds, in particular we have p(ā, c̄, z̄, j̄, b) = 0. Assume

p(ā, c̄, z̄, j̄, Y ) = Y n + sn−1(z̄0, j̄0)Y n−1 + · · ·+ s0(z̄0, j̄0)

where each si(X̄1, X̄2) is a rational functions over L. If for all i si(z̄0, j̄0) ∈ L then b ∈ L ⊆ A.
Otherwise assume without loss of generality that s0(z̄0, j̄0) /∈ L.

Since A ≤ B, by Lemma 4.21W is normal. By SEC there is a point (z̄1, j̄1) ∈ W (K)∩Ej(K)
generic over L(z̄0, j̄0). If s0(z̄1, j̄1) = s0(z̄0, j̄0) then the function s0(X̄1, X̄2) is constant on W .
On the other hand, W is defined over L, so the constant value of s0(X̄1, X̄2) must belong to L.
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This is a contradiction, hence s0(z̄1, j̄1) 6= s0(z̄0, j̄0). Now pick a generic point (z̄2, j̄2) inW (K)∩
Ej(K) over L(z̄0, j̄0, z̄1, j̄1). By the above argument the elements s0(z̄0, j̄0), s0(z̄1, j̄1), s0(z̄2, j̄2)
are pairwise distinct. Iterating this process we will construct a sequence (z̄i, j̄i), i = 0, 1, 2, . . .
such that for each i

KEj
|= ξU,N(c̄, z̄ā, z̄i, j̄ā, j̄i)

and s0(z̄i, j̄i), i = 0, 1, 2, . . . are pairwise distinct. This shows that the formula ϕU,N(y) has
infinitely many realisations (for there are only finitely many monic polynomials of a given
degree the roots of which belong to a finite set of elements). This is a contradiction. �

Corollary 4.28. For any ā ⊆ K we have acl(ā) ⊆ dāe.

4.5. Classification of strongly minimal sets in KEj
. Recall that we assume the EC con-

jecture.

Theorem 4.29. Let S ⊆ K be a strongly minimal set. Then either S is geometrically trivial
or S 6⊥ C.

Proof. Assume S is defined over ā and S ⊥ C. Denote A := C(ā)alg. Pick b ∈ S \ acl(A) (if
such an element does not exist then S 6⊥ C). Then clearly d(b/A) = 0. Denote B′ := dAbe and
let zb ∈ K be such that Ej(zb, b) holds. Now if B = B′(zb)

alg (with the induced structure from
KEj

) then δ(B) = δ(B′) = d(A) as d(b/A) = 0. Hence B ≤ K. Choose a maximal Ej-field A′
with A ⊆ A′ ⊆ B such that b /∈ acl(A′). Since strong minimality of a set and the nature of the
geometry of a strongly minimal set do not depend on the choice of the set of parameters over
which the set if defined, we may extend A and assume A′ = A. This means that if e ∈ B \ A
then b ∈ acl(Ae). In particular, acl(A) = A.

Let (z̄, j̄) ∈ B2l be an Ej-basis of B with jl = b. Further, extending ā we may assume that
V := LocA(z̄, j̄) ⊆ K2l is defined over ā. Then tp(b/A) is determined by the formulae

χN(y) := ∃ū, v̄

(
(ū, v̄) ∈ V ∩ E×j ∧ y = vl ∧

N∧
n=1

∧
i 6=r

Φn(vi, vr) 6= 0

)
.

Now pick pairwise acl-independent elements b1, . . . , bt ∈ S \ A. We will show that bt /∈
acl(Ab1 . . . bt−1). Since S is strongly minimal, tp(bi/A) = tp(b/A) for all i. By saturatedness
of KEj

for each i there is (z̄i, j̄i) ∈ V ∩E×j such that j̄i is pairwise modularly independent and
jil = bi. Denote Bi = A(z̄i, j̄i)alg.

It is clear that dimV = tdA(z̄, j̄) = td(B/A) = δ(B/A) + σ(B/A). Therefore

δ(Bi) = td(Bi/C)− σ(Bi) ≤ dimV + td(A/C)− l =

δ(B/A) + σ(B/A) + δ(A) + σ(A)− l = δ(B) = d(A),

and so Bi ≤ K and (z̄i, j̄i) is an Ej-basis of Bi. We can conclude now that dAbie ⊆ Bi, hence
acl(Abi) ⊆ Bi. Moreover, as in the previous section there is an automorphism of KEj

over A
that maps B onto Bi (and maps (z̄, j̄) to (z̄i, j̄i)). In particular, for every e ∈ Bi \ A we have
bi ∈ acl(Ae).

We claim that jir and jmk are modularly independent unless (i, r) = (m, k) or jir, jmk ∈
A. Assume for contradiction that for some i 6= m the elements jir and jmk are modularly
dependent and jir /∈ A. Then bi ∈ acl(Ajir) = acl(Ajmk ) ⊆ Bm. Hence bm ∈ acl(Abi) which
is a contradiction, for we assumed bi’s are pairwise acl-independent. This shows in particular
that (when t ≥ 2) A ≤ K as otherwise we would have b ∈ dAe and S ⊆ acl(Ab) in which case
S 6⊥ C.

Now let B̃k := B1 . . . Bk be the Ej-subfield of KEj
generated by B1, . . . , Bk where k ≤ t. The

above argument shows that

σ(B̃k/A) =
k∑

i=1

σ(Bi/A) = k · σ(B/A).
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By submodularity of δ we have

δ(B̃k) ≤ δ(B̃k−1) + δ(Bk)− δ(B̃k−1 ∩Bk)

for each k. Since δ(B̃k−1 ∩ Bk) ≥ d(A), we can show by induction that δ(B̃k) = d(A) and
B̃k ≤ K. Thus,

(4.11) tdC(B̃k) = δ(B̃k) + σ(B̃k) = d(A) + σ(B̃k).

On the other hand, using submodularity of td and −σ we get by induction

tdC(B̃k) ≤ tdC(B̃k−1) + tdC(Bk)− tdC(B̃k−1 ∩Bk) =

d(A) + σ(B̃k−1) + d(A) + σ(Bk)− δ(B̃k−1 ∩Bk)− σ(B̃k−1 ∩Bk)

≤ d(A) + σ(B̃k),

where δ(B̃k−1 ∩Bk) ≥ d(A) for A ⊆ B̃k−1 ∩Bk. In fact we must have equalities everywhere in
the above inequality due to (4.11). In particular,

σ((B̃k−1 ∩Bk)/A) = σ(B̃k−1/A) + σ(Bk/A)− σ(B̃k/A) = 0.

So
td((B̃k−1 ∩Bk)/A) = δ((B̃k−1 ∩Bk)/A) + σ((B̃k−1 ∩Bk)/A) = 0.

This implies that B̃k−1∩Bk = A. In particular, bt /∈ B̃t−1. On the other hand, acl(Ab1 . . . bt−1) ⊆
dAb1 . . . bt−1e ⊆ B̃t−1. Thus, bt /∈ acl(Ab1 . . . bt−1) as required. �

We can also prove that some sets are strongly minimal. Let A := C(ā)alg ≤ K. Assume
V ⊆ K2 is an algebraic curve defined over A, i.e. dimV = 1. Consider the formula

χ(y) := ∃ū, v̄
(
(ū, v̄) ∈ V ∩ E×j ∧ p(ā, ū, v̄, y) = 0

)
,

where p is some irreducible algebraic polynomial.

Proposition 4.30. If S := χ(KEj
) is infinite then S is strongly minimal.

Proof. We need to show that over any set of parameters all non-algebraic elements in S realise
the same type. By the stable embedding property we may choose all extra parameters from
the set S itself. Assume e, e′, b1, . . . , bt ∈ S with e, e′ /∈ A(b̄)alg. We will show that tp(e/A(b̄)) =
tp(e′/A(b̄)).

Choose existential witnesses (z, j), (z′, j′), (zi, ji) ∈ V (K) ∩E×j (K) for χ(e), χ(e′) and χ(bi)

respectively. Since e /∈ A(b̄)alg and p(ā, z, j, e) = 0 and dimV = 1, the point (z, j) is generic in
V over A(b̄). Similarly (z′, j′) is generic in V . So (z, j) and (z′, j′) have the same algebraic type
over A(b̄). On the other hand, δ(b̄/A) ≤ 0, therefore δ(b̄/A) = 0. Thus δ(e/Ab̄) = δ(e′/Ab̄)
and (z, j) and (z′, j′) form Ej-bases of A(b̄, e)alg and A(b̄, e′)alg over A(b̄)alg respectively. Hence,
as in the proof of Proposition 4.25, e can be mapped to e′ by an automorphism of KEj

over
A(b̄). �

Remark 4.31. WhenA is not strong inK we may actually work over dAe since strong minimality
of a set does not depend on the choice of the set of parameters over which the set if defined.
Hence the assumption A ≤ K does not restrict generality.

Appendix A. On strong minimality

In this appendix we give some preliminaries on strongly minimal sets. For a detailed account
of strongly minimal sets and geometric stability theory in general we refer the reader to [Pil96].

Algebraic closure defines a pregeometry on a strongly minimal set. More precisely, if X is a
strongly minimal set in a structureM defined over A ⊆M then the operator

cl : Y 7→ acl(AY ) ∩X, for Y ⊆ X,

is a pregeometry.
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Definition A.1. LetM be a structure and X ⊆ M be a strongly minimal set defined over a
finite set A ⊆M .

• We say X is geometrically trivial (over A) if whenever Y ⊆ X and z ∈ acl(AY ) ∩ X
then z ∈ acl(Ay) for some y ∈ Y . In other words, geometric triviality means that the
closure of a set is equal to the union of closures of singletons.
• X is called strictly disintegrated (over A) if any distinct elements x1, . . . , xn ∈ X are
independent (over A).
• X is called ℵ0-categorical (over A) if it realises only finitely many 1-types over AY for
any finite Y ⊆ X. This is equivalent to saying that acl(AY ) ∩X is finite for any finite
Y ⊆ X.

Note that strict disintegratedness implies ℵ0-categoricity and geometric triviality.

Theorem A.2. Let M be a model of an ω-stable theory and X ⊆ M be as above. If X is
geometrically trivial over A then it is geometrically trivial over any superset B ⊇ A.

Proof. By expanding the language with constant symbols for elements of A we can assume
that X is ∅-definable. Also we can assume B = {b1, . . . , bn} is finite. Let z ∈ acl(BY ) for
some finite Y ⊆ X. By stability tp(b̄/X) is definable over a finite C ⊆ X and we may assume
that C ⊆ acl(B) ∩X. Therefore z ∈ acl(CY ). By geometric triviality of X (over ∅) we have
z ∈ acl(c) for some c ∈ C or z ∈ acl(y) for some y ∈ Y . This shows geometric triviality of X
over B. �

As we saw in the proof all definable subsets ofXm over B are definable over acl(B)∩X (which
means that X is stably embedded intoM). The same argument shows that ℵ0-categoricity does
not depend on parameters (cf. [NP17, Lemma 2.20]). Of course this is not true for strict
disintegratedness but a weaker property is preserved. Namely, if X is strictly disintegrated
over A then any distinct non-algebraic elements over B are independent over B.

Definition A.3. Two definable sets X and Y are called orthogonal, written X ⊥ Y , iff any
two elements x ∈ X and y ∈ Y are (forking) independent over any set of parameters over
which X and Y are defined.

The following gives a simpler characterisation of orthogonality for strongly minimal sets.

Lemma A.4. Two strongly minimal sets X and Y are non-orthogonal iff for some finite
parameter set A we have Y ⊆ acl(A ∪X).

Non-orthogonality means that the given sets are “similar”. It is an equivalence relation for
strongly minimal sets.
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