A few baby inequalities

Question 1. Prove that for real numbers x_1, \ldots, x_n we have

$$|x_1 + \ldots + x_n| \leq |x_1| + \ldots + |x_n|.$$

Question 2. Given a natural number $n \geq 1$ find minimum value of $\sum_{i=1}^{n} \sqrt{a_i^2 + (2i - 1)^2}$ subject to positive numbers a_i satisfying $\sum_{i=1}^{n} a_i = n^2$.

Question 3. Prove that for $x \geq 1$ and $h > 0$ we have

$$\sqrt{x+h} - \sqrt{x} \leq \frac{h}{2}.$$

Does this hold for all $x > 0$?

Question 4. Prove that for positive numbers x_1, \ldots, x_n the arithmetic mean is greater or equal that the geometric mean,

$$\frac{n}{\sqrt[n]{x_1 \cdots x_n}} \leq \frac{x_1 + \ldots + x_n}{n}.$$

Question 5. Prove that for numbers $x_1, \ldots, x_n > -1$ that have the same sign we have

$$(1 + x_1) \cdots (1 + x_n) \geq 1 + x_1 \ldots + x_n.$$

Question 6 (Bernoulli’s inequality). Prove that for a real number $x > -1$ and a natural number $n \geq 1$ we have

$$(1 + x)^n \geq 1 + nx.$$

Question 7 (The Cauchy-Schwarz inequality). Prove that for real numbers $x_1, \ldots, x_n, y_1, \ldots, y_n$ we have

$$\sum_{i=1}^{n} x_i y_i \leq \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}.$$

Question 8 (Hölder’s inequality). Prove that for real numbers $x_1, \ldots, x_n, y_1, \ldots, y_n$ and $p, q \geq 1$ which satisfy $1/p + 1/q = 1$ we have

$$\sum_{i=1}^{n} x_i y_i \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q \right)^{1/q}.$$

Question 9. Prove that for $x \in (0, \pi/2)$ we have

$$\sin x < x < \tan x.$$
Question 10. Prove that for $x \in \mathbb{R}$ we have

$$1 + x \leq e^x.$$

Question 11. Prove that for $x > 0$ we have

$$\frac{x}{x + 1} \leq \ln(1 + x) \leq x.$$

A FEW ESTIMATES INVOLVING FACTORIALS

Question 12. Prove that

$$\left(\frac{n}{e}\right)^n \leq n! \leq 3 \frac{n^{n+1}}{e^n}.$$

Conclude that $\sqrt[n]{n!/n} \to 1/e.$

Question 13. Prove that

$$n^{n/2} \leq n! \leq \left(\frac{n+1}{2}\right)^n.$$

Question 14. Prove that

$$\binom{n}{k} \leq \left(\frac{ne}{k}\right)^k.$$

Question 15. Prove that

$$\frac{4^n}{2\sqrt{n}} \leq \binom{2n}{n} \leq 4^n.$$

Question 16. Give a natural number $n \geq 1$ prove that the sequence $a_k = \binom{n}{k}$ is log-concave, i.e. $a_k^2 \geq a_{k-1}a_{k+1}$ for $k = 2, \ldots, n-1.$

Question 17 (†). Prove that for a natural number $n \geq 1$ we have

$$\frac{e}{2n+2} < e - \left(1 + \frac{1}{n}\right)^n < \frac{e}{2n+1}.$$

Conclude that

$$\left(\frac{(1+1/n)^n}{e}\right)^n \to 1/\sqrt{e}. $$
Analysis II, Term 2 2012/2013

Tomasz Tkocz

Support class 2

Question 1 (♥). Let \(f(x) = \sum_{k=-2013}^{2013} |x - k| \). Given \(c \in \mathbb{R} \) and \(\epsilon > 0 \) find \(\delta > 0 \) such that

\[
\forall x \in \mathbb{R} \quad |x - c| < \delta \implies |f(x) - f(c)| < \epsilon.
\]

Hint: You may want to prove that for all \(x, y \in \mathbb{R} \)

\[
|f(x) - f(y)| \leq 4027|x - y|.
\]

Question 2 (♥). Find all \(a \in \mathbb{R} \) such that the function \(f_a: \mathbb{R} \to \mathbb{R} \) given by

\[
f_a(x) = \begin{cases}
\min\{1/|x|, a\}, & x \neq 0 \\
 a^2 - 1, & x = 0
\end{cases}
\]

is continuous.

Question 3 (♥). Let \(f, g: \mathbb{R} \to \mathbb{R} \) be continuous functions. Prove that the functions \(M(x) = \max\{f(x), g(x)\} \) and \(m(x) = \min\{f(x), g(x)\} \) are also continuous.

Question 4 (♥). Suppose that for some \(c \in \mathbb{R} \) a function \(f: \mathbb{R} \to \mathbb{R} \) satisfies the following property

\[
\forall (x_n)_{n=1}^{\infty} \ x_n \to c \implies f(x_n) \to f(c).
\]

Prove that \(f \) is continuous at \(c \).

Remark. Cf. Exercise 6 from Assignment 1.

Question 5 (♠). Let \(f, g: \mathbb{R} \to \mathbb{R} \) be bounded below, say \(f(x), g(x) \geq 0 \) for all \(x \in \mathbb{R} \). Suppose that \(|g(x) - g(y)| \leq |x - y| \) for all \(x, y \in \mathbb{R} \). Prove that the function \(f \Box g \) defined by

\[
(f \Box g)(x) = \inf_{t \in \mathbb{R}} \{ f(x) + g(x - t) \}
\]

is continuous.
Question 1 (♥). Let \(f: [0, +\infty) \rightarrow [0, +\infty) \) satisfy for all \(x, y \geq 0 \)
\[
|f(x) - f(y)| \leq q|x - y|,
\]
with some constant \(q \in (0, 1) \). Fix \(x_0 \geq 0 \) and define recursively the sequence \((x_n)_{n\geq0}\) by \(x_{n+1} = f(x_n) \), \(n \geq 0 \). Prove that it converges. What can be said about the limit?

Question 2 (♥). Let \(f(x) = \sqrt{1 + x} \) for \(x \geq 0 \). Prove that for any \(x_0 \geq 0 \) the sequence \((x_n)_{n\geq0}\) defined recursively by \(x_{n+1} = f(x_n) \) for \(n \geq 0 \) converges and compute the limit.

Question 3 (♥). Define the function
\[
f(x) = \begin{cases}
0 & \text{if } x \in \mathbb{Q} \\
|\sin x| & \text{if } x \notin \mathbb{Q}.
\end{cases}
\]
At which points is \(f \) continuous?

Definition. We say that a function \(f: (A,B) \rightarrow \mathbb{R} \) possesses the Intermediate Value Property if for any \(a < b \) in the domain such that \(f(a) \neq f(b) \), and any \(z \) between \(f(a) \) and \(f(b) \) there is some \(c \in (a,b) \) between \(a \) and \(b \) with \(f(c) = z \).

Question 4 (♠). Give an example of a function which is not continuous, and yet has got the Intermediate Value Property.

Question 5 (♥). Prove that the equation \((1-x)\cos x = \sin x\) has a solution in the interval \((0,1)\).

Question 6 (♥). Let \(f: \mathbb{R} \rightarrow \mathbb{R} \) be a \(T \) - periodic continuous function, i.e. \(f(x+T) = f(x) \) for all \(x \in \mathbb{R} \), where \(T > 0 \) is the period. Prove that there exists \(x_0 \) such that
\[
f(x_0 + T/2) = f(x_0).
\]

Question 7 (♥/♠). Let \(f: \mathbb{R} \rightarrow \mathbb{R} \) be additive, i.e. satisfy for all \(x, y \in \mathbb{R} \) Cauchy’s functional equation
\[
f(x + y) = f(x) + f(y).
\]
Prove that
(a) \(f(0) = 0 \)
(b) \(f(-x) = f(x) \)
(c) For any \(x_1, \ldots, x_n \in \mathbb{R} \) we have \(f(x_1 + \ldots + x_n) = f(x_1) + \ldots + f(x_n) \)
(d) For an integer \(k \) and a real number \(x \) we have \(f(kx) = kf(x) \)
(e) For a rational number q we have $f(q) = qf(1)$

(f) In addition, if f satisfies one of these assumptions:

 (i) f is continuous
 (ii) f is continuous at one point
 (iii) f is monotone
 (iv) f is bounded above/below

then $f(x) = xf(1)$ for all $x \in \mathbb{R}$.
Question 1 (♥/♠). Compute the following limit (if it exists)
(a) \(\lim_{x \to 0} x \cos \frac{1}{x} \)
(b) \(\lim_{x \to +\infty} x \left(\sqrt{x^2 + 1} - \sqrt{x^4 + 1} \right) \)
(c) \(\lim_{x \to 0} \frac{\cos \left(\frac{x}{2} \cos x \right)}{\sin (\sin x)} \).

Question 2 (♥). Prove that for any \(x \in \mathbb{R} \) we have \(x - 1 < |x| \leq x \).

Question 3 (♥). Compute the following limit (if it exists)
(a) \(\lim_{x \to 0} x \left| \frac{1}{x} \right| \)
(b) \(\lim_{x \to 0} \frac{|x|}{x} \).
(c) \(\lim_{x \to 0} x^2 \left(1 + 2 + \ldots + \left| \frac{1}{|x|} \right| \right) \).

Question 4 (♠). Let \(f: \mathbb{R} \longrightarrow \mathbb{R} \) be an increasing function such that \(\lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1 \). Prove that \(\lim_{x \to \infty} \frac{f(cx)}{f(x)} = 1 \) for every \(c > 0 \).

Question 5 (★). Let \(f: [0, \infty) \longrightarrow \mathbb{R} \) possess the property: for every \(a \geq 0 \) the limit \(\lim_{n \to \infty} f(a + n) \) exists and equals 0. Does it imply that the limit \(\lim_{x \to \infty} f(x) \) exists?
Question 1 (♥). Prove that
(a) \(\lim_{x \to \infty} \frac{e^x}{x^n} = \infty, \ n \geq 0 \)
(b) \(\lim_{x \to \infty} x^n e^{-x} = 0, \ n \geq 0 \)
(c) \(\lim_{x \to 0^+} x^p \ln x = 0, \ p \in (0, 1) \)
(d) \(\lim_{x \to \infty} \frac{\ln^n x}{x} = 0, \ n \geq 0 \).

Question 2 (♠). Let \(f: \mathbb{R} \to \mathbb{R} \) be given by the formula
\[
f(x) = \begin{cases}
 e^{-1/x^2}, & x > 0 \\
 0, & x \leq 0
\end{cases}
\]
Is \(f \) differentiable? What can you say about the second derivative? About the higher order derivatives?

Question 3 (♥). Let \(f: \mathbb{R} \to \mathbb{R} \) be a differentiable function with \(\sup_{x \in \mathbb{R}} |f'(x)| = L < \infty \). Prove that \(f \) is \(L \)-Lipschitz, i.e.
\[
|f(x) - f(y)| \leq L|x - y|, \quad \text{for all reals } x, y.
\]

Question 4 (★). Find all differentiable functions \(f: \mathbb{R} \to \mathbb{R} \) satisfying for all reals \(x \neq y \)
\[
\frac{f(y) - f(x)}{y - x} = f'\left(\frac{x + y}{2}\right).
\]
What is the geometric interpretation of this equation?
Question 1 (♠). Let \(f: (a,b) \to \mathbb{R} \) be differentiable. Prove that \(f' \) possesses the intermediate value property.

Question 2 (♠). Does there exist a differentiable function \(f: \mathbb{R} \to \mathbb{R} \) such that
\[
 f'(x) = \begin{cases}
 -1, & x < 0 \\
 0, & x = 0 \\
 1, & x > 0
 \end{cases}
\]

Question 3 (♥). Suppose that \(f(0) = 0 \) and that \(f'(0) \) exists. Given a positive integer \(k \) compute
\[
 \lim_{x \to 0} \frac{1}{x} \left(f(x) + f\left(\frac{x}{2}\right) + \ldots + f\left(\frac{x}{k}\right) \right).
\]

Question 4 (♠). Let \(f(x) = a_1 \sin x + a_2 \sin(2x) + \ldots + a_n \sin(nx) \), where \(a_1, a_2, \ldots, a_n \) are reals. Prove that if \(|f(x)| \leq |\sin x| \) for every \(x \in \mathbb{R} \) then \(|a_1 + 2a_2 + \ldots + na_n| \leq 1 \).
Question 1 (♥). Prove that if $|x| < 1/2$ then the approximate formula

$$\sqrt{1+x} \approx 1 + \frac{1}{2}x - \frac{1}{8}x^2$$

gives the value of $\sqrt{1+x}$ with the error at most $\frac{1}{2}|x|^3$.

Observe that $\sqrt{1+1/8} = \frac{3\sqrt{2}}{4}$ and find an approximate value of $\sqrt{2}$. What is the error?

Question 2 (Bernoulli’s inequality in full glory ♥). Let $x > -1$, $x \neq 0$. Prove that

(a) $(1+x)^\alpha > 1 + \alpha x$, if $\alpha > 1$ or $\alpha < 0$

(b) $(1+x)^\alpha < 1 + \alpha x$, if $0 < \alpha < 1$.

Question 3 (♥). Prove that if $f''(x)$ exists then

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}.$$

Question 4 (♠). Let $f : \mathbb{R} \to \mathbb{R}$ be twice differentiable and

$$M_k = \sup \{|f^{(k)}(x)|; x \in \mathbb{R}\} < \infty, \quad k = 0, 1, 2.$$

Prove that

$$M_1 \leq \sqrt{2M_0M_2}.$$

Question 5 (♥). Find

$$\lim_{x \to 0} \frac{e^{x^2/2} - 1}{\cosh x - 1}.$$

Question 6 (♠). Prove that

(a) $\cosh x \leq e^{x^2/2}$ for $x \in \mathbb{R}$

(b) $\cos x \leq e^{-x^2/2}$ for $x \in [0, \pi/2]$.

Questions difficulty legend: ♥ - easy ♠ - medium ★ - hard † - very hard

04/03/2013

Analysis II, Term 2 2012/2013
Tomasz Tkocz

Support class 8

Question 1 (♥♠). Evaluate

(a) \(\lim_{x \to 0} \frac{\ln(1+ex)}{x} \).

(b) \(\lim_{x \to 1} \frac{\arctan\left(\frac{x^2-1}{x^2+1}\right)}{x-1} \).

(c) \(\lim_{x \to \infty} x \left(\left(1 + \frac{1}{x}\right)^x - e\right) \).

(d) \(\lim_{x \to 0^+} \left(\frac{\sin x}{x}\right)^{1/x} \).

(e) \(\lim_{x \to 0^+} \left(\frac{\sin x}{x}\right)^{1/x^2} \).

Question 2 (♥). Determine the interval of convergence for the series

(a) \(\sum_{n=1}^{\infty} \frac{2^n x^n}{n!} \).

(b) \(\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n \left(-1\right)^n n^2 x^n \).

Question 3 (♥). Recall the definition of \(\lim_{n \to \infty} a_n \) and \(\overline{\lim}_{n \to \infty} a_n \). Prove that

(a) if \(a_n \leq b_n \) eventually, then \(\overline{\lim}_{n \to \infty} a_n \leq \overline{\lim}_{n \to \infty} b_n \).

(b) \(\overline{\lim}(a_n + b_n) \leq \overline{\lim} a_n + \overline{\lim} b_n \).

(c) \(\overline{\lim} |a_nb_n| \leq \overline{\lim} |a_n| \cdot \overline{\lim} |b_n| \). Show that the inequality can be strict.

(d) \(\lim\min\{a_n, b_n\} = \min\{\lim a_n, \lim b_n\} \).

Question 4 (♠). Suppose that \(f: (-1,1) \to \mathbb{R} \) is a function of class \(C^2 \) such that \(f(0) = 0 \). Compute

\[
\lim_{x \to 0^+} \sum_{k=1}^{\lfloor 1/\sqrt{x} \rfloor} f(kx).
\]
Analysis II, Term 2 2012/2013

Tomasz Tkocz

Support class 9

Question 1 (♥). Evaluate

(a) \(\lim_{x \to 5} (6 - x)^{1/(x-5)} \).

(b) \(\lim_{x \to \infty} \frac{x - \sin x}{2x + \sin x} \).

Question 2 (♥♠). Prove that for \(x \in (0, \pi/2) \) and a positive integer \(n \) we have

(a) \(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + \frac{x^{4n-3}}{(4n-3)!} - \frac{x^{4n-1}}{(4n-1)!} < \sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + \frac{x^{4n-3}}{(4n-3)!} - \frac{x^{4n-1}}{(4n-1)!} + \frac{x^{4n+1}}{(4n+1)!} \).

(b) \(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + \frac{x^{4n-2}}{(4n-2)!} < \cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + \frac{x^{4n-2}}{(4n-2)!} + \frac{x^{4n}}{(4n)!} \).

Do these inequalities hold for \(x \geq \pi/2 \) as well?

Question 3 (♥). Prove that \(e^x \geq 1 + x \) for \(x \in \mathbb{R} \) and then derive the inequality between means

\[\frac{x_1 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 \cdot \ldots \cdot x_n}. \]

Question 4 (♥). Prove the inequality

(a) \(1 - 1/x \leq \ln x \leq x/e \) for \(x > 0 \).

(b) \(2 \tan x > \sinh x \) for \(x \in (0, \pi/2) \).

Remark. Combining the inequalities \(\cosh x \leq e^{x^2/2} \) and \(\cos x \leq e^{-x^2/2} \) (see Support class 7, Question 6), one can actually show \(c \tan x > \sinh x \) with \(c = 1 \) which is sharp.