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Abstract

These notes contain the material which has seemed interesting and
new to the author. They are not intended to provide a systematic
course on the subject. Rather, the notes touch loosely connected and
selected parts, which might hopefully entertain the reader.

The course was given at the Université Paris-Est, January - March
2012.

Part I

Matthieu’s lectures

1 Lecture I & II — Gaussian Isoperimetry

The material here concerns the isoperimetry problem both for the Lebesgue
measure and the Gaussian measure. We emphasize the analytic approach
via functional inequalities.

1.1 L1-Sobolev inequality via classical isoperimetry

We say that a function f : Rn −→ R is locally Lipschitz if the quantity

|∇f(x)| = limy→x
|f(y)− f(x)|
|y − x|

(1.1)

is bounded on Rn. Note that if f is a C1 function then

|∇f(x)| =
[ n∑
i=1

|fxi(x)|2
]1/2

.
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1.1 Proposition (Co-area inequality). Let f : Rn −→ R+ be a locally Lip-
schitz function. Then∫

Rn

|∇f(x)|dx ≥
∫
R
|∂{f > t}|dt. (1.2)

Proof (following [BH, Lemma 3.2]). We assume that f is bounded. For a
point x ∈ Rn and a positive number h let us define

fh(x) = sup
|y−x|<h

f(y).

Then, noticing that {fh > t} = {f > t}h, we have∫
Rn

fh =

∫ ∞
0
|{fh > t}|dt =

∫ ∞
0
|{f > t}h| dt.

Hence, ∫
Rn

fh − f
h

=

∫ ∞
0

|{f > t}h| − |{f > t}|
h

dt.

But,

limh→0
fh(x)− f(x)

h
≤ limy→x

f(y)− f(x)

|y − x|
≤ |∇f(x)|,

so ∫
Rn

|∇f | ≥
∫
Rn

limh→0
fh(x)− f(x)

h
dx

≥ limh→0

∫
Rn

fh(x)− f(x)

h
dx

≥ limh→0

∫ ∞
0

|{f > t}h| − |{f > t}|
h

dt

≥
∫ ∞

0
|∂{f > t}|dt,

where Fatou’s lemma is used twice.

1.2 Theorem. Let f : Rn −→ R be a compactly supported locally Lipschitz
function for which |∇f | ∈ L1(Rn). Then

‖f‖ n
n−1
≤ 1

n|Bn
2 |1/n

∫
Rn

|∇f |. (1.3)
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Proof. We restrict ourselves to the case of nonnegative functions. Then by
Proposition 1.1 and the classical isoperimetry inequality we get the estima-
tions ∫

Rn

|∇f | ≥
∫ ∞

0
|∂{f > t}|dt ≥

∫ ∞
0

n|Bn
2 |1/n|{f > t}|

n−1
n dt

(the assumption guaranties that the sets {f > t} are of finite measure so we
are enable to use the isoperimetry). A game with indicator function and an
application of the continuous version of the triangle inequality enable us to
finish the proof, for

∫ ∞
0
|{f > t}|

n−1
n dt =

∫ ∞
0

(∫
Rn

(1{f>t})
n

n−1

)n−1
n

dt

=

∫ ∞
0
‖1{f>t}‖ n

n−1
dt ≥

∥∥∥∫ ∞
0

1{f>t} dt
∥∥∥

= ‖f‖ n
n−1

.

1.3 Exercise. Show that Theorem 1.2 implies the classical isoperimetry
inequality, i.e. for a measurable set A in Rn we have

|∂A| ≥ n|Bn
2 |

1
n |A|

n−1
n .

1.2 Isoperimetry in the Gaussian space

By the n-dimensional Gaussian space we mean Rn equipped with the stan-
dard Gaussian measure γ. We begin with stating the analogue of Brunn-
Minkowski inequality.

1.4 Theorem. Let A and B be nonempty compact sets in Rn and let num-
bers α, β be such that α+ β ≥ 1 and |α− β| ≤ 1. Then

Φ−1γ(αA+ βB) ≥ αΦ−1γ(A) + βΦ−1γ(B). (1.4)

Historically, it was A. Ehrhard who proved this inequality in 1983 (see
[Ehr]) yet for convex sets. Then it was refined by R. Lata la in 1996 to
the case when A or B is convex (see [Lat]). Finally, in 2003 C. Borell (see
[Bor2]) gave the proof of the above general statement. However, we will
occupy ourselves with functional versions.
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1.5 Theorem. Fix numbers α, β such that α+ β ≥ 1 and |α− β| ≤ 1. Let
Borel functions f, g, h : Rn −→ [0, 1] satisfy for any x, y ∈ Rn

Φ−1
(
h(αx+ βy

)
≥ αΦ−1

(
f(x)

)
+ βΦ−1

(
g(x)

)
. (1.5)

Then

Φ−1

(∫
hdγ

)
≥ αΦ−1

(∫
f dγ

)
+ βΦ−1

(∫
g dγ

)
(1.6)

1.6 Exercise. Prove that Theorem 1.5 implies Theorem 1.4.

1.7 Theorem. Let f, g, h : Rn −→]0, 1[ be Borel functions. If for any x, y ∈
Rn inequality (1.5) is satisfied then for any t ≥ 0 and any x, y ∈ Rn we have

Φ−1
(
Qth(αx+ βy)

)
≥ αΦ−1

(
Qtf(x)

)
+ βΦ−1

(
Qtg(y)

)
. (1.7)

Here, the notion of the heat semi-group has been used. For an inte-
grable function f : Rn −→ R and a nonnegative number t we define the heat
operator

Qtf(x) =

∫
Rn

f(x+
√
tz) dγ(z). (1.8)

Note the following basic properties.

1.8 Proposition. The heat semi-group operator Qt satisfies

1) Qt(f + g) = Qt(f) +Qt(g),

2) Qs+t = Qs ◦Qt,

3) Qtf ≥ 0 if f ≥ 0,

4) Qt1 = 1,

5) Q0f = f ,

6) ∂tQtf = 1
2∆(Qtf),

7)
∫
g(x)(Qtf)(x) dx =

∫
f(x)(Qtg)(x) dx,

8) (Qtf)(x) ≈ 1
(2πt)n/2

∫
f(x) dx when t→∞,

9) Q1f(0) =
∫
f dγ.

Our goal is to prove Theorem 1.7. We begin with a lemma concerning
matrices.
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1.9 Lemma. Let A,B ∈ Mn×n(R) be two matrices of size n × n with real
entries. Assume they are symmetric and positive. Then the matrix

A ∗B = [aijbij ]i,j

is also symmetric and positive.

Proof. Take a vector v ∈ Rn. We may write

vT (A ∗B)v =
∑
i,j

viaijbijvj .

Let C = [cij ] be a symmetric and positive matrix such that B = C2 (it
exists as B is symmetric and positive). Then by symmetry of C

vT (A ∗B)v =
∑
i,j

viaij
∑
k

cjkckivj =
∑
i,j,k

cki(viaijvj)cjk = tr(CDADC),

where D = diag(v1, . . . , vn). Since A is positive, DAD is also positive, and,
consequently, CDADC is positive, so the trace of this matrix is positive.

Proof of Theorem 1.7. The proof is quite involved and will be divided into
several steps. Let us discuss the strategy first. We start with proving the
assertion in the class of smooth functions satisfying certain regularity con-
ditions. Out of this we will be able to deduce Theorem 1.4. Having this at
hand, we will show how to derive Theorem 1.7 in its full generality.

Step I (Theorem 1.7 for nice functions). Given parameters a > 0
and 0 < ε < ρ < 1 we define

δε,ρ := max
(
αΦ−1(2ε) + βΦ−1(ρ), αΦ−1(ρ) + βΦ−1(2ε)

)
(1.9)

and the set of triples of nice functions

N n
a,ε,ρ = {(f, g, h), f, g, h : Rn −→]0, 1[ are of C∞ class,

f, g ≤ ε outside [−a, a]n,

f, g ≤ ρ everywhere,

h ≥ δε,ρ everywhere}

(1.10)

We are to show that for any n if functions (f, g, h) belong to the class
N n
a,ε,ρ for some parameters a, ε, ρ and satisfy (1.5), then (1.7) holds. We
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proceed by induction on n. Let n = 1. Let us define the functions

Ft(x) = Φ−1
(
Qtf(x)

)
,

Gt(x) = Φ−1
(
Qtg(x)

)
,

Ht(x) = Φ−1
(
Qth(x)

)
,

C(t, x, y) = Ht(αx+ βy)− αFt(x)− βGt(y).

We want to establish that C(t, x, y) ≥ 0 for t ≥ 0 and x, y ∈ R. The idea is
to use the maximum principle on the set [0, T ] × R2. Suppose that, on the
contrary, there is a point (t, x, y) in [0, T ]×R2 such that C(t, x, y) < 0. Recall
that by the hypothesis C(0, x, y) ≥ 0. Let r be such that γ([−r, r]) = 1− ε.
Take b = a+ r

√
T . Then for any x such that |x| > b and t ∈ [0, T ] the fact

that f is nice implies

Qtf(x) =

∫
|z|≤r

f(x+
√
tz) dγ(z) +

∫
|z|>r

f(x+
√
tz) dγ(z)

≤ εγ([−r, r]) + γ([−r, r]c) ≤ 2ε,

and the same for g. Since h ≥ δ, we have also Qth ≥ δ, so

Ht(αx+ βy) ≥ Φ−1(δ) ≥ αFt(x) + βGt(y),

if |x| or |y| > b. Consequently, C(t, x, y) ≥ 0 on [0, T ]× ([−b, b]2)c. Thus

inf
[0,T ]×R2

C(t, x, y) = inf
[0,T ]×[−b,b]2

C(t, x, y).

Consider the function Cε(t, x, y) = C(t, x, y) +ηt and choose η so small that
also Cη ≥ 0 does not hold everywhere and

inf
[0,T ]×R2

Cη(t, x, y) = inf
[0,T ]×[−b,b]2

Cη(t, x, y).

Moreover, this infimum is attained, say at (t0, x0, y0). Then

0 = ∂xCη(t0, x0, y0) = ∂xC(t0, x0, y0),

0 = ∂yCη(t0, x0, y0) = ∂yC(t0, x0, y0),

0 ≥ ∂tCη(t0, x0, y0) = ∂tC(t0, x0, y0) + η,

0 ≤ Hess(x,y)C(t0, x0, y0).

(1.11)

Before we calculate the derivatives of C one piece of notation

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt,

Φ′(x) =
1√
2π
e−x

2/2 =: ϕ(x),

Φ′′(x) = ϕ′(x) = −xϕ(x).

(1.12)
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The crucial observation is the following (actually here we use smoothness,
cf. Proposition 1.8, 6))

ut satisfies ∂tu =
1

2
∆u means that ut = Qtu0.

For U(t, ·) = Φ−1 ◦ u(t, ·) we get

∂tu = ∂tΦ(U) = ∂tU · ϕ(U),

∂xu = ∂xU · ϕ(U),

∂xxu = ∂xxU · ϕ(U) + (∂xU)2ϕ′(U) = ϕ(U)(∂xxU − U(∂xU)2).

Thus 2∂tu = ∆u = ∂xxu yields

2∂tU = ∂xxU − U(∂xU)2.

Since Ft, Gt, Ht are the images with respect to Φ−1 of the heat operator,
they satisfy above equation. Therefore (to shorten the notation we will
write Ht = Ht(αx+ βy), Ft = Ft(x), Gt = Gt(y))

2∂tC = 2∂tHt − α · 2∂tFt − β · 2∂tGt
= H ′′t −HtH

′2
t − α(F ′′t − FtF ′2t )− β(G′′t −GtG′2t )

= H ′′t − αF ′′t − βG′′t −HtH
′2
t + αFtF

′2
t + βGtG

′2
t ,

∂xC = α(H ′t − F ′t),
∂yC = β(H ′t −G′t),
∂xxC = α2H ′′t − αF ′′t ,
∂yyC = β2H ′′t − βG′′t ,
∂xyC = αβH ′′t .

We have done all the necessary calculations. Now we show how to obtain
the desired contradiction. Combining the first two conditions of (1.11) with
the above computation of ∂xC, ∂yC we obtain H ′t0 = F ′t0 = G′t0 . Whence
C(t0, x0, y0) < 0 yields

−2η ≥ 2∂tC(t0, x0, y0) = H ′′t0 − αF
′′
t0 − βG

′′
t0 − F

′2
t0C(t0, x0, y0)

≥ H ′′t0 − αF
′′
t0 − βG

′′
t0 .

Yet

H ′′t − αF ′′t − βG′′t = H ′′t + ∂xxCt + ∂yyCt − α2H ′′t − β2H ′′t

= ∂xxCt + ∂yyCt +
1− α2 − β2

αβ︸ ︷︷ ︸
2c

∂xyCt
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is an elliptic operator, for the matrix A = [ 1 c
c 1 ] is positive because |α −

β| ≤ 1, α + β ≥ 1. This, the fact that the matrix Hessx,yC is positive
at the point (t0, x0, y0), and Lemma 1.9 imply that the matrix E = A ∗
Hessx,yC(t0, x0, y0) =

[
∂xxC(t0,x0,y0) c∂xyC(t0,x0,y0)
c∂xyC(t0,x0,y0) ∂yyC(t0,x0,y0)

]
is also positive and as a

consequence

−2η ≥ H ′′t0 − αF
′′
t0 − βG

′′
t0 = [1 1]E

[
1
1

]
≥ 0,

a contradiction.
Thanks to certain structure of inequality (1.7), the induction step is

relatively easy (this is the same as for Prekopa-Leindler inequality). For ease
of notation, we prove the theorem for n = 2. Let functions f, g, h : R2 −→
]0, 1[ be nice (with parameters a, ε, ρ) and satisfy for (x1, x2), (y1, y2) ∈ R2

Φ−1
(
h(αx1 + βy1, αx2 + βy2)

)
≥ αΦ−1

(
f(x1, x2)

)
+ βΦ−1

(
g(y1, y2)

)
.

We fix x2, y2, note that functions f(·, x2), g(·, y2), h(·, αx2 + βy2) are also
nice and apply the one dimensional result at the points x1, y1

Φ−1
(
Q

(1)
t h(αx1 + βy1, αx2 + βy2)

)
≥αΦ−1

(
Q

(1)
t f(x1, x2)

)
+ βΦ−1

(
Q

(1)
t g(y1, y2)

)
,

where Q
(1)
t f(x1, x2) =

∫
R f(x1 +

√
tz1, x2) dγ(z1). Now we fix x1, y1 and

use the induction hypothesis for the nice functions Q
(1)
t f(x1, ·), Q(1)

t g(y1, ·),
Q

(1)
t h(αx1 + βy1, ·) and the points x2, y2, getting

Φ−1
(
Q

(2)
t Q

(1)
t h(αx+ βy)

)
≥ αΦ−1

(
Q

(2)
t Q

(1)
t f(x)

)
+ βΦ−1

(
Q

(2)
t Q

(1)
t g(y)

)
.

But Qt = Q
(2)
t Q

(1)
t , so the proof is complete.

Step II (Step I =⇒ Theorem 1.4). Let A,B ⊂ Rn be compact. Fix
0 < 2ε < ρ < 1 and η > 0. There is a smooth function f : Rn −→]0, 1[ such
that f = ρ on A and f = ε outside Aη. Similarly for B, there is certain
smooth function g. Let h : Rn −→]0, 1[ be a smooth function such that
h = Φ

(
(α + β)Φ−1(ρ)

)
on αAη + βBη and h = δε,ρ outside

(
αAη + βBη

)
η
.

Note that (f, g, h) ∈ N n
a,ε,ρ for some a > 0 as A and B are compact and

h ≥ δε,ρ because 2ε < ρ. One verifies that (1.4) holds for any x, y ∈ Rn.
Indeed, if x ∈ Aη and y ∈ Bη we have the equality αΦ−1f(x) + βΦ−1g(y) =

8



(α+β)Φ−1(ρ) = Φ−1h(αx+βy). Otherwise, we use the estimation h ≥ δε,ρ.
Therefore we might use the result of Step I and get by virtue of (1.7) for
t = 1, x = y = 0

Φ−1

(∫
hdγ

)
≥ αΦ−1

(∫
f dγ

)
+ βΦ−1

(∫
g dγ

)
≥ αΦ−1(ργ(A)) + βΦ−1(ργ(B)).

Yet δε,ρ −−→
ε→0

0, whence

Φ−1

(∫
hdγ

)
−−−−−−→
η→0,ε→0

Φ−1
(

Φ
(
(α+ β)Φ−1(ρ)

)
γ(αA+ βB)

)
.

Taking the limit when ρ→ 1 we derive (1.4).

Step III (Theorem 1.4 =⇒ Theorem 1.7). To see that Theorem 1.4
in dimension n + 1 implies Theorem 1.7 in dimension n, for a function
f : Rn −→]0, 1[ and a point x ∈ Rn consider the set Bx

f = {(s, z) ∈ R ×
Rn | s ≤ Φ−1

(
f(x+

√
tz
)
}. Since γ(Bx

f ) = Qtf(x) it is enough to check that

αBx
f + βBy

g ⊂ Bαx+βy
h and conclude Theorem 1.7 from inequality 1.4.

Now we would like to infer the Gaussian isoperimetry. We need two
simple corollaries and an analytic lemma.

1.10 Corollary (The Sudakov-Tsierlson inequality). Let K ⊂ Rn be a
convex set and t ≥ 1. Then

Φ−1γ(tK) ≥ tΦ−1γ(K). (1.13)

Proof. Apply Theorem 1.7 for A = B = K, α = β = t/2 (convexity of K
gives K = K+K

2 ).

1.11 Corollary (The Ehrhard inequality for convex/nonconvex). Let A ⊂
Rn be a Borell set, K ⊂ Rn be a convex set and α, β > 0 such that α+β ≥ 1,
α− β ≤ 1. Then

Φ−1γ(αA+ βK) ≥ αΦ−1γ(A) + βΦ−1γ(K). (1.14)
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Proof. If β−α ≤ 1 the assumptions of Theorem 1.7 are satisfied. Otherwise
we use this theorem for the weights α, 1 + α and then Corollary 1.10 for
β

1+α > 1

Φ−1γ(αA+ βK) = Φ−1γ

(
αA+ (1 + α)

β

1 + α
K

)
≥ αΦ−1γ(A) + (1 + α)Φ−1γ

(
β

1 + α
K

)
≥ αΦ−1γ(A) + βΦ−1γ(K).

1.12 Lemma. We have limr→∞
1
rΦ−1γ(rBn

2 ) = 1 and as a consequence
supr

1
rΦ−1γ(rBn

2 ) = 1.

Proof. Integrating by parts we obtain(
1

r
− 1

r3

)
e−r

2/2 ≤
∫ ∞
r

e−t
2/2 dt ≤ 1

r
e−r

2/2. (1.15)

We will adopt throughout these notes the standard notation that f(x) ∼x→∞
g(x) means limx→∞

f
g = 1. Thus ln

(
1 − Φ(r)

)
∼r→∞ − r2

2 . Taking x =

Φ(r)
r→∞−−−→ 1 yields

Φ−1(x) ∼x→1

√
−2 ln(1− x). (1.16)

Yet

1− γ(rBn
2 ) =

∫
|x|>r

e−|x|
2/2 dx√

2π
n =

∫ ∞
r

tn−1e−t
2/2n|Bn

2 |√
2π

n

∼r→∞ rn−2e−r
2/2n|Bn

2 |√
2π

n .

Therefore

Φ−1γ(rBn
2 ) ∼r→∞

√
−2 ln(1− Φ−1γ(rBn

2 )) ∼r→∞ r.

Since rBn
2 ⊂]−∞, r]×Rn−1, we have Φ−1γ(rBn

2 ) ≤ Φ−1Φ(r) = r, hence

sup
r

1

r
Φ−1γ(rBn

2 ) = 1.
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Now we are able to give an elegant proof of the Gaussian ispoterimetry
inequality due to Ch. Borell [Bor1] and, independently, V. Sudakov and B.
Tsirelson [ST].

1.13 Theorem (Gaussian isoperimetry). Let A be a Borel set in Rn and
H a half-space such that γ(A) = γ(H). Then

γ(Aε) ≥ γ(Hε). (1.17)

Consequently,
γ+(∂A) ≥ γ+(∂H), (1.18)

or, in other words,
γ+(∂A) ≥ I(γ(A)), (1.19)

where the Gaussian isoperimetric profile I : [0, 1] −→ R+ is given by (see
(1.12))

I = ϕ ◦ Φ−1. (1.20)

Proof of the theorem. Set ε > 0. Applying Corollary 1.11 for A and the ball
rBn

2 we have

Φ−1γ
(
A+

ε

r
rBn

2

)
≥ Φ−1γ(A) +

ε

r
Φ−1γ(rBn

2 ).

With the aid of Lemma 1.12 we optimize the right hand side with respect
to r and get

Φ−1γ(Aε) ≥ Φ−1γ(A) + ε,

which is (1.17).

2 Lecture III & IV — Gaussian functional inequal-
ities and the hypercontractivity

We continue studying functional inequalities in the Gaussian space. Namely,
first we show the functional version of the Gaussian isoperimetric inequality,
i.e. the L1-Sobolev inequality (cf. (1.3)). Then we derive the so-called Log-
Sobolev inequality. At the end we also touch the topic of hypercontractivity.
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2.1 L1 and Log-Sobolev inequalities for the Gaussian measure

Recall the classical isoperimetric inequality altogether with the co-area in-
equality have allowed us to obtain the L1-Sobolev inequality (see Theorem
1.2). The same happens for the Gaussian measure.

2.1 Theorem (Bobkov’s inequality). Let f : Rn −→ [0, 1] be a locally Lips-
chitz function. Then

I

(∫
Rn

f dγ

)
≤
∫
Rn

√
I
(
f(x)

)2
+ |∇f(x)|2 dγ(x). (2.1)

Proof. Given a function function f consider the subgraph of the function
Φ−1 ◦ f

E(f) = {(x, t) ∈ Rn × R, t ≤ Φ−1
(
f(x)

)
}.

Note that

γ
(
E(f)

)
=

∫ Rn ∫ Φ−1
(
f(x)
)

−∞
dγ(t) dγ(x) =

∫
Rn

f(x) dγ(x).

The idea is to apply the isoperimetric inequality (1.19) for the set A = E(f).
First we would like to see what is Aε. Denote g = Φ−1 ◦ f and define the
function

Dεg(x) = sup

{
|g(x)− g(y)|
|x− y|

, 0 < |x− y| < ε

}
.

Take a point (x, t) ∈ Aε. It means there is a point (y, u) ∈ A such that
|x− y|2 + |t− u|2 ≤ ε2. Then

t ≤ u+
√
ε2 − |x− y|2 ≤ g(y) +

√
ε2 − |x− y|2

≤ g(x) +Dε(x)|x− y|+
√
ε2 − |x− y|2 ≤ g(x) + ε

√(
Dε(x)

)2
+ 1,

where in the second estimate we use definition of Dεg and the last one follows
from Cauchy-Schwarz inequality ab+c ≤

√
a2 + 1

√
b2 + c2. In fact, we have

checked that (x, t) ∈ E(Φ ◦ h), where h(x) = g(x) + ε
√(

Dε(x)
)2

+ 1, which

means that Aε ⊂ E(Φ ◦ h). Thus

γ(Aε)− γ(A)

ε
≤ 1

ε

∫
Rn

(
Φ ◦ h− f

)
dγ

=

∫
Rn

Φ
(
g + ε

√
1 + (Dεg)2

)
− Φ ◦ g

ε
dγ.
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Letting ε→ 0 we get

γ+(∂A) ≤
∫
Rn

(ϕ ◦ g)
√

1 + |∇g|2 dγ =

∫
Rn

√
I(f)2 + |∇f |2 dγ,

as ∇g = ∇(Φ−1 ◦ f) = ∇f
ϕ(Φ−1◦f)

= ∇f
I(f) .

2.2 Exercise. Prove that the Gaussian isoperimetric inequality follows from
the Bobkov’s inequality (2.1).

To state the Log-Sobolev inequality we need the notion of entropy. For
a probability measure µ and a nonnegative function f we define its entropy
with respect to the measure µ as

Entµ f =

∫
f ln f dµ−

(∫
f dµ

)
ln

(∫
f dµ

)
. (2.2)

2.3 Theorem (The Log-Sobolev inequality for the Gaussian measure). Let
g : Rn −→ R be a function of class C1. Then

Entγ(g2) ≤ 2

∫
Rn

|∇g|2 dγ. (2.3)

It is said that this can be deduced from the Bobkov’s inequality. The
argument is due to W. Beckner (see [Led, p. 331]) and hinges on putting
f = εg2 in (2.1) with ε→ 0. We will give another proof in the next subsection
which uses semi-group tools. However now let us follow Beckner. Before we
proceed we need to know how the functions Φ−1 and I behave near zero.

2.4 Lemma. We have

lim
x→0

|Φ−1(x)|2

2 ln 1
x

= 1. (2.4)

More precisely,

|Φ−1(x)|2 − 2 ln
1

x
= ln ln

1

x
+ s(x), s(x) −−−→

x→0
− lnπ. (2.5)

Proof. The first formula easily follows from (1.16).
Now we deal with the second one. Putting −r = Φ−1(x) (x ≈ 0) into

(1.15) and taking logarithm we obtain

−|Φ
−1(x)|2

2
− ln |Φ−1(x)|+ ln

(
1− 1

|Φ−1(x)|2

)
≤ ln

√
2π + lnx

≤ −|Φ
−1(x)|2

2
− ln |Φ−1(x)|.

13



Rearranging yields

− ln(2π) + ln |Φ−1(x)|2 + ln

(
1− 1

|Φ−1(x)|2

)
≤ |Φ−1(x)|2 − 2 ln

1

x
≤ − ln(2π) + ln |Φ−1(x)|2.

Let us rewrite for instance the estimate from above using (2.4)

− ln(2π) + ln
|Φ−1(x)|2

2 ln 1
x

+ ln

(
2 ln

1

x

)
= ln ln

1

x
− lnπ + ln

|Φ−1(x)|
2 ln 1

x

.

We do the same for the estimate from below and as a result we obtain
(2.5).

2.5 Corollary. We have

I(x)2 = x2

(
2 ln

1

x
+ ln ln

1

x
+ r(x)

)
, r(x) −−−→

x→0
− lnπ. (2.6)

Proof. Recall (1.15) and put it slightly different

1

r
ϕ(r)

(
1− 1

r2

)
≤ Φ(−r) ≤ 1

r
ϕ(r).

Hence, putting −r = Φ−1(x), we find that

|Φ−1(x)| ≤ I(x)

x
≤ |Φ−1(x)| 1

1− 1
|Φ−1(x)|2

.

Combining this with (2.5) we conclude the assertion of the Corollary.

Now we go back and prove the Log-Sobolev inequality exploiting the
Bobkov’s inequality. Fix a C1 function g. Without loss of generality we
may assume that 1/N ≤ g ≤ N for some natural number N (one needs
to properly approximate the function g1{1/N≤g≤N}). By homogeneity we
might also consider only the case when

∫
g2 dγ = 1. Taking f = εg2 in (2.1)

yields

I(ε) ≤
∫ √

I(εg2)2 + 4ε2g2|∇g|2 dγ.

14



Let us multiply both sides by 1
ε

√
2 ln 1

ε and see what happens. Define the

function 2R(x) = ln ln 1
x + r(x), where r(x) comes from Corollary 2.5. Then

I(x)2 = x2 · 2
(
ln 1

x +R(x)
)

and the left hand side gives√
2 ln

1

ε
+ 2R(ε)

√
2 ln

1

ε
= 2 ln

1

ε

(
1 +

R(ε)

2 ln 1
ε

+O

(
R(ε)2

ln2 1
ε

))
,

while the right hand side now reads (we use
√

1 + t ≤ 1 + t/2)

1

ε

√
2 ln

1

ε

∫ √
I(εg2)2 + 4ε2g2|∇g|2 dγ

= 2

√
ln

1

ε

∫
g2

√
ln

1

ε
+ ln

1

g2
+R(εg2) + 2

|∇g|2
g2

dγ

≤ 2 ln
1

ε

∫
g2

1 +
ln 1

g2
+ 2 |∇g|

2

g2
+R(εg2)

2 ln 1
ε

 dγ

= 2 ln
1

ε
+

∫
g2R(εg2) dγ +

∫
g2 ln

1

g2
dγ + 2

∫
|∇g|2 dγ.

Thus we obtain

O

(
R(ε)2

ln 1
ε

)
+

(
R(ε)−

∫
g2R(εg2) dγ

)
≤ 2

∫
|∇g|2 dγ −

∫
g2 ln g2 dγ.

We take ε → 0 and observe that the left hand side vanishes in the limit,
which completes the proof.

Indeed, by the definition of the function R it is clear that the first term
tends to 0. The expression in the brackets up to 1

2 factor equals

ln ln
1

ε
+ r(ε)−

∫
g2 ln

(
ln

1

ε
+ ln

1

g2

)
dγ −

∫
g2r(εg2) dγ

=

(
r(ε)−

∫
g2r(εg2) dγ

)
−
∫
g2 ln

(
1 +

ln 1
g2

ln 1
ε

)
dγ.

By Lebesgue’s dominated convergence theorem (recall that 1/N ≤ g ≤ N)
we get that the second term vanishes. The same theorem altogether with
the fact that r(ε)→ − lnπ yields the terms in the brackets cancel out in the
limit.

15



2.2 Hypercontractivity

We have already seen in Proposition 1.8, 6) that the ∆/2 is the generator of
the heat semi-group, which has proved to be very useful in the isoperimetric
problems for the Gaussian measure. Here we introduce another powerful
tool, the Ornstein-Uhlenbeck semi-group, the generator of which is the op-
erator L = ∆−x ·∇ responsible for the integration by parts formula for the
Gaussian measure ∫

fLg dγ = −
∫
∇f · ∇g dγ. (2.7)

The aim is to explore the hypercontractivity properties of this semi-group.

2.6 Definition. For a continuous function f : Rn −→ R of a moderate
growth (we would not precise this), a number t ≥ 0 and a point x ∈ Rn we
define the operator of the Ornstein-Uhlenbeck semi-group

Ptf(x) =

∫
Rn

f(e−tx+
√

1− e−2ty) dγ(y). (2.8)

Let us begin with stating a few rudimentary yet useful properties, which
are rather easy in proof.

2.7 Proposition. The Ornstein-Uhlenbeck operator Pt satisfies

1) Pt(λf + µg) = λPtf + µPtg

2) Ps ◦ Pt = Ps+t

3) Ptf ≥ 0, if f ≥ 0

4) Ps1 = 1

5) P0f = f , Ptf(x) −−−→
t→∞

∫
f dγ

6) ∂xiPtf(x) = e−tPt(∂xif)(x) and ∇Ptf = e−tPt(∇f)

7) ∂tPtf(x) = LPtf(x)

8) LPt = PtL

9)
∫
fPtg dγ =

∫
gPtf dγ, in particular

∫
Ptf dγ =

∫
f dγ

10) |Ptf(x)|p ≤ Pt(|f |p)(x) for p ≥ 1. In particular

‖Ptf‖p ≤ ‖f‖p
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11) Pt(fg) ≤
√
Pt(f2)

√
Pt(g2) (the Cauchy-Schwarz inequality).

Proof. This is a matter of direct computations to check these properties, so
this is left to the reader as an exercise. We only show how to proceed in 9),
as a nice change of variables might be applied. Set θ such that e−t = cos θ
and
√

1− e−2t = sin θ. Then∫
fPtg dγ =

∫∫
f(x)g(x cos θ + y sin θ) dγ(y) dγ(x),

so we put new variables z = x cos θ + y sin θ, w = x sin θ − y cos θ and get∫
fPtg dγ =

∫∫
f(z cos θ + w sin θ)g(z) dγ(z) dγ(w) =

∫
gPtf dγ.

As an example of application let us see how to derive the Log-Sobolev
inequality for the Gaussian measure.

Proof of Theorem 2.3. Since entropy is homogeneous (this is left as an ex-
ercise to verify that Ent(tf) = tEnt f) we might and will assume without
loss of generality that

∫
f2 dγ = 1. Notice that thanks to Property 5)

Entγ f
2 = −

∫ ∞
0

d

dt
Entγ Ptf

2 dt.

Let us calculate the derivative. By virtue of Property 9) and our simplifying
assumption

∫
Ptf

2 dγ =
∫
f2 dγ = 1, so Entγ Ptf

2 =
∫
Ptf

2 lnPtf
2 dγ.

Hence,

d

dt
Entγ Ptf

2 =

∫
∂t(Ptf

2) lnPtf
2 dγ +

∫
Ptf

2∂t(Ptf
2)

Ptf2
dγ.

Because of Property 7) the second integral equals
∫
L(Ptf

2) dγ = 0, as
by integration by parts formula (2.7) with f ≡ 1 we get that in general∫
Lf dγ = 0. The first integral is tackled with the aid of integration by

parts ∫
L(Ptf

2) lnPtf
2 dγ = −

∫
∇Ptf2 · 1

Ptf2
∇Ptf2 dγ

= −
∫

1

Ptf2

∣∣∣∇Ptf2
∣∣∣2 dγ

= −
∫

4e−2t 1

Ptf2

∣∣∣Pt(f∇f)
∣∣∣2 dγ

= −
n∑
i=1

∫
4e−2t 1

Ptf2

(
Pt(f∂xif)

)2
dγ.
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The Cauchy-Schwarz inequality (see Property 11)) yields(
Pt(f∂xif)

)2 ≤ (Ptf
2)
(
Pt(∂xif)2

)
.

Therefore,∫
L(Ptf

2) lnPtf
2 dγ ≥ −4e−2t

∫
Pt
(
|∇f |2

)
dγ = −4e−2t

∫
|∇f |2 dγ,

where in the last equality we use Property 9). We thus conclude as follows

Entγ f
2 ≤

∫ ∞
0

4e−2t
(∫
|∇f |2 dγ

)
dt = 2

∫
|∇f |2 dγ.

2.8 Remark. Using the same method one can establish the Poincaré in-
equality for the Gaussian measure which states that for a differentiable func-
tion f : Rn −→ R such that |∇f | ∈ L2(γ) there holds

Varγ f ≤
∫
|∇f |2 dγ. (2.9)

2.9 Exercise. Prove that Entγ Ptf ≤ e−2t Entt f .

Having the Log-Sobolev at our disposal we now prove in a neat way the
main theorem of this section.

2.10 Theorem (Hypercontractivity for the Gaussian measure). Given num-
bers 1 < p < q < +∞ and t ≥ 0 such that e−2t ≤ p−1

q−1 there holds the
hypercontractivity inequality

‖Ptf‖q ≤ ‖f‖p. (2.10)

Moreover, if q > 1+e2t(p−1), then Pt is not continuous as a linear operator
from Lp(γ) to Lq(γ).

Stating the main result it seems appropriate to briefly mention its history
as it is quite involved. It was E. Nelson who gave an early version of the
above theorem in 1966 [Nel1]. Then his result was improved several times
and at last in 1973 Nelson himself gave the full proof in the Gaussian setting
[Nel2]. L. Gross followed a different path through Theorem 2.10. In the
paper [Gro] in 1975 he discovered the Log-Sobolev inequality on the discrete
cube and using CLT he obtained Theorem 2.3. Out of this result inequality
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(2.10) can be neatly deduced as we will see following Gross. Yet it was not
he who first proved Log-Sobolev inequality in the boolean setting, for A.
Bonami did it only in 1970, [Bon]. In computer science literature the name
of W. Beckner is used to being attached to the theorem due to the paper
[Bec].

Proof of Theorem 2.10. To see the second part take fλ(x) = e−λx, check
that

‖Ptf‖q
‖f‖p

= exp

[
λ2

2

(
1− p− e−2t(1− q)

)]
and conclude letting λ→∞.

For the proof of the desired inequality let us define

q(t) = 1 + e2t(p− 1),

F (t) = ln ‖Ptf‖q(t).

The assertion is equivalent to F (t) ≤ F (0). Since |Ptf | ≤ Pt|f | we may
assume without loss of generality that f is nonnegative. We write explicitly

F (t) =
1

q(t)
ln

∫
eq(t) lnPtf dγ

and differentiate

F ′(t) = − q

q2
ln

∫
(Ptf)q +

1

q
∫

(Ptf)q

∫
(Ptf)q

(
q′ lnPtf + q

LPtf

Ptf

)
.

To shorten the notation we put g = Ptf and continue the computation

F ′(t) = − q′

q2
∫
gq

(∫
gq ln

∫
gq −

∫
gq ln gq − q2

q′

∫
gq−1Lg

)
=

q′

q2
∫
gq

(
Entγ(gq) +

q2

q′

∫
gq−1Lg

)
.

Observe that integration by parts yields

q2

q′

∫
gq−1Lg = − q2

2(q − 1)

∫
∇(gq−1) · ∇g

= −q
2

2

∫
gq−2|∇g|2 = −2

∫
|∇gq/2|2.

Thus by virtue of the Log-Sobolev inequality (2.3)

F ′(t) =
q′

q2
∫
gq

(
Entγ(gq)− 2

∫
|∇gq/2|2

)
≤ 0.

This completes the proof.
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3 Lecture V — Gaussian chaoses via the Hermite
polynomials

The Hermite polynomials are yet another tool which addresses inequalities
involving the Gaussian measure. In this section we are going to describe
their basic properties first in dimension one and then in higher dimensions.
We stress the connections of these polynomials with the operators L and
Pt. Making use of the hypercontractivity we end up with the estimation
concerning moments of the so-called Gaussian chaoses, which is an analogue
of the Khintchine inequality for polynomials of higher degree than one.

3.1 Dimension one

We begin with a definition. The sequence of polynomials (Hm)m≥0 ob-
tained by the Gram-Schmidt process involving the monomials (xm)m≥0 and
the scalar product of the space L2(R, γ) is called the sequence of Hermite
polynomials. That is,

H0 = 1,

Hm = xm −
m−1∑
i=0

〈xm, Hi〉
Hi

‖Hi‖2
.

(3.1)

There are other equivalent definitions. For instance,

Hm(x) = (−1)nex
2/2 dn

dxn
(e−x

2/2), (3.2)

or via the generating function

ext−t
2/2 =

∑
m≥0

Hm(x)

m!
tm. (3.3)

This one is particularly useful for deriving the coefficients of Hm. Indeed,

ext−t
2/2 =

∑
m≥0

xm

m!
tm

∑
m≥0

cos(mπ/2)tm

2m/2(m/2)!

 .

Thus

Hm(x) = m!

m∑
k=0

cos(kπ/2)

2k/2(k/2)!

xm−k

(m− k)!
= m!

∑
0≤k≤m/2

(−1)k

2k · k!

xm−2k

(m− 2k)!
. (3.4)

What makes the Hermite polynomials significant is the fact that they form
a basis.
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3.1 Theorem. The Hermite polynomials (Hm)m≥0 form an orthogonal basis
of L2(R, γ).

Proof. Let f ∈ L2(γ) be such that 〈f,Hm〉 = 0 for every m ≥ 0. Exploiting a
little bit of Fourier analysis we show that f = 0 γ-a.e. Since also 〈f, xm〉 = 0
for all m ≥ 0, we get that the entire function

F (z) =

∫
R
f(x)e−x

2/2ezx dx

is zero as it equals
∑

m≥0
zm

m!

√
2π〈f, xm〉. Therefore

F (−it) = 0 =

∫
R
f(x)e−x

2/2e−itx dx = ̂f(x)e−x2/2(t)

for every t ∈ R. Thus f(x)e−x
2/2 = 0 a.e.

Now let us link the Hermite polynomials with the integration by parts
operator L (see 2.7) as well as with the Ornstein-Uhlenbeck operator Pt (see
2.8). To start with we make two simple observations.

3.2 Proposition. (i) H ′m = mHm−1 for m ≥ 1,

(ii) LHm = −mHm for m ≥ 0.

Proof. (i) It follows by formula (3.4) that the leading monomial in Hm

is equal to xm. It implies that H ′m − mHm−1 is a polynomial of degree
m − 2. Therefore it suffices to check that for every i ≤ m − 2 we have
〈H ′m −mHm−1, Hi〉 = 0. Integrating by parts we obtain

〈H ′m −mHm−1, Hi〉 = 〈H ′m, Hi〉 =

∫
H ′m(x)Hi(x)e−x

2/2 dx√
2π

= −
∫
Hm(x)(H ′i(x)− xHi(x)) dγ = 0,

as the polynomial H ′i(x)− xHi(x) is of degree i+ 1 ≤ m− 1.
(ii) Since the polynomial LHm+mHm = H ′′m−xH ′m+mHm is of degree

m− 1 we conclude observing that for any i ≤ m− 1

〈LHm +mHm, Hi〉 = 〈LHm, Hi〉 = 〈Hm, LHi〉 = 0,

as LHi is of degree i.

Clearly, LHm = −mHm means that Hm is an eigenvalue of the operator
L. Due to Theorem 3.1 we arrive at the desired links.
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3.3 Theorem. All the eigenvalues of the operator L acting on L2(γ) are
nonpositive integers −m, m ≥ 0 and the corresponding eigenvectors are Hm.

3.4 Theorem. All the eigenvalues of the operator Pt acting on L2(γ) are
e−tm, m ≥ 0 and the corresponding eigenvectors are Hm.

Proof. Note that (Proposition 2.7, 8))

LPtHm = PtLHm = −mPtHm,

so Theorem 3.3 yields that PtHm is an eigenvector of L. As a consequence
there is a number λ(t) such that PtHm = λ(t)Hm. By virtue of Property
7) of the Ornstein-Uhlenbeck operator we get that λ(t) is differentiable as a
function of t ≥ 0 and

λ′(t)Hm = ∂tPtHm = LPtHm = −mλ(t)Hm.

Moreover,
Hm = P0Hm = λ(0)Hm.

Thus λ solves the Cauchy problem{
λ̇ = −mλ

λ(0) = 1
,

so λ(t) = e−tm.

We set up the notation

hm = Hm/‖Hm‖L2(γ).

Then (hm)m≥0 is an orthogonal basis in L2(γ).

3.2 Dimension n

We consider the space L2(Rn, γ) with the usual inner product. Multiindices
will be useful. Let us recall the standard notation. Adopting the convention
that N = {0, 1, 2, . . .} for an index m = (m1, . . . ,mn) ∈ Nn we denote
|m| =

∑n
i=1mi and m! =

∏n
i=1mi!.

Let us introduce the multidimensional Hermite polynomials on Rn. Given
m ∈ Nn we put

Hm(x) =

n∏
i=1

Hmi(xi), (3.5)
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where Hmi is a Hermite polynomial of one variable defined in (3.1). This is
a polynomial of degree |m|. We also define

hm(x) = Hm/‖Hm‖L2(Rn,γ).

3.5 Theorem. The Hermite polynomials (hm)m∈Nn forms an orthogonal
basis of L2(Rn, γ).

For instance, all the Hermite polynomials of degree up to 2 read as follows

|m| = 0, H0 ≡ 1,
|m| = 1, m = ei, Hei(x) = xi,

|m| = 2, m = ei + ej , Heiej (x) =

{
xixj if i 6= j

x2
i − 1 if i = j

.

Given k ≥ 0 let us define the linear subspace Hk in L2(γ) spanned by the
Hermite polynomials of degree k

Hk = span {Hm, |m| = k} . (3.6)

Let Πk be the orthogonal projection onto Hk. Then for any function f ∈
L2(γ)

f =
∑
m∈Nn

〈f, hm〉hm =
∞∑
k=0

∑
|m|=k

〈f, hm〉hm =
∞∑
k=0

Πkf,

where Πkf is called the Gaussian chaos of order k of the function f . For
example, the Gaussian chaoses of order 1 are of the form∑

i

aixi,

while these of order 2 take form∑
i,j

aijxixj +
∑
i

ai(x
2
i − 1).

Our task is now to devise estimations of the norms of Gaussian chaoses, e.g.
we ask whether the quantityE

∣∣∣∣∣∣
∑
i,j

aijgigj +
∑
i

ai(g
2
i − 1)

∣∣∣∣∣∣
p1/p
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is comparable with the same one for, say p = 1? This would be the
generalization of Khintchine type inequalities but for nonlinear expressions
(chaoses) involving i.i.d. standard normal random variables.

Like in dimension one the importance of the Hermite polynomials is
revealed in their spectral properties with respect to the operators L and Pt.

3.6 Proposition. For any m ∈ Nn

LHm = −|m|Hm, (3.7)

PtHm = e−t|m|Hm. (3.8)

Proof. Since Hm(x) =
∏n
i=1Hmi(xi) we have

∆Hm =
n∑
i=1

∂xixi

 n∏
j=1

Hmj (xj)

 =
n∑
i=1

H ′′mi
(xi)

∏
j 6=i

Hmj (xj),

x · ∇Hm(x) =
n∑
i=1

xi∂xi

 n∏
j=1

Hmj (xj)

 =
n∑
i=1

H ′mi
(xi)

∏
j 6=i

Hmj (xj),

thus, by the one dimensional result concerning L,

LHm = (∆− x · ∇)Hm =
n∑
i=1

(
H ′′mi

(xi)− xiH ′mi
(xi)

)∏
j 6=i

Hmj (xj)

=
m∑
i=1

−miHm(x) = −|m|Hm.

The second formula follows by its one dimensional counterpart applied
to Hmi(xi) as the operator Pt acts on each coordinate xi independently
because the Gaussian measure is a product measure.

3.7 Corollary. PtΠkf = e−tkΠkf .

Now we are ready to formulate and prove the advertised main result.

3.8 Theorem. Let q ≥ 2. For a Gaussian chaos of degree d of a function
f we have

‖Πdf‖Lq(γ) ≤
√
q − 1

d‖Πdf‖L2(γ). (3.9)

More generally, if Q is a polynomial of degree d of n variables, then

‖Q‖Lq(γ,Rn) ≤
√
d+ 1

√
q − 1

d‖Q‖L2(γ,Rn). (3.10)
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Proof. The comparison (3.9) of moments of chaoses is a simple consequence
of the hypercontraction thanks to Corollary 3.7. Namely, take t so that
et =

√
q − 1. Then by Theorem 2.10 with p = 2 we obtain

‖Πdf‖q = etd‖PtΠdf‖q ≤
√
q − 1

d‖Πdf‖2.

For the proof of the second formula write Q =
∑d

k=0Qk, where Qk =
ΠkQ. Then

‖Q‖q ≤
d∑

k=0

‖Qk‖q ≤
√
q − 1

d
d∑

k=0

‖Qk‖2

≤
√
q − 1

d√
d+ 1

(
d∑

k=0

‖Qk‖22

)1/2

=
√
q − 1

d√
d+ 1‖Q‖2,

where in the last equality Pythagorean theorem is used.

3.9 Remark. If Q =
∑d

k=lQk, then

‖Q‖q ≤
√
q − 1

d√
d− l + 1‖Q‖2.

In particular, applying this for linear forms Q(x) =
∑

i aixi we recover the
Khintchine inequality for the Gaussian measure∥∥∥∑ aigi

∥∥∥
q
≤
√
q − 1

∥∥∥∑ aigi

∥∥∥
2
, ai ∈ R.

3.10 Remark (Research Problem). We have seen that for the Gaussian
measure q-th moments of polynomials are of order

√
q. It is known that for

arbitrary log-concave measures there is no chance to get it better than q
(see e.g. [Bob2]). However, log-concave measures µ with densities dµ(x) =
e−V (x) dx, where HessV ≥ c id, for a constant c > 0 are expected to exhibit
behaviour closer to the Gaussian case. For example, using the localization
technique the optimal isoperimetry has been derived for such measures (see
[Bob1]). Our question is whether

‖Q‖Lq(µ) ≤ C
√
d
√
qd‖Q‖L2(µ)?

To face the problem one might try to adopt the program of the paper [Fr]
by M. Fradelizi exploiting the localization approach (see also the aforemen-
tioned paper by S. Bobkov [Bob1] in order to get familiar with techniques
applicable to measures µ).
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3.11 Exercise. Using the Hermite polynomials prove the Poincaré inequal-
ity (2.9).

Part II

Olivier’s lectures

4 Lecture III — Distances between convex bodies

We try to set up basic facts concerning measurement of a distance between
convex sets. The goal is to present a metric space of convex bodies which is
compact. Let us start with two definitions.

4.1 Definition. Given two symmetric convex bodies K and L in Rn we
define

d(K,L) = inf{s > 0, ∃T ∈ GLn K ⊂ TL ⊂ sK}. (4.1)

4.2 Definition. Given two isomorphic Banach spaces X and Y we define

ρ(X,Y ) = inf{‖T‖ · ‖T−1‖, T : X −→ Y isomorphism}. (4.2)

The functions d and ρ are sometimes referred to as the Banach-Mazur
distances.

4.3 Proposition. Let K and L be two symmetric convex bodies in Rn and
let X = (Rn,K), Y = (Rn, L) be two Banach spaces with the norms such
that K, L are the unit balls. Then

ρ(X,Y ) = d(K,L).

Proof. First assume s is a number such that there exists a matrix T ∈ GLn
and K ⊂ TL ⊂ sK. Let us think of T as an isomorphism from Y to X. Since
TL ⊂ sK we have ‖T‖Y→X = supy∈L ‖Ty‖X ≤ s. Similarly, T−1K ⊂ L
yields ‖T−1‖X→Y = supx∈K ‖Tx‖Y ≤ 1. Thus ‖T‖·‖T−1‖ ≤ s which implies
ρ(X,Y ) ≤ s. Taking infimum over all possible s we get ρ(X,Y ) ≤ d(K,L).

Now consider any isomorphism T : X −→ Y . By the definition of the
operator norm for any x ∈ K we have ‖Tx‖Y ≤ ‖T‖, which means that
TK ⊂ ‖T‖L. Similarly, T−1L ⊂ ‖T−1‖K. Therefore L ⊂ (‖T−1‖T )K ⊂
‖T−1‖ · ‖T‖L, so the inequality d(K,L) ≤ ‖T−1‖ · ‖T‖ follows from (4.1).
Taking infimum over all possible T we obtain d(K,L) ≤ ρ(X,Y ).
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4.4 Example. The balls Bn
1 and Bn

∞ are extremal in some sense. It is
interesting to ask on the distance between them. Equivalently, what is
ρ(`n1 , `

n
∞)?

For n being a power of 2, say n = 2m, we are to construct explicitly a
matrix T such that Bn

∞ ⊂ TBn
1 ⊂
√
nBn
∞ which proves that

ρ(`n1 , `
n
∞) ≤

√
n, when n = 2m.

Let W0 = [1], W1 =
[

1 −1
−1 1

]
, and define by recurrence the k-th Walsh matrix

Wk of size 2k×2k by Wk =
[
Wk−1 −Wk−1

−Wk−1 Wk−1

]
. One checks that W T

k Wk = 2kI,

i.e. the matrix 1√
2m
Wm is orthogonal. Since the columns of Wm have entries

±1, we have Wmei ∈ Bn
∞. By linearity WmB

n
1 = conv{±Wm(ei), 1 ≤ i ≤

n} ⊂ Bn
∞. On the other hand, Bn

1 ⊃ 1√
n
Bn

2 , whence WmB
n
1 ⊃ 1√

n
WmB

n
2 =

Bm
2 , as 1√

2m
Wm is orthogonal. Therefore

Bn
∞ ⊃WmB

n
1 ⊃ Bn

2 ⊃
1√
n
Bn
∞.

We may take T =
√
nWm.

Now we show that

ρ(`n1 , `
n
∞) ≥

√
n

e
.

For this purpose take T and s satisfying Bn
∞ ⊂ TB1 ⊂ sBn

∞. It is enough
to prove that s ≥

√
n/e. Observe that |Tei|∞ ≤ s, for Tei ∈ sBn

∞. Volume
argument yields |Bn

∞| ≤ |TBn
1 | = |detT | · |Bn

1 |. By Hadamard’s inequality

| detT | ≤
n∏
i=1

|Tei| ≤
n∏
i=1

√
n|Tei|∞ ≤ (

√
ns)n.

Thus

2 = |Bn
∞|1/n ≤ |detT |1/n · |Bn

1 |1/n ≤ s
√
n

2

(n!)1/n
,

hence

s ≥ (n!)1/n

√
n
≥
√
n

e
.

It is time to establish a very useful lemma due to H. Auerbach, which
helps investigating distances between spaces.

4.5 Lemma (Auerbach). Let X be a Banach space of dimension n. Then
there exists a biorthogonal system (xj , x

∗
j ), 1 ≤ j ≤ n, in X ×X∗ (i.e. these

vectors satisfy 〈x∗k, xl〉 = δkl) such that

‖xj‖ = 1 and ‖x∗j‖ = 1, for every j.
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Proof. Take any biorthogonal system (yj , y
∗
j ) in X × X∗ (it is enough to

consider a base and its dual). We define the function

V (z1, . . . , zn) = det
[
y∗j (zi)

]
i,j=1,...,n

on X × . . .×X.

It is continuous, hence it attains its supremum on the compact set BX ×
. . .×BX at, say (x1, . . . , xn) ∈ BX × . . .×BX . Necessarily ‖xi‖ = 1 for all
i, for otherwise (x1, . . . , xn) would not give the maximal value as one would
take λxi ∈ BX , for some λ > 1 obtaining a greater value. For a fixed index
j let us define the functional

x∗j (x) =
V (x1, . . . , xj−1, x, xj+1, . . . , xn)

V (x1, . . . , xj)
, x ∈ X.

Then x∗j (xi) = 0, if i 6= j, as the determinant of a matrix with two identical
columns equals 0. Clearly x∗j (xj) = 1. Moreover, since V on the set BX ×
. . . × BX attains its maximum at (x1, . . . , xn), we have supx∈BX

xj(x) = 1,
so ‖x∗j‖ = 1. The proof is now complete.

4.6 Exercise. Let (E, ‖ · ‖) be a n dimensional Banach space. Prove that
there exist a basis (x1, . . . , xn) such that for any scalars a1, . . . , an ∈ R

sup
1≤i≤n

|ai| ≤

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ ≤
n∑
i=1

|ai|.

Now we are able to define a metric space of classes of convex bodies in
given dimension, or equivalently, a metric space of classes of Banach spaces
with fixed dimension, and then prove it is compact.

4.7 Definition. Given n let Fn be the set of all Banach spaces of dimension
n. Take the equivalence relation ∼ defined as E ∼ F iff ρ(E,F ) = 1 and
its quotient set F̃n = Fn/ ∼. We define the metric p on F̃n by the formula
p(E,F ) = ln ρ(E,F ).

4.8 Proposition. The metric space (F̃n, p) is compact.

Proof. We start with showing that for every space E ∈ Fn

ρ(E, `n1 ) ≤ n.

Let us consider the isomorphism T : `n1 −→ E defined so that ei 7→ xi, for
every i = 1, . . . , n, where (xj , x

∗
j ), j = 1, . . . , n is a biorthogonal system
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which comes from Auerbach’s lemma. Consider a point λ = (λ1, . . . , λj) ∈
`n1 . On the one hand

‖Tλ‖ =
∥∥∥∑λjxj

∥∥∥ ≤∑ |λj | · ‖xj‖ =
∑
|λj | = |λ|1,

so ‖T‖ ≤ 1. On the other hand for any i

‖Tλ‖ ≥ |x∗i (Tλ)| = |λi|,

thus

‖Tλ‖ ≥ max
i
|λi| ≥

1

n
|λ|1,

which gives that ‖T−1‖ ≤ n. Therefore ‖T‖ · ‖T−1‖ ≤ n and ρ(E, `n1 ) ≤ n.
Let Φn be the set of all norms ‖ · ‖ on Rn which satisfy the inequality

1

n
|x|1 ≤ ‖x‖ ≤ |x|1, x ∈ Rn. (4.3)

Having this define the subset of C(Bn
1 )

Φ̃n = {f : Bn
1 −→ R, f(·) = ‖ · ‖ for some ‖ · ‖ ∈ Φn}.

By what has been shown at the beginning, i.e. ρ(E, `n1 ) ≤ n, the natural

mapping (Φ̃n, ‖ · ‖C(Bn
1 ))

S−→ (F̃n, p) is surjective. Moreover, it is continuous.

Indeed, let us take two close points f, g ∈ Φ̃n, say ε = supx∈Bn
1
|f(x)−g(x)|.

By this and (4.3) we get for every x

|‖x‖f − ‖x‖g| ≤ ε|x|1 ≤ nε‖x‖f , nε‖x‖g.

Thus
(1− εn)‖x‖g ≤ ‖x‖f ≤ (1 + εn)‖x‖g

and, in other words,

p(S(f), S(g)) ≤ ln
1 + εn

1− εn
−−→
ε→0

0.

If we know that the set Φ̃n is compact in the space C(Bn
1 ), the proof will be

finished because then its image F̃n under the continuous mapping S also has
to be compact. This is the case due to the Arzelà-Ascoli theorem (functions
from the set Φ̃n are uniformly bounded by 1 thanks to (4.3) and obviously
equicontinuous as norms are 1-Lipschitz mappings).
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5 Lecture IV — Ideals of operators and John’s
theorem

We start with collecting a few abstract facts about various norms of linear
operators. Making use of them we then derive a famous John’s theorem on
an ellipsoid of maximal volume contained in a convex body (see e.g. [Ball1]
for a short different proof).

5.1 Operator norms

Given two Banach spaces X and Y we consider the set L(X,Y ) of all linear
and continuous mappings from X to Y . This is a Banach algebra with the
norm given by

|||u||| = sup
‖x‖X≤1

‖u(x)‖Y ,

which is called an operator norm. There is a particular nice ideal F(X,Y ) ⊂
L(X,Y ) of all mappings of finite rank. It can be seen as a tensor product
X∗ ⊗ Y which is a linear space spanned by rank one operators

ξ ⊗ y : X −→ Y,

x 7−→ ξ(x)y.

Each operator u ∈ F(X,Y ) can be written as

u =
m∑
i=1

ξi ⊗ yi, for some ξi ∈ X∗, yi ∈ Y ,

although such a representation might not be unique. We come to the two im-
portant definitions of injective norm of an finite-rank operator u ∈ F(X,Y )

‖u‖∧ = inf

{
m∑
i=1

‖ξi‖X∗‖yi‖Y , u =
m∑
i=1

ξi ⊗ yj

}
(5.1)

and its trace

tru =

m∑
i=1

ξi(xi). (5.2)

5.1 Exercise. Prove that the trace is well defined, i.e.
∑m

i=1 ξi ⊗ xi = 0
implies

∑m
i=1 ξi(xi) = 0.

5.2 Exercise. Let u ∈ F(X,Y ) and v ∈ F(Y,X). Then truv = tr vu.
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From now on we will be concerned only with finite dimensional spaces.
Then the situation is quite simpler. Observe that L(X,Y ) = F(X,Y ). Then
one should ask what is a natural representation of a mapping u ∈ L(X,Y )
given by a matrix A. Denote its columns by a1, . . . , am, i.e. u(ei) = ai and
let ξi = e∗i be the dual basis to the basis (ei)

m
i=1 of X in which the matrix A

is written. We have u =
∑m

i=1 e
∗
i ⊗ ai.

5.3 Exercise. Let φ be a linear functional on L(X,Y ). Then there exists
an operator w ∈ L(X,Y ) such that φ(u) = truw for any u ∈ L(X,Y ).

The last but not least definition addresses duality concept in the space
of linear transformations. For a norm α on the space L(X,Y ) we set its dual
norm α∗ to be

α∗(u) = sup {| truw|, α(w) ≤ 1, w ∈ L(X,Y )} . (5.3)

To get familiar with these concepts let us look at some basic facts, which
later turn out to be indispensable in our pursuit of the John’s theorem. In
the first preposition the injective norm of the simplest operator is calculated
while the second preposition reveals how one can actually devise the concept
of this norm.

5.4 Proposition. If dimX = n then ‖ id : X −→ X‖∧ = n.

Proof. Assume id =
∑m

i=1 ξi ⊗ xi for some ξi ∈ X∗ and xi ∈ X. Then

n = tr id =
∑

tr ξi ⊗ xi =
∑

ξi(xi) ≤
∑
‖ξi‖ · ‖xi‖,

so n ≤ ‖ id ‖∧. On the other hand, by the Auerbach lemma there is a
biorthogonal system (x∗i , xi)

n
i=1 in X∗ × X such that ‖x∗i ‖ = 1 = ‖xi‖. In

particular
∑
‖x∗i ‖ · ‖xi‖ = n, but id =

∑
x∗i ⊗ xi. Thus ‖ id ‖∧ = n.

5.5 Proposition. The projective and operator norms on L(X,Y ) are dual
in the sense of (5.3), i.e.

|||·|||∗ = ‖·‖∧ .

Proof. Define the sets

D = {f∗ ⊗ e, f ∈ X∗, e ∈ Y, ‖f‖ ≤ 1, ‖e‖ ≤ 1},
C = B|||·|||∗ = {u ∈ L(X,Y ), |||u|||∗ ≤ 1}.
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Since convD = B‖·‖∧ , the target is to establish that convD = C. To see
the first inclusion, take an element f∗ ⊗ e from D and observe that for any
w ∈ L(X,Y ) with |||w||| ≤ 1 we have

| trw(f∗ ⊗ e)| = | tr f∗ ⊗ w(e)| = |f∗(w(e))| ≤ ‖f∗‖ · ‖w(e)‖
≤ ‖f∗‖ · |||w||| · ‖e‖ ≤ 1,

which means that f ∈ C. Therefore D ⊂ C and consequently convD ⊂ C.
To see the second inclusion convD ⊃ C, by standard duality arguments

it is enough to show that D◦ ⊂ C◦, as then convD = (D◦)◦ ⊃ (C◦)◦ = C.
Let us stress that this duality is understood with respect to tr in order to
be coherent with our definition of the dual norm (5.3). Namely for a set
K ⊂ L(X,Y ) we put here its dual to be

K◦ = {u ∈ L(X,Y ), ∀v ∈ K | truv| ≤ 1}.

The place where the trace come into play is that we would like to know
B|||·||| ⊂ C◦ since then it will be enough to prove that D◦ ⊂ B|||·|||. To see the
former, take u ∈ B||||||. By (5.3) we have | truv| ≤ 1 for any v with |||v|||∗ ≤ 1,
which proves that indeed u ∈ C◦.

After this cumbersome clarification let us check that D◦ ⊂ B|||·|||. Take
u ∈ D◦. Then we know that for any v ∈ D we have | truv| ≤ 1. Let us
put here v = f∗ ⊗ e where e ∈ B‖·‖ is chosen so that |||u||| = ‖u(e)‖ and f∗

so that ‖u(e)‖ = f∗(u(e)). We get truv = f∗(u(e)) = |||u||| which combined
with the fact that this trace is at most 1 finishes the proof.

The alluded abstract tool addresses existence of certain operator.

5.6 Theorem (Lewis, 78’). Let X and Y be normed spaces of dimension n.
Suppose α is a norm on L(X,Y ). Then there exists an operator v ∈ L(X,Y )
such that α(v) = 1 and α∗(v−1) = n.

5.7 Remark. If α(u) = 1, then α∗(u−1) ≥ truu−1 = n.

5.8 Remark. The examples of norms which play an important role in the
theory read as follows

a) α(u) =
(∫

Rn ‖u(x)‖2 dγ(x)
)1/2

b) α(u) = |||u|||, α∗(u) = ‖u‖∧ (see Proposition 5.5)

c) See Chapter 2 of the monograph [Pi] for the notion of K-convexity.
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Proof of Theorem 5.6. Let K = {u ∈ L(X,Y ), α(u) ≤ 1}. We consider the
function u 7−→ detu on K, which being continuous attains its maximum on
compacts. Therefore there is v ∈ L(X,Y ) such that

det v = max
u∈K

detu.

Clearly, α(v) = 1 (the relevant argument supporting this has been given in
the proof of Lemma 4.5). In order to prove α∗(v) = n let us notice that

det v ≥ det

(
v + εw

α(v + εw)

)
≥ 1

(1 + εα(w))n
det(v + εw)

=
1

(1 + εα(w))n
(det v) det(id +εv−1w),

hence

1 + ε tr(v−1w) + o(ε) = det(id +εv−1w) ≤ (1 + εα(w))n = 1 +nεα(w) + o(ε).

This yields that for any nonzero w ∈ L(X,Y ) we have tr v−1 w
α(w) ≤ n,

whence α∗(v−1) ≤ n. The observation that necessarily α∗(v−1) ≥ n made
in Remark 5.7 completes the proof.

5.2 John’s theorem

This is a matter of making use of compactness that given a convex body K ⊂
Rn there exists an ellipsoid E ⊂ K which has the maximal volume among
all ellipsoids contained in K. Such ellipsoid E is called the John ellipsoid
(of maximal volume) for K. Obviously we can always find a position of K
in which E = Bn

2 . It turns out that such a position of K is not arbitrary
due to the existence of special contact points provided by the famous John
theorem (see [John]).

5.9 Theorem (John). Let K be a symmetric convex body in Rn such that
Bn

2 is its John’s ellipsoid. Then there exist numbers c1, . . . , cm > 0 and
contact points u1, . . . , um, i.e. |ui| = ‖ui‖K = 1, such that

id =

m∑
i=1

ciui · uTi . (5.4)

Moreover, m ≤ n2 + 1.
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Proof. Let E = (Rn, ‖·‖K). Consider on L(`n2 , E) the operator norm α(u) =
‖u : `n2 −→ E‖. In Proposition 5.5 we have seen that α∗ = ‖ · ‖∧. Note that
for any u ∈ L(`n2 , E) the condition α(u) ≤ 1 is equivalent to u(Bn

2 ) ⊂
K. Since u(Bn

2 ) is an ellipsoid and Bn
2 is the ellipsoid of maximal volume

contained in K for such u we may write that | detu| · |Bn
2 | = |u(Bn

2 )| ≤ |Bn
2 |

which gives |detu| ≤ 1. Therefore,

max
α(u)≤1

detu ≤ 1

with equality for u = id. Theorem 5.6 provides an operator v ∈ L(`n2 , E) for
which α(v) = 1, α∗(v−1) = n. By its proof and the above observation we
might take v = id`n2→E . The condition ‖v−1‖∧ = α∗(v−1) = n means that
there are m points y∗j ∈ E∗, xj ∈ `n2 , with m ≤ n2 + 1 by Caratheodory’s
theorem, such that

v−1 =

m∑
i=1

y∗i ⊗ xi

and
m∑
i=1

‖y∗i ‖E∗ · |xi| = n.

We normalize y∗i = ‖y∗i ‖E∗v∗i , xi = |xi|ui, put ci = ‖y∗i ‖E∗ · |xi| and get

v−1 =
m∑
i=1

civ
∗
i ⊗ ui, with

m∑
i=1

ci = n.

Let us now show how vectors v∗i relate to ui. Observe that Bn
2 ⊃ K◦ implies

| · | ≤ ‖ · ‖E∗ . So by the Cauchy-Schwarz inequality tr v∗i ⊗ ui = 〈v∗i , ui〉 ≤
|v∗i | · |ui| ≤ ‖v∗i ‖E∗ · |ui| = 1. Thus,

n = tr vv−1 =
∑

ci tr v∗i ⊗ ui ≤
∑

ci = n.

In particular, there must be equality in the Cauchy-Schwarz inequality. This
yields v∗i = λiui. By 1 = 〈v∗i , ui〉 we infer that necessarily λi = 1. Thus
v∗i = ui, so ‖ui‖E∗ = |ui| = 1 which implies that ‖ui‖K = 1.

Taking into account that actually v = id we have obtained

id =

m∑
i=1

ciui · uTi ,

where |ui| = 1 = ‖ui‖K and
∑
ci = n.
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One immediate consequence concerns distances between linear spaces of
prescribed dimension.

5.10 Corollary. For every n dimensional real vector space E we have
ρ(E, `n2 ) ≤

√
n.

Proof. Let E = (Rn, ‖ · ‖) and K = {x ∈ Rn, ‖x‖ ≤ 1}. We pick a
linear isomorphism T of Rn such that Bn

2 is the John’s ellipsoid of the body
K ′ = TK. Therefore it suffices to show that

K ′ ⊂
√
nBn

2 .

By the John theorem there are numbers cj > 0 and contact points uj ∈ Rn
such that (5.4) holds. Take x ∈ K ′ and observe that

|x|22 = 〈x, x〉 = 〈
∑

cj〈uj , x〉uj , x〉 =
∑

cj〈uj , x〉2.

Yet, ‖uj‖K′◦ = 1, so |〈uj , x〉| ≤ 1 which yields

|x|22 ≤
∑

cj = n.

By the triangle inequality we can conclude an estimate of the distance
between two arbitrary spaces.

5.11 Corollary. For any two n dimensional real vector spaces E and F we
have ρ(E,F ) ≤ n.

We have seen that `n1 and `n∞ are in the distance of order
√
n. Intuitively,

these two spaces are the extreme cases. Therefore it is reasonable to ask
whether ρ(E,F ) ≤ n is a rough estimate? Unexpectedly, it is not at all as
it was shown by E. Gluskin [Glu].

5.12 Theorem (Gluskin ’81). There exist n dimensional real vector spaces
E and F such that ρ(E,F ) ≥ cn, where c is a universal constant.

6 Lecture V — Volumes of sections of convex bod-
ies

Studies on volumes of sections of the cube find applications in number theory.
The very first link between these two fields is Minkowski’s theorem.
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6.1 Theorem (Minkowski). If K ⊂ Rn is a symmetric convex body with
volume |K| ≤ 2n, then it contains a nonzero lattice point (i.e. a point with
all integer coordinates).

6.2 Corollary. Let A = [aij ]i,j=1,...,n be a matrix such that |detA| ≤ 1.
Then there is a nonzero lattice point z = (z1, . . . , zn) such that −1 ≤∑

j aijzj ≤ 1 for every i.

Proof. The assertion |
∑

j aijzj | ≤ 1 means that Az ∈ Bn
∞, or z ∈ A−1Bn

∞.
We finish by Minkowski’s theorem as

|A−1Bn
∞| =

1

| detA|
|Bn
∞| ≥ 2n.

It was A. Good who posed more sophisticated question about sufficient
conditions which would guarantee an existence of integer solutions in Rn to
a system of m inequalities (m ≥ n).

6.3 Conjecture (Good). Let A = [aij ]i≤m,j≤n be a matrix such that
detATA ≤ 1. Then there is a nonzero lattice point z = (z1, . . . , zn) such
that −1 ≤

∑n
j=1 aijzj ≤ 1 for every i.

Again, by Minkowski’s theorem it is enough to prove that under the
hypothesis the convex body

K =

x ∈ Rn,

∣∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣∣ ≤ 1, i = 1, . . . ,m


has volume greater or equal to 2n. Notice that K = Bm

∞ ∩ imA. This gives
rise to the question of estimations of volumes of sections of the cube. The
answer was given by J. Vaaler [Vaa].

6.4 Theorem (Vaaler). For every k dimensional vector subspace E of Rn
we have

|E ∩Bn
∞| ≥ 2k = |Bk

∞|. (6.1)

The case of k = n−1 was solved by D. Hensley (see [Hen]) slightly before
the result of J. Vaaler appeared. Natural question of maximal sections arises
as well. D. Hensley established that for k = n − 1 we have |E ∩ Bn

∞| ≤
5 · |Bn−1

∞ |, which is not optimal. Due to K. Ball [Ball2] we know the sharp
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inequality with the constant
√

2 instead of 5. Later on M. Mayer and A.
Pajor (see [MP]) dealt with other p-balls generalizing Vaaler’s result.

In the following subsections we will collect a few tools and then provide
proofs of two theorems which altogether give sharp bounds on volumes of
n− 1 dimensional sections of the cube.

6.5 Theorem (Meyer-Pajor). Given k dimensional linear subspace E of Rn
the function

p 7−→
|E ∩Bn

p |
|Bk

p |
, p ≥ 1

is increasing.

6.6 Corollary. Given k dimensional linear subspace E of Rn the following
inequalities hold

|E ∩Bn
p | ≥ |Bk

p |, p ≥ 2,

|E ∩Bn
p | ≤ |Bk

p |, p ∈ [1, 2).
(6.2)

Proof. Notice that any section of a Euclidean ball is again a ball and as a
result |E∩Bn

2 | = |Bk
2 |. Thus the assertion easily follows by the theorem.

6.7 Theorem (Ball). For every n− 1 dimensional linear subspace H in Rn
we have

|H ∩Bn
∞| ≤

√
2|Bn−1
∞ |. (6.3)

The equality is attained for H = (1/
√

2, 1/
√

2, 0, . . . , 0)⊥.

Almost all the material presented here comes from the excellent notes
[Ball3] by K. Ball.

6.1 The comparison method

We define an order � on the set of all measures on Rn saying that µ � ν,
µ is more peaked than ν, if for every convex and symmetric (with respect
to the origin) subset A of Rn we have µ(A) ≥ ν(A). This definition lies in
the heart of the so-called comparison method, which has been thoroughly
studied in [Kan] by M. Kanter. The significance of this notion is subject to
its tensorization property.

6.8 Theorem (Kanter). Let µ1, ν1 be two log-concave measures on Rn which
are symmetric, i.e. measures of sets A and −A are the same. Let µ2, ν2 be
two symmetric and log-concave measures on Rm. If µi � νi, i = 1, 2, then

µ1 ⊗ µ2 � ν1 ⊗ ν2.
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6.9 Lemma. Given two measures µ, ν on Rn such that µ is more peaked
that ν for every even log-concave function f on Rn we have∫

f dµ ≥
∫
f dν.

Proof. It follows by integration by parts (f is nonnegative) and the definition
as
∫
f dµ =

∫∞
0 µ(f ≥ t) dt and the set {f ≥ t} is convex (f is log-concave)

and symmetric (f is even).

Proof of Theorem 6.8. Let C ⊂ Rn × Rm be convex and symmetric. By
Fubini’s theorem we get

µ1 ⊗ µ2(C) =

∫
µ2(Cx1) dµ1(x1),

where Cx1 = {x2 ∈ Rm, (x1, x2) ∈ C} is a section of the set C. Consider
the function f(x1) = µ2(Cx1). By symmetry of C we have C−x1 = −Cx1 so
by symmetry of µ2 we infer that f is even. Moreover, f is log-concave as
convexity of C implies that Cλx+(1−λ)y ⊃ λCx + (1 − λ)Cy and recall that
µ2 is log-concave. Thus by Lemma 6.9 applied to µ1 � ν1 and f

µ1 ⊗ µ2(C) ≥
∫
f(x1) dν1(x1) = ν1 ⊗ µ2(C).

Following the same line of reasoning yet for measures µ2 � ν2 we find that
ν1 ⊗ µ2(C) ≥ ν1 ⊗ ν2(C).

Therefore to establish that one product measure is more peaked than
the other one it suffices to consider their one dimensional factors. The point
is that the one dimensional situation can e easily understood.

6.10 Remark. Suppose µ and ν are symmetric measures on R with densities
f and g respectively. Then µ is more peaked that ν iff for every a > 0 we
have

∫ a
0 f(t) dt >

∫ a
0 g(t) dt.
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6.2 Expressions for volumes of convex bodies

Assume K is a symmetric convex body in Rn with the associated norm ‖·‖K .
Then for p > 0∫

Rn

exp(−‖x‖pK) dx =

∫
Rn

∫ ∞
0

e−t1{t>‖x‖pK}
dt dx

=

∫ ∞
0

∫
‖x‖K<t1/p

e−t dx dt =

∫ ∞
0

e−t|t1/pK| dt

= |K|
∫ ∞

0
tn/pe−t dt = |K|Γ

(
1 +

n

p

)
.

Actually we have proved

6.11 Proposition. For a symmetric convex body in Rn and p > 0

|K| = 1

Γ
(

1 + n
p

) ∫
Rn

exp(−‖x‖pK) dx. (6.4)

6.12 Corollary. |Bn
p | =

[
2Γ(1+1/p)

]n
Γ(1+n/p) .

Now we use our formula to derive volume of sections of a convex body.

6.13 Proposition. Suppose K is a symmetric convex body in Rn and E is
a k dimensional linear subspace of Rn. Then for p > 0

Γ

(
1 +

k

p

)
|K ∩ E| = lim

ε→0

1

εn−k

∫
d∞(x,E)≤ε

exp
(
− ‖x‖pK

)
dx. (6.5)

Here d∞(x,E) ≤ ε means that for all j ≥ k+1 there holds |〈projE⊥(x), ej〉| ≤
ε/2, where (e1, . . . , ek) is a fixed basis of E and (ek+1, . . . , en) is a fixed basis
of E⊥.

Proof. Let x = (u, v) with u ∈ E, v ∈ E⊥. We change variables v = εw and
write

1

εn−k

∫
d∞(x,E)≤ε

exp
(
− ‖x‖pK

)
dx

=
1

εn−k

∫
u∈E,w∈E⊥

|〈w,ej〉|≤1/2,j>k

exp
(
− ‖(u, 0) + ε(0, w)‖pK

)
dud(εw)

=

∫
exp

(
− ‖(u, 0) + ε(0, w)‖pK

)
du dw.
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Taking the limit ε → 0, by virtue of the fact that |{w ∈ E⊥, |〈w, ej〉| ≤
1/2, j > k}| = 1 we obtain

lim
ε→0

1

εn−k

∫
d∞(x,E)≤ε

exp
(
− ‖x‖pK

)
dx

=

∫
u∈E,w∈E⊥

|〈w,ej〉|≤1/2,j>k

exp
(
− ‖(u, 0)‖pK

)
dudw

=

∫
u∈E

exp
(
− ‖u‖pK∩E

)
du

=Γ

(
1 +

k

p

)
|K ∩ E|.

6.3 Pólya’s formula for volumes of sections of the cube

Consider a unit vector v ∈ Sn−1. It defines the hyperplane v⊥ which can be
moved along v producing an affine subspace tv + v⊥ of codimension one in
Rn, where t ∈ R. We are interested in volumes of sections of the cube Bn

∞
with such subspaces. We define the relevant function

Av(t) = |Bn
∞ ∩ (tv + v⊥)|. (6.6)

In the proof of Ball’s theorem 6.7 we will need the following formula, which
is due to G. Pólya

Av(t) =
2n

π

∫ ∞
0

cos(tr)
n∏
k=1

sin(vkr)

vkr
dr, t ∈ R, v ∈ Sn−1. (6.7)

For the proof let us consider two cases depending on integrability of the
integrated function.

Case I (not in L1). If all but one coordinates of v are zero, say v1 = 1
and vk = 0, k > 1, then obviously

Av(t) =

{
0, if |t| > 1

2n−1, if |t| ≤ 1
.

On the other hand, suppose t > 0 (we do not loose generality as cos is an
even function) and observe that∫ ∞

0
cos(tr)

sin(vr)

vr
dr =

∫ ∞
0

sin((t+ 1)r)− sin((t− 1)r)

2r
dr.
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Yet for any a > 0 simple change of variables yields
∫∞

0
sin(ar)

r dr =
∫∞

0
sin r
r dr =

π/2, thus ∫ ∞
0

cos(tr)
sin(vr)

vr
dr =

{
0, if t > 1

π/2, if t < 1

which agrees with (6.7) (what’s up when t = 1?).

Case II (in L1). Assume at least 2 coordinates of v are non-zero. Our
function Av is compactly supported hence we may calculate its Fourier trans-
form (we use tv + v⊥ = {x ∈ Rn, 〈v, x〉 = t})

Âv(r) =

∫
R
Av(t)e

−itr dt =

∫
R

(∫
〈v,x〉=t

1Bn
∞(x) dx

)
e−itr dr

=

∫
Rn

n∏
k=1

1[−1,1](xk)e
−i〈v,x〉r dx =

n∏
k=1

∫ 1

−1
e−irxkvk dxk

=
n∏
k=1

2 sin(rvk)

rvk
.

Now we can see by the assumption that Âv ∈ L1, so using the inverse Fourier
transform we get the desired formula

2πAv(t) =
̂̂
Av(t) = 2n

∫
R
e−itr

n∏
k=1

sin(rvk)

rvk
dr

= 2n
∫
R

cos(tr)
n∏
k=1

sin(rvk)

rvk
dr.

6.4 Proof of Meyer and Pajor’s theorem

Take p ≥ 1 and introduce the normalization constant αp =
(
2Γ(1 + 1/p)

)p
so that ∫

R
e−αp|t|p dt = 1.

For K = Bn
p we have ‖x‖pK =

∑n
i=1 |xi|p, hence applying Proposition 6.13

we obtain

Γ

(
1 +

k

p

)
|Bn

p ∩ E| = lim
ε→0

1

εn−k

∫
d∞(x,E)≤ε

exp
(
−
∑
|xi|p

)
dx.
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We change variables putting xi = α
1/p
p yi, η = ε/α

1/p
p and get

Γ

(
1 +

k

p

)
|Bn

p ∩ E| = αk/pp lim
η→0

1

ηn−k

∫
d∞(y,E)≤η

exp
(
− αp

∑
|yi|p

)
dy.

In view of Corollary 6.12 α
k/p
p /Γ(1+k/p) = |Bk

p |, thus we find a nice formula
for the function we are interested in

|Bn
p ∩ E|
|Bk

p |
= lim

η→0

1

ηn−k

∫
d∞(y,E)≤η

exp
(
− αp

∑
|yi|p

)
dy

= lim
η→0

1

ηn−k
µ⊗np

(
{y ∈ Rn, d∞(y,E) ≤ η}

)
,

where µ⊗np is the product measure of n copies of the probability measure µp
on R with the density t 7→ e−αp|t|p . It is left to the Reader to check that µp
is more peaked than µq for p > q (evoke Remark 6.10). The measure µp is
symmetric and for p ≥ 1 it is log-concave, so Theorem 6.8 yields that µ⊗np
is more peaked than µ⊗nq for p > q. Then, by definition,

µ⊗np
(
{y ∈ Rn, d∞(y,E) ≤ η}

)
≥ µ⊗np

(
{y ∈ Rn, d∞(y,E) ≤ η}

)
,

as the set {y ∈ Rn, d∞(y,E) ≤ η} is convex and symmetric. This finishes
the proof.

6.5 Proof of Ball’s theorem

We fix a unit vector v ∈ Sn−1 and consider the section of the cube Bn
∞ with

the hyperspace v⊥. By definition (6.6) and Póya’s formula (6.7) we may
write

|Bn
∞ ∩ v⊥|
|Bn−1
∞ |

=
Av(0)

2n−1
=

1

π

∫
R

n∏
k=1

sin(rvk)

rvk
dr,

whence our goal is to prove that the last quantity does not exceed
√

2.
Taking into account the symmetry of the problem we might assume without
loss of generality that vi ≥ 0 for all i ≤ n.

First we exclude the easy case when v possesses a big coordinate, i.e.
suppose at least one coordinate of v is grater than 1/

√
2, say v1 > 1/

√
2.

We roughly estimate |Bn
∞ ∩ v⊥| ≤ |C ∩ v⊥| where C is a cylinder {x ∈

Rn, |xi| ≤ 1, i > 1}. Let T denote the orthogonal projection onto the
hyperspace {x1 = 0}. Then clearly T (C ∩ v⊥) = Bn−1

∞ , so

|C ∩ v⊥| = 1

cos θ
|T (C ∩ v⊥)| = 1

cos θ
|Bn−1
∞ |.
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The angle θ between v⊥ and {x1 = 0} can be computed as follows. Denote by
S the orthogonal projection on v⊥. Then S(e1) = (1−v2

1,−v1v2, . . . ,−v1vn)
and

1

cos θ
=
|S(e1)|
|TS(e1)|

=

(
(1− v2

1)2 + v2
1

∑
i>1 v

2
i

)1/2(
v2

1

∑
i>1 v

2
1

)1/2 =
1

v1
<
√

2,

for
∑

i v
2
i = 1. Finally we get

|Bn
∞ ∩ v⊥|
|Bn−1
∞ |

≤ 1

cos θ
<
√

2.

Now we assume that all coordinates are small, i.e. vi ≤ 1/
√

2, i ≤ n.
Take the weights pk = 1/v2

k so that
∑ 1

pk
= 1 and pk ≥ 2. Note that by

virtue of Hölder’s inequality

1

π

∫
R

n∏
k=1

sin(rvk)

rvk
dr ≤ 1

π

n∏
k=1

(∫
R

∣∣∣∣sin(rvk)

rvk

∣∣∣∣pk dr

)1/pk

=
n∏
k=1

(
1

πvk

∫
R

∣∣∣∣sin(r)

r

∣∣∣∣pk dr

)1/pk

.

A miracle happens thanks to the following lemma.

6.14 Lemma. For p ≥ 2

1

π

∫
R

∣∣∣∣sin rr
∣∣∣∣p dr ≤

√
2
√
p
, (6.8)

with equality iff p = 2.

(We skip the proof because it is involved and technical. Consult [Ball2].)
Indeed,

n∏
k=1

(
1

πvk

∫
R

∣∣∣∣sin(r)

r

∣∣∣∣pk dr

)1/pk

≤
n∏
k=1

( √
2

vk
√
pk

)1/pk

=
√

2,

since by definition vk
√
pk = 1. Observe that for the equality we need that

all nontrivial weights amount to 2, i.e. vi = vj = 1/
√

2 for some i 6= j and
vk = 0 for k 6= i, j. This completes the proof.

6.15 Remark. For sections with subspaces of lower dimension than n− 1
one repeat all the arguments, yet instead of using Hölder’s inequality, the
Brascamp-Lieb inequality could be applied.
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6.6 Particular case of The Gaussian correlation conjecture

At the end of this section we discuss ad hoc a particular case of the Gaus-
sian correlation conjecture which can be easily established exploiting the
comparison method.

Is it true that for any symmetric convex bodies K and L in Rn

γn(K ∩ L) ≥ γn(K)γn(L)? (6.9)

This is the well-known Gaussian correlation conjecture. Apart being quite
old as formulated in 1972 in [GEO] (see therein for a detailed history), this
question still remains open. However, there are lots of partial results. C.
Khatri and independently Z. Sidak proved in 1967 that the question has
an affirmative answer if one of the sets is a strip, i.e. a set of the form
{x ∈ Rn, |〈x, v〉| ≤ 1} for some v ∈ Rn (see [Kha] and [Sid]). L. Pitt showed
in 1977 that it is true for n = 2 (see [Pit]). G. Schechtman, T. Schlumprecht
and J. Zinn in 1998 (see [SSZ]) gave a few results, e.g. the inequality holds
for two ellipsoids, or there is a constant c such that it holds whenever K
and L are contained in the ball with radius c

√
n. Finally, in 1999, G. Hargé

[Har] refined this and showed that the conjecture is true in the case when
one of the bodies is an ellipsoid.

Here we recover in a striking way the result of C. Khatri and Z. Sidak.
The proof is due to A. Giannopoulos (his private communication with K.
Ball).

6.16 Theorem. Let K be a symmetric convex set in Rn and let S = {x ∈
Rn, |〈x, u〉| ≤ t} be a strip, where u ∈ Sn−1 and t > 0. Then

γn(K ∩ S) ≥ γn(K)γn(S).

Proof. Since the Gaussian measure is rotationally invariant we may assume
that S = {x ∈ Rn, |x1| ≤ t}. We would like to prove that

γn(K ∩ S)

γn(S)
≥ γn(K).

Thus we define the probability measure µ(A) = γn(A ∩ S)/γn(S) and now
our goal is to show that µ is more peaked that γn. By virtue of Lemma 6.9 it
is reduced to one dimensional problem as γn = γ1⊗ γn−1 and µ = ν ⊗ γn−1,
where ν has the density proportional to e−s

2/21[−t,t](s). Indeed, we now
only need to check that ν is more peaked than γ1. For this purpose, due to
Remark 6.10, we would like to verify that for any a > 0

1∫ t
0 e
−s2/2 ds

∫ a

0
e−s

2/21[0,t](s) ds ≥ 1∫∞
0 e−s2/2 ds

∫ a

0
e−s

2/2 ds.
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Yet this is obvious.

7 Lecture VI — Volume estimates of entropy num-
bers and embeddings into `N∞

The main question which is addressed here concerns the embeddings of finite
dimensional normed vector spaces into `N∞. This is a sort of introduction
to celebrated Dvoretzky’s theorem. In the first subsection we present the
so-called volume estimates which we will exploit in the second subsection
where we provide a relevant theorem regarding embeddings.

7.1 Volume estimates of entropy numbers

Let (X, d) be a metric space. Given a subset T of X we say that a collec-
tion of points {xi}i=1,...,N ⊂ T is an ε-net of T if T ⊂

⋃N
i=1B(xi, ε), where

B(a, r) = {x ∈ X, d(x, a) < r} is an open ball in X. Such a collection is
called an ε-separated set in T if d(xi, xj) ≥ ε for any i 6= j. The cardinal-
ity of a minimal ε-net of T is called the covering number and denoted by
N(T, d, ε) while the cardinality of a maximal ε-separated set in T is called
the packing number and denoted by K(T, d, ε). The logarithm of the packing
and covering numbers are sometimes referred to as entropy numbers. There
is a link between them.

7.1 Proposition. N(T, d, ε) ≤ K(T, d, ε) ≤ N(T, d, ε/2).

Proof. For the proof of the first inequality suppose S = {x1, . . . , xN} ⊂ T
is a maximal ε-separated set in T . Take any but different from x1, . . . , xN
point x ∈ T . Then there is i such that d(x, xi) < ε as otherwise the set
S ∪ {x} would be also ε-separated which contradicts maximality. Therefore
T ⊂

⋃N
i=1B(xi, ε), i.e. S is an ε-net. Thus N(T, d, ε) ≤ N = K(T, d, ε).

For the proof of the second inequality let us consider an ε/2-net {x1, . . . , xN}
and an ε-separated set {y1, . . . , yK}. We prove that K ≤ N . For each
i ∈ {1, . . . ,K} there is f(i) ∈ {1, . . . , N} such that d(xi, yf(i)) < ε/2 since
{xi}i=1,...,N is an ε/2-net. This defines a function {1, . . . ,K} −→

f
{1, . . . , N}.

It is one-to-one and consequently K ≤ N . Indeed, if there were i 6= j such
that f(i) = f(j) then we would get

ε ≤ d(xi, xj) ≤ d(xi, yf(i)) + d(yf(j), xj) < ε/2 + ε/2 = ε

which is a contradiction.
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In particular, for two convex bodies A,B in Rn we define

N(A, εB) = N(A, ‖ · ‖B, ε) = inf{N, ∃ x1, . . . , xN A ⊂
N⋃
i=1

(xi+ εB)}. (7.1)

The question is how to estimate this covering number. The notion of volume
will help.

7.2 Lemma. For any convex bodies A,B in Rn and ε > 0

1

εn
|A|
|B|
≤ N(A, εB). (7.2)

Proof. This is obvious as |A| ≤
∣∣∣⋃N

i=1(xi + εB)
∣∣∣ ≤ Nεn|B|.

7.3 Lemma (Volume estimate of the entropy number). For any convex
bodies A,B in Rn such that B ⊂ A and ε > 0

N(A, εB) ≤
(

1 +
2

ε

)n |A|
|B|

. (7.3)

Proof. Let {x1, . . . , xN} be an ε-separated set in A with respect to the metric
given by the norm ‖ · ‖B. By Proposition 7.1 we know that it is enough to
estimate N . Since B ⊂ A, A + ε

2B ⊃
⋃N
i=1(xi + ε

2B) and these balls are
mutually disjoint, we obtain(

1 +
ε

2

)n
|A| ≥ |A+ ε/2B| ≥ N |(ε/2)B| = N(ε/2)n|B|.

7.4 Corollary. For a convex body A in Rn and ε > 0

1

εn
≤ N(A, εA) ≤

(
1 +

2

ε

)n
. (7.4)

7.2 Embeddings into `N∞

Now we will try to figure out the geometrical meaning of the volume estimate
(7.4). It says that for a convex body A in Rn and a positive number ε there
is an ε-net Λ of A with ]Λ ≤ (1 + 2/ε)n. It means that A ⊂ Λ + εA, or, in
different words, using support functions, hA ≤ hΛ+εA = hΛ+hεA = hΛ+εhA.
Moreover, Λ ⊂ A, so hΛ ≤ hA. Altogether,

hΛ ≤ hA ≤
1

1− ε
hΛ.
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The first meaning of this inequality is that A can be approximated with
a polytope P = conv Λ which has a controlled number of vertices ]Λ

P ⊂ A ⊂ 1

1− ε
P.

The second meaning is revealed when we put A = K◦ for a symmetric
convex body K, for then hA = ‖ · ‖K . Consequently, for every x ∈ Rn

max
λ∈Λ
〈x, λ〉 ≤ ‖x‖K ≤

1

1− ε
max
λ∈Λ
〈x, λ〉.

Therefore, defining the embedding

T : (Rn, ‖ · ‖K) −→ (RN , | · |∞)

x 7−→ (〈x, λ〉)λ∈Λ,

where N = ]Λ, we find that

|Tx|∞ ≤ ‖x‖K ≤
1

1− ε
|Tx|∞.

That is, the Banach-Mazur distance between the bodies K and imT ∩ BN
∞

is lower or equal to 1
1−ε ≈ 1 + ε, with N ≤ (1 + 2/ε)n. In other words, we

have derived the following proposition.

7.5 Proposition. For any n dimensional real Banach space X there is a
subspace Y of `N∞ such that ρ(X,Y ) ≤ 1 + ε, with N ≤ (1 + 2/ε)n.

In particular, if we take for X the Euclidean space `n2 we discover that `N∞
admits subspaces of dimension n = lnN

ln(1+2/ε) which are almost Euclidean (ε-

close to `n2 in the sense of the Banach-Mazur distance). Much more general
phenomenon takes place, as, stated informally, Dvoretzky’s theorem says
that such Euclidean subspaces exist not only for `∞ spaces but for any
Banach spaces.
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