How fast does the Gaussian measure of a convex and symmetric set grow?

Tomasz Tkocz

College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences and
Institute of Mathematics
University of Warsaw

Toruńska Letnia Szkoła Matematyki 2010

Outline

Introduction

Known results \& Problems

Ideas for Proofs

Summary

Main question

Dilation of a Borel set $A \subset \mathbb{R}^{n}$ is

$$
A \rightsquigarrow t A, \quad t>0 .
$$

What happens with its measure?

Main question

Dilation of a Borel set $A \subset \mathbb{R}^{n}$ is

$$
A \rightsquigarrow t A, \quad t>0 .
$$

What happens with its measure?

- Lebesgue measure - it is trivial

$$
|t A|=t^{n}|A|
$$

Main question

Dilation of a Borel set $A \subset \mathbb{R}^{n}$ is

$$
A \rightsquigarrow t A, \quad t>0 .
$$

What happens with its measure?

- Lebesgue measure - it is trivial

$$
|t A|=t^{n}|A|
$$

- Gaussian measure?

$$
\gamma_{n}(t A)=?
$$

Reminder

The standard Gaussian measure γ_{n} it is a measure with the density $\frac{1}{\sqrt{2 \pi}^{n}} e^{-|x|^{2} / 2}$.

Examples on the plane $(n=2)$

1) $A=(-1,1) \times \mathbb{R}$. Then

$$
f_{A}(t)=\gamma_{2}(t A)=\gamma_{2}((-t, t) \times \mathbb{R})=\frac{1}{\sqrt{2 \pi}} \int_{-t}^{t} e^{-x^{2} / 2} \mathrm{~d} x
$$

2) $B=\left\{x \in \mathbb{R}^{2}| | x \mid \leq 1\right\}$. Then

$$
f_{B}(t)=\gamma_{2}(t B)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{t} e^{-r^{2} / 2} r d r d \varphi=1-e^{-t^{2} / 2}
$$

Examples on the plane $(n=2)$

Figure: Graphs of f_{A} and f_{B}

Main target

Problem

Give the optimal bounds from above and from below on the function

$$
t \stackrel{f_{A}}{\longmapsto} \gamma_{n}(t A), \quad t \geq 1
$$

Main target

Problem
Give the optimal bounds from above and from below on the function

$$
t \stackrel{f_{A}}{\longmapsto} \gamma_{n}(t A), \quad t \geq 1 .
$$

Remark

We have to assume something on the set A as there are inconvenient examples

Figure: The function f_{A} is decreasing for $t \geq 1$

Main target

Problem

Give the optimal bounds from above and from below on the function

$$
t \stackrel{f_{A}}{\longmapsto} \gamma_{n}(t A), \quad t \geq 1
$$

Assumption

We restrict ourself to the sets which are

- convex,
- symmetric $(A=-A)$.

That is, A is a ball with respect to some norm on \mathbb{R}^{n}.

Bounds

Bound from above $=$ Homework Let $A \subset \mathbb{R}^{n}$ be convex and symmetric and $B=\{|x| \leq R\}$ be an euclidean ball such that $\gamma_{n}(A)=\gamma_{n}(B)$. Then

$$
\gamma_{n}(t A) \leq \gamma_{n}(t B), \quad t \geq 1
$$

Bounds

Bound from above $=$ Homework
Let $A \subset \mathbb{R}^{n}$ be convex and symmetric and $B=\{|x| \leq R\}$ be an euclidean ball such that $\gamma_{n}(A)=\gamma_{n}(B)$. Then

$$
\gamma_{n}(t A) \leq \gamma_{n}(t B), \quad t \geq 1
$$

Bound from below $=$ the deep result of Latała and Oleszkiewicz
Let $A \subset \mathbb{R}^{n}$ be convex and symmetric and $P=\left\{\left|x_{1}\right| \leq p\right\}$ be a strip such that $\gamma_{n}(A)=\gamma_{n}(P)$. Then

$$
\gamma_{n}(t A) \geq \gamma_{n}(t P), \quad t \geq 1
$$

Bounds in the picture

Further Questions

Complex case

$$
\mathbb{C}^{n} \approx \mathbb{R}^{2 n} \quad \Longrightarrow \quad \text { there is the Gaussian measure } \nu_{n} \text { on } \mathbb{C}^{n}
$$

Question
What can one say about the function

$$
t \stackrel{f_{A}}{\longmapsto} \nu_{n}(t A), \quad t \geq 1
$$

for the set $A \subset \mathbb{C}^{n}$ which is

- convex,
- rotationally symmetric, i.e.

$$
A=\lambda A, \quad \text { for any } \lambda \in \mathbb{C} \text { such that }|\lambda|=1
$$

Partial Results in Complex Case

Upper bound
Again balls are optimal - their measure grows the fastest.

Partial Results in Complex Case

Upper bound
Again balls are optimal - their measure grows the fastest.
Lower bound - conjecture
Cylinders (complex counterpart of strips) are
 optimal. A cylinder with the radius p is the set of the form

$$
P=\left\{z \in \mathbb{C}^{n}| | z_{1} \mid \leq p\right\} .
$$

Partial Results in Complex Case

Upper bound
Again balls are optimal - their measure grows the fastest.
Lower bound - conjecture
Cylinders (complex counterpart of strips) are
 optimal. A cylinder with the radius p is the set of the form

$$
P=\left\{z \in \mathbb{C}^{n}| | z_{1} \mid \leq p\right\} .
$$

Theorem (TT)

Let $A \subset \mathbb{C}^{n}$ be a convex and rotationally symmetric set and P be a cylinder such that $\nu_{n}(A)=\nu_{n}(P)$. Then

$$
\nu_{n}(t A) \geq \nu_{n}(t P), \quad t \in\left[1, t_{0}\right]
$$

where $t_{0}=t_{0}(A)$ is such that $\nu_{n}\left(t_{0} A\right)=c$ for some absolute constant $c \approx 0.64$.

Wandering towards Proof

Wandering towards Proof

Theorem (Latała \& Oleszkiewicz)
Let $A \subset \mathbb{R}^{n}$ be convex and symmetric and $P=\left\{\left|x_{1}\right| \leq p\right\}$ be a strip such that $\gamma_{n}(A)=\gamma_{n}(P)$. Then

$$
\gamma_{n}(t A) \geq \gamma_{n}(t P), \quad t \geq 1
$$

Sketch of the Proof

Step I

Let us remind the notation $f_{A}(t)=\gamma_{n}(t A)$. An easy observation is that

$$
f_{A}(t) \geq f_{P}(t) \quad \Longleftrightarrow \quad f_{A}^{\prime}(1) \geq f_{P}^{\prime}(1) .
$$

Sketch of the Proof

Step I

Let us remind the notation $f_{A}(t)=\gamma_{n}(t A)$. An easy observation is that

$$
f_{A}(t) \geq f_{P}(t) \quad \Longleftrightarrow \quad f_{A}^{\prime}(1) \geq f_{P}^{\prime}(1) .
$$

Step II

Define a radius of the set A as

$$
w=\sup \{r>0 \mid r B \subset A\}
$$

Then

$$
\begin{aligned}
\text { convexity } & \Longrightarrow f_{A}^{\prime}(1) \geq w \gamma_{n}^{+}(A), \\
P \text { is a strip } & \Longrightarrow f_{P}^{\prime}(1)=p \gamma_{n}^{+}(P) .
\end{aligned}
$$

Sketch of the Proof

Step III

We apply the Ehrhard symmetrization so as to reduce the dimension

$$
\begin{aligned}
A \rightsquigarrow A^{e}=\{(x, t) \in & \mathbb{R}^{2} \mid t \leq t_{0}(x) \\
& \text { chosen so that } \left.\gamma_{n-1}\left(A_{x}\right)=\gamma_{1}\left(\left(-\infty, t_{0}\right)\right)\right\} .
\end{aligned}
$$

A_{x} denotes a cut of the set A at the level x, i.e. the set $\left\{\left(x_{2}, \ldots, x_{n}\right) \mid\left(x, x_{2}, \ldots, x_{n}\right) \in A\right\}$.

Sketch of the Proof

The key properties of the Ehrhard symmetrization

- it does not increase the measure of the boundary

$$
\begin{aligned}
& \gamma_{n}^{+}(A) \geq \gamma_{n}^{+}\left(A^{e}\right), \\
& \gamma_{n}^{+}(P)=\gamma_{2}^{+}\left(P^{e}\right),
\end{aligned}
$$

- A^{e} lies under the graph of concave function (Ehrhard inequality)
Hence we are to prove the isoperimetric-like inequality in \mathbb{R}^{2}

$$
w \gamma_{2}^{+}\left(A^{e}\right) \geq p \gamma_{2}^{+}\left(P^{e}\right)
$$

which reduces to (only?) hard calculations.

References

R. Latała and K. Oleszkiewicz, Gaussian measures of dilatations of convex symmetric sets, The Annals of Probability, 27 (1999), 1922-1938
T. Tkocz, Gaussian measures of dilations of convex rotationally symmetric sets in C^{n}, arXiv:1007.2907v1 [math.PR] (2010)

Thanks!

Questions?

