Question 1. Prove that for any real number \(x \) the following inequality holds
\[|x + 1| + |x + 2| + \ldots + |x + 2012| \geq 1006^2. \]
When does the equality hold?

Question 2. Find all differentiable functions \(f: \mathbb{R} \rightarrow \mathbb{R} \) satisfying for all \(x \in \mathbb{R} \) the following inequality
\[f'(x) \geq f(x). \]

Question 3. Let \(\varphi \) be Euler’s totien function, i.e. for a positive integer \(n \) we define \(\varphi(n) \) to be the number of positive integers less than or equal to \(n \) that are relatively prime to \(n \). Prove that for any positive integer \(n \)
\[\sum_{d|n} \varphi(d) = n, \]
where the sum is over all positive divisors of \(n \).

Question 4. Examine the convergence of the sequence
\[a_n = \sum_{k=1}^{n} \frac{k}{n^2 + k} = \frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \ldots + \frac{n}{n^2 + n}. \]

Question 5. Given an irrational number \(\alpha \) prove that the set \(\{ \{k\alpha\} : k \in \mathbb{Z}\} \) is a dense subset of the interval \([0, 1]\), i.e. prove that for any numbers \(0 < a < b < 1 \) there exists an integer \(k \) such that \(\{k\alpha\} \in (a, b) \).

Remark. The fractional part, denoted by \(\{x\} \) for real \(x \), is defined by the formula
\[\{x\} = x - \lfloor x \rfloor, \]
where \(\lfloor \cdot \rfloor \) denotes the usual floor function.

Question 6. Given a parameter \(\beta \in (0, 1) \) prove that
\[\prod_{k=2}^{n} \left(1 - \frac{\beta}{k}\right) \xrightarrow{n \to \infty} 0. \]

Question 7. Let \(u: (0, 1) \rightarrow \mathbb{R} \) be a differentiable function which satisfies
\[u'(t) \leq cu(t), \quad \text{for all } t \in (0, 1), \]
where \(c \) is some constant. Prove that
\[u(t) \leq u(0)e^{ct}, \quad \text{for all } t \in (0, 1). \]

Question 8. Find all integers \(a, b \) and \(c \) satisfying the equation
\[a^{2012} + b^{2012} - 8c^{1006} = 6. \]

Question 9. Does there exist a non-abelian group with less than 6 elements?

Question 10. Does the series \(\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)^n \) converge?