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Abstract

In this note we present a large deviation principle for spectral mea-
sures of Wigner’s random matrices, which is a result due to G. Ben
Arous and A. Guionnet.

The note is an assessed essay for the course Large deviations and
statistical mechanics given by S. Adams at the University of Warwick,
Term 1, 2012/2013.

1 Introduction

Random matrices proved their usefulness in physics and beyond. For in-
stance, in nuclear physics a quantum system, which in the simplest case
consists of one heavy atom, is described by a Hamiltonian Ĥ which is a
Hermitian operator acting on a Hilbert space. The eigenvalues are possible
energy levels of the nucleus, as it is asserted by the Schrödinger equation.
Since Ĥ acts on an infinite dimensional space, to make the model more
tractable, it is assumed that Ĥ is a finite but large Hermitian matrix. The
brilliant idea goes back to E. Wigner who proposed to take for Ĥ a Gaussian
random matrix for in high dimensions such randomness should reveal the
properties of generic Hamiltonians which are complicated. This paradigm
is now the crux of the theory, and turns out to be very effective (see, e.g.
[M]).

Let {Xkl, Ykl}k≤l≤N be a family of i.i.d. real mean 0 variance 1 Gaussian
random variables. An N ×N Hermitian matrix HN = [Hkl]k,l≤N , where

Hij =

{
Xkk, if k = l,

(Xkl + iYkl)/
√

2, if k < l
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is called a GUE (Gaussian Unitary Ensemble) matrix, and it is Wigner’s
model of Hamiltonians of heavy nuclei. The rescaled matrix 1√

N
HN is some-

times referred as to a Gaussian Hermitian Wigner matrix. Let us denote
its eigenvalues, which are real, by λN1 , . . . , λ

N
N , and introduce their empiri-

cal measure LN = 1
N

∑N
i=1 δλNi

. The celebrated Wigner’s theorem (see, e.g.

[AGZ, Theorem 2.2.1]), which holds in much more general settings as well,
states that LN converges weakly, in probability, to the semicircle law σ,

dσ(x) =
1

2π

√
4− x21{|x|≤2}dx. (1)

In this note we would like to study fluctuations of LN around σ in terms of
large deviations, i.e. what is the probability, on the logarithmic scale, that
LN takes extreme values. The relevant result was obtained by G. Ben Arous
and A. Guionnet [AG], and it is nicely put forward in [AGZ, Section 2.6.1].
We shall follow the latter. A model which is discussed there is slightly more
general than just the model of GUE matrices. For our purpose though,
we shall present the proof in the GUE case, and we hope it still suffices to
show the main ideas behind large deviations for spectral measures of random
matrices. Another result in the spirit of large deviations has been recently
obtained in [ChV], where both the different scaling (1/n instead of 1/

√
n)

and the different ensembles of random matrices are investigated.
In the rest of this section we recall necessary facts on GUE matrices and

large deviations, and we set up the notation. In the next sections we state
the main result and provide its proof. We finish the note with indicating
how one can recover the aforementioned Wigner’s theorem.

It is known that the law of eigenvalues λ1, . . . , λN of an N × N GUE
matrix rescaled by 1/

√
N is given by

P((λ1, . . . , λN ) ∈ A) =

∫
A

1

ZN
|∆(λ)|2e−N

∑N
i=1 λ

2
i /2dλ, (2)

where ∆(x) = Π1≤i<j≤N (xi − xj) is the Vandermonde determinant, and
ZN is the normalization constant, computable e.g. thanks to the Selberg
integrals

ZN =

(
2π

N

)N/2 N∏
j=1

j!. (3)

The empirical distribution of the eigenvalues LN = 1
N

∑N
i=1 δλi can be seen

as a random variable taking values in the space M1(R) of Borel probability
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measures on R. We endow this space with the usual weak topology which
is compatible with the metric

d(µ, ν) = sup

∣∣∣∣∫
R
fdν −

∫
R
fdµ

∣∣∣∣ ,
where the supremum is subject to all 1-Lipschitz functions f : R −→ R
bounded by 1.

Let us now collect some facts on large deviations theory. We refer for
instance to [DZ] as a proper exposition of the theory. Given a sequence of
random variables (XN )N≥1 taking values in some Polish space V , we say
that it satisfies a large deviation principle (LDP) with speed aN , going to
infinity with N , and rate function I if

I : V −→ [0,∞] is lower semicontinuous, (L)

lim
N→∞

1

aN
lnP(XN ∈ G) ≥ − inf

G
I, for any open set G ⊂ V , (D)

lim
N→∞

1

aN
lnP(XN ∈ F ) ≤ − inf

F
I, for any closed set F ⊂ V . (P)

Rate function I is called good if its level sets {ν; I(ν) ≤ t} are compact.
It is not inconceivable that to establish LDP it suffices to estimate the
probabilities of small balls as long as we know that the random variables XN

posses some regularity. We say that the sequence X1, X2, . . . is exponentially
tight if for any E > 0 there exists a compact set KE ⊂ V such that

lim
N→∞

1

aN
lnP(XN /∈ KE) < −E. (T)

The usefulness of this notion is revealed in the following

Theorem 1. Let (XN )N≥1 be a sequence of random variables taking values
in some Polish space V . Suppose that it is exponentially tight. If there exists
a lower semicontinuous function I : V −→ [0,∞] such that for all x ∈ V the
following estimates of small ball probabilities hold

lim
ε→0

lim
N→∞

1

aN
lnP(XN ∈ B(x, ε)) ≤ −I(x), (Upp)

lim
ε→0

lim
N→∞

1

aN
lnP(XN ∈ B(x, ε)) ≥ −I(x), (Low)

then (XN )N≥1 satisfies LDP with rate function I which is good.

Therefore, a usual strategy to prove a LDP is to guess a rate function,
first establish the so-called weak LDP, i.e. verify lower and upper bounds
(Low), (Upp), and at the end check the exponential tightness.
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2 Main result

Let us define the function f : R2 −→ R ∪ {∞},

f(x, y) =
x2 + y2

4
− ln |x− y|. (4)

It is not hard to see that f is bounded below. We set

c = inf
µ∈M1(R)

∫
R2

f(x, y)dµ(x)dµ(y). (5)

We also define I : M1(R) −→ [0,∞]

I(µ) =

∫
R2

f(x, y)dµ(x)dµ(y)− c. (6)

Observe that I(µ) =
∫
R
x2

2 dµ(x)− Σ(µ)− c, where

Σ(µ) =

∫
R2

ln |x− y|dµ(x)dµ(y) (7)

is Voiculescu’s noncommutative entropy of µ.
The following technical lemma asserts that I is a perfect candidate for

a rate function

Lemma 1. (i) I is well defined.

(ii) I is lower semicontinuous and good.

(iii) I is a strictly convex function on M1(R).

(iv) I achieves its minimum value at a unique probability measure on R
which is the Wigner semicircle law σ, (1).

Now we are ready to state the main result

Theorem 2. Let LN be a spectral measure of an N×N GUE matrix rescaled
by the factor 1/

√
N , N = 1, 2, . . .. Then (LN )N≥1 viewed as a sequence of

random variables taking values in M1(R) endowed with the weak topology
satisfies LDP with speed N2 and rate function I defined by (6).

4



3 Proofs

We skip the proof of Lemma 1. Though it involves quite cute calculations,
it is long. The interested reader may want to consult [AGZ, Lemma 2.6.2]
for parts (i) - (iii). We comment on (iv) in section 4.

The proof of Theorem 2 will proceed via the strategy described at the
very end of Section 1. In the following subsections we carry out the main
steps: bounds (Low) and (Upp), and the exponential tightness of (LN )N≥1.

3.1 Upper bound (Upp)

First let us notice that by the definition of LN ,

N − 1

2

N∑
i=1

λ2i
2
− ln

∏
1≤i<j≤N

|λi − λj |2 =
∑
i 6=j

λ2i + λ2j
4

− ln
∏
i 6=j
|λi − λj |

=
∑
i 6=j

f(λi, λj) = N2

∫
x 6=y

f(x, y)dLN (x)dLN (y).

As a consequence, we can rewrite the density (2) of the random vector λ,

P(dλ) =
1

ZN
e−N

2
∫
x 6=y f(x,y)dLN (x)dLN (y)

N∏
i=1

e−λ
2
i /2dλ. (8)

Fix µ ∈ M1(R) and ε > 0. Our goal is to estimate P(d(LN , µ) ≤ ε). To
deal with the singularities of ln |x − y| we truncate fM = f ∧M , M ≥ 0.
It is convenient to introduce and work with the nonnormalized measure
P̄(·) = ZNP(·). Since fM ≤ f , we have

P̄(d(LN , µ) ≤ ε) ≤
∫
d(LN ,µ)≤ε

e−N
2
∫
x 6=y fM (x,y)dLN (x)dLN (y)

N∏
i=1

e−λ
2
i /2dλ.

To lighten the notation we denote any product measure ν ⊗ ν by ν2. Note
that L2

N (x = y) = 1/N , P almost surely as under the Lebesgue measure λi’s
are almost surely distinct. So,∫

fMdL2
N =

∫
x 6=y

fMdLN +M/N,

hence,

P̄(d(LN , µ) ≤ ε) ≤ eMN

∫
d(LN ,µ)≤ε

e−N
2
∫
fMdL2

N

∏
e−λ

2
i /2dλ

≤ eMNe−N
2 infd(ν,µ)≤ε

∫
fMdν2

∫ ∏
e−λ

2
i /2dλ.
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Taking the logarithm we obtain

lim
ε→0

lim
N→∞

1

N2
P̄(d(LN , µ) ≤ ε) ≤ − lim

ε→0
inf

d(ν,µ)≤ε

∫
fMdν2 = −

∫
fMdµ2,

where the last equality holds because fM is continuous and bounded, and
therefore ν 7→

∫
fMdν2 is continuous with respect to the weak topology.

Applying the Lebesgue monotone convergence theorem (fM ↗ f , and f, fM
are bounded below!) we get

∫
fMdµ2 ↗

∫
fdµ2.

Note that formally, ZN = P̄(d(LN , µ) ≤ ε = ∞), thus taking above
ε =∞ instead of limε→0 we find that

lim(1/N2) lnZN ≤ − inf
µ∈M1(R)

∫
fMdµ2.

For a fixed δ > 0, for each M we can find a measure µM,δ such that

− inf
µ∈M1(R)

∫
fMdµ2 < δ −

∫
fMdµ2M,δ.

As a consequence,
∫
fMdµ2M,δ ≤ δ + infµ∈M1(R)

∫
fdµ2 = const < ∞.

Using this it can be shown (exercise!) that the sequence (µM,δ)M≥1 is
tight, so by Prokhorov’s theorem we can assume without loss of general-
ity that µM,δ −→ µδ weakly. Then the monotonicity fM ≤ fM+1 yields∫
fMdµ2M,δ ≥

∫
fM0dµ2M,δ −→

∫
fM0dµ2δ −→

∫
fdµ2δ ≥ infµ∈M1(R)

∫
fdµ2.

Since δ is arbitrary, we obtain

lim(1/N2) lnZN ≤ − inf
µ∈M1(R)

∫
fdµ2.

Summarizing, we have shown that

lim
ε→0

lim
N→∞

1

N2
P̄(d(LN , µ) ≤ ε) ≤ −

∫
fdµ2, (9)

lim
N→∞

1

N2
lnZN ≤ −c. (10)

We will conclude desired bound (Upp) for P when we establish the analogous
estimates from below for ZN in the next subsection.

3.2 Lower bound (Low)

We prove that for all µ ∈M1(R)

lim
ε→0

lim
N→∞

1

N2
ln P̄(d(LN , µ) ≤ ε) ≥ −

∫
fdµ2. (11)

6



Incidentally, since ZN ≥ P̄(d(LN , µ) ≤ ε) this immediately implies that

lim
N→∞

1

N2
lnZN ≥ −c. (12)

Fix µ ∈ M1(R) and ε > 0. Without loss of generality we assume that∫
fdµ2 <∞. Obviously it implies that µ has no atoms. Moreover, since

f(x, y) ≥ (x2 + y2)/8− 4, (13)

which follows by ln |x−y| ≤ ln(|x|+1)+ln(|y|+1) ≤ |x|+|y|,the assumption
of a nice integrability

∫
fdµ2 <∞ also implies that

∫
x2dµ(x) <∞.

Now we approximate µ with a discrete measure. Given N let us define
the sequence (xi,N )i≤N

x1,N = inf {x; µ(−∞, x] ≥ 1/(N + 1)} ,
xi+1,N = inf {x ≥ xi,N ; µ(xi,N , x] ≥ 1/(N + 1)} , i ≤ N − 1,

i.e. {(i/(N + 1), xi,N ), i ≤ N} is a discrete approximation of the inverse of
the distribution function of µ. Since µ has no atoms, eventually

d

(
µ,

1

N

N∑
i=1

δxi,N

)
< ε/2.

Thus,

A = {λ; |λi − xi,N | < ε/2, i ≤ N} ⊂ {λ; d(LN , µ) ≤ ε} ,

which intuitively means that if the atoms of measure LN are close to the
atoms of the approximation of µ, then µ itself is close to LN . Therefore,

P̄ (d(LN , µ) ≤ ε) ≥
∫
A

∏
i<j

|λi − λj |2e−N
∑
λ2i /2dλ.

Shifting the variables λi 7→ λi + xi,N we get

P̄ (d(LN , µ) ≤ ε) ≥
∫
⋂
i{|λi|<ε/2}

∏
i<j

|xi,N−xj,N+λi−λj |2e−N
∑

(xi,N+λi)
2/2dλ.

Note that (xi,N ) is increasing. On the set B = {λ1 < . . . < λN} we thus
have |xi,N − xj,N + λi − λj | ≥ |xi,N − xj,N | ∨ |λi − λj | for i < j, so splitting
the product

∏
1≤i<j≤N =

∏
i≤N−1,j=i+1×

∏
2≤i+1<j≤N we obtain on B∏

i<j

|xi,N−xj,N+λi−λj |2 ≥
∏

i≤N−1
|xi,N−xi+1,N |·|λi−λi+1|×

∏
i+1<j

|xi,N−xj,N |2.
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As a result,

P̄ (d(LN , µ) ≤ ε) ≥

( ∏
i+1<j

|xi,N − xj,N |2
∏

i≤N−1
|xi,N − xi+1,N |e−N

∑
x2i,N/2

)
×(∫

B∩
⋂
i{|λi|<ε/2}

∏
i≤N−1

|λi − λi+1|e−N
∑

((xi,N+λi)
2−x2i,N )/2dλ

)
= QN ×RN

Let us deal with the second term RN . Clearly, N
∑
|(xi,N + λi)

2 −
x2i,N |/2 ≤ N(ε/2)

∑
|xi,N | + N2ε2/8 when |λi| < ε/2. Moreover, thanks to∫

|x|dµ ≤
√∫
|x|2dµ <∞, it is not hard to see that by the construction of

the sequence (xi,N ) we can write 1
N+1

∑
|xi,N | ≤

∫
|x|dµ+ o(1). Thus

lim
N→∞

1

N2
lnRN ≥ −

ε2

8
− ε

2

∫
|x|dµ

+ lim
N→∞

1

N2
ln

∫
B∩

⋂
i{|λi|<ε/2}

∏
i≤N−1

|λi − λi+1|dλ.

The last integral against dλ can be simply estimated. Introducing ui =
λi+1−λi and noticing that B ∩

⋂
i{|λi| < ε/2} ⊃

⋂
i{0 < ui < ε/(2N)} = C

we find∫
B∩

⋂
i{|λi|<ε/2}

∏
i≤N−1

|λi − λi+1|dλ ≥
∫
C

∏
i≤N−1

uidu =

(
ε2

4N2

)N−1
ε

2N
.

This yields

lim
ε→0

lim
N→∞

1

N2
lnRN ≥ 0.

Now we handle the first term QN ,

1

N2
lnQN =

2

N2

∑
i<j≤N−1

ln |xi,N − xj+1,N |+
1

N2

∑
i≤N−1

ln |xi,N − xi+1,N |

− 1

N

∑
i≤N

x2i,N
2
.

Again, the construction of the approximating sequence (xi,N ) and the nice
integrability of µ assure us that 1

N+1

∑
x2i,N/2 ≤

∫
(x2/2)dµ+ o(1). In fact,
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∫
|x|2dµ(x) < ∞ also implies that Σ(µ) < ∞ (recall (7) for the definition!)

as ln |x− y| ≤ ln(|x|+ 1) + ln(|y|+ 1) ≤ |x|+ |y|. Observe that

1

(N + 1)2

∑
i<j≤N−1

ln |xi,N − xj+1,N |+
1

2(N + 1)2

∑
i≤N−1

ln |xi,N − xi+1,N |

=
∑

1≤i≤j≤N−1
ln(xj+1,N − xi,N )

∫
x∈[xi,N ,xi+1,N ]
y∈[xj,N ,xj+1,N ]

1{x<y}dµ(x)dµ(y)

≥
∑

1≤i≤j≤N−1

∫
x∈[xi,N ,xi+1,N ]
y∈[xj,N ,xj+1,N ]

1{x<y} ln(y − x)dµ(x)dµ(y)

=

∫
x1,N≤x<y≤xN,N

ln(y − x)dµ(x)d(y).

By the Lebesgue monotone convergence theorem, the right hand side tends
to Σ(µ)/2, hence taking lim we get

lim
N→∞

1

N2
lnQN ≥ Σ(µ)−

∫
x2

2
dµ(x) = −

∫
fdµ2.

This finishes the proof of (9).

3.3 Conclusion of the proof of the upper and lower bounds

Recall that P̄(·) = ZNP(·). Combining (10) and (12) yields

lim
N→∞

(1/N2) lnZN = −c.

This along with (9) easily imply (Upp), and similarly, (11) implies (Low).

3.4 Exponential tightness (T)

It is a nice exercise to prove that

1

N2
lnZN −−−−→

N→∞
−1, (14)

knowing (3) (e.g., one may find the Stolz-Cesàro theorem useful). Hence,
ZN ≥ e−2N

2
eventually.

Note that trivially,

2

∫
x2dLN =

∫
(x2 + y2)dL2

N ≤
∫
x 6=y

(x2 + y2)dL2
N +

1

N

∫
2x2dLN .
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Thus for N ≥ 2,
∫
x2dLN ≤

∫
x 6=y(x

2 + y2)dL2
N . Now fix t > 0. With the

aid of (13), x2 + y2 ≤ 8(f(x, y) + 4), so

P
(∫

x2dLN > t

)
≤ P

(∫
x 6=y

f(x, y)dL2
N > t/8− 4

)
.

Using nice formula (8) for the density of λ we get

P
(∫

x2dLN > t

)
≤ e−N2(t/8−4)e2N

2
(
√

2π)N .

We would like to show (T). It suffices to take KE =
{
µ;
∫
x2dµ ≤ t(E)

}
for t(E) large enough. (KE is a closed set as it is the intersection of closed
sets

{
µ;
∫

(x2 ∧ n)dµ ≤ t(E)
}

, n ≥ 1; moreover if µm ∈ KE , then it is not
hard to see that the sequence (µm)m≥1 is tight, so by Prokhorov’s theorem
we get compactness.)

4 Wigner’s theorem

Suppose we know that the semicircle law σ is the unique minimum of I. Then
for a fixed ε > 0 applying (P) for the set F = {d(µ, σ) ≥ ε} (σ is compactly
supported, thus F is closed) we immediately get that P(d(LN , σ) ≥ ε) ≤
e−δN

2
, where δ = δ(ε) = infd(µ,σ)≥ε I(µ) is a positive constant. Therefore

LN weakly converges to σ, in probability (with rate e−N
2
).

This short argument justifying Wigner’s theorem hinges on (iv) of Lemma
1. Let us briefly sketch the idea of the proof of the latter. Knowing that
there exists the unique minimum σ̃ of I, which is guaranteed by strict con-
vexity, it is rather straightforward to give a characterization of σ̃. This is a
compactly supported measure such that∫

ln |x− y|dσ̃(y) ≤ x2

2
− 1,

with the equality iff x ∈ supp σ̃ (see [AGZ, Lemma 2.6.2 (e)] for the proof).
Thus, in order to establish that σ is the unique minimum, it is enough to
verify that σ satisfies this inequality. To achieve this, it seems that some
cumbersome calculations cannot be omitted; the interested reader is referred
to [AG, Lemma 2.7].
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