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Abstract

We study the expected volume of random polytopes generated by taking the
convex hull of independent identically distributed points from a given distribution.
We show that for log-concave distributions supported on convex bodies, we need
at least exponentially many (in dimension) samples for the expected volume to be
significant and that super-exponentially many samples suffice for concave measures
when their parameter of concavity is positive.
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1 Introduction

Let X1, X2, . . . be independent identically distributed (i.i.d.) random vectors uniform
on a set K in Rn. Let

KN = conv{X1, . . . , XN}. (1)

We are interested in bounds on the number N of points needed for the volume |KN |
of KN to be asymptotic in expectation to the volume | convK| of the convex hull of
K as n → ∞. In the pioneering work [12], Dyer, Füredi and McDiarmid established
sharp thresholds for the vertices of the cube, K = {−1, 1}n as well as for the solid cube
K = [−1, 1]n. More precisely, they showed that for every ε > 0,

E|KN |
2n

−−−−→
n→∞

{
0, if N ≤ (ν − ε)n,
1, if N ≥ (ν + ε)n,

(2)

where for K = {−1, 1}n, we have ν = 2/
√
e = 1.213... and for K = [−1, 1]n, we have

ν = 2πe−γ−1/2 = 2.139... (see also [13]). For further generalisations establishing sharp
exponential thresholds see [16] (in a situation when the Xi are not uniform on a set but
have i.i.d. components compactly supported in an interval).

The case of a Euclidean ball is different. Pivovarov showed in [22] (see also [7]) that
when

K = Bn2 {x ∈ Rn,
∑

x2i ≤ 1},

the threshold is superexponential, that is for every ε > 0,

E|KN |
|K|

−−−−→
n→∞

{
0, if N ≤ e(1−ε)· 12n logn,

1, if N ≥ e(1+ε)· 12n logn.
(3)
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He additionally considered the situation when the Xi are not uniform on a set but are
Gaussian.

In recent works [7, 8], the authors study the case of the Xi having rotationally
invariant densities of the form (1 −

∑
x2i )

β1Bn2 , β > −1. This is the so-called Beta
model of random polytopes attracting considerable attention in stochastic geometry.
In particular, β = 0 corresponds to the uniform distribution on the unit ball and the
limiting case β → −1 corresponds to the uniform distribution on the unit sphere. As
established in [7], the threshold here is as follows: for every constant ε ∈ (0, 1) and
sequences N = N(n), −1 < β = β(n), we have

E|KN |
|Bn2 |

−−−−→
n→∞

{
0, if N ≤ e(1−ε)(n2 +β) logn,

1, if N ≥ e(1+ε)(n2 +β) logn,
(4)

which was further refined in [8]: for every positive constant c, the limit is e−c if N grows
like e(

n
2 +β) log n

2c as n→∞.
We would like to focus on establishing general bounds for some large natural families

of distributions. Specifically, suppose that for each dimension n, we are given a family
{µn,i}i∈In of probability measures such that each µn,i is compactly supported on a
compact set Vn,i in Rn. We would like to find the largest number N0 and the smallest
number N1 (in terms of n and some parameters of the family) such that for every µn,i
from the family, E|KN |

|convVn,i| = o(1) for N ≤ N0 and E|KN |
|convVn,i| = 1 − o(1) for N ≥ N1 as

n→∞ (KN is a random polytope given by (1) with X1, X2, . . . being i.i.d. drawn from
µn,i).

For instance, the examples of the cube and the ball suggest that for the family of
uniform measures on convex bodies, N0 is exponential and N1 is super-exponential in n.

In fact, the latter can be quickly deduced from a classical result by Groemer from
[17], combined with the thresholds for Euclidean balls established by Pivovarov in [22].
Groemer’s theorem says that for every N > n, we have

E| conv{X1, . . . , XN}| ≥ E| conv{Y1, . . . , YN}|,

where the Xi are i.i.d. uniform on a convex set K and the Yi are i.i.d. uniform on a
Euclidean ball with the same volume as K. We thus get from (3) that

E| conv{X1, . . . , XN}| = 1− o(1), (5)

as long as N ≥ e(1+ε)n2 logn.
In this work, we shall establish an exponential bound on N0 for the family of

log-concave distributions on convex sets and extend (5) to the family of the so-called
κ-concave distributions.

Acknowledgements. We would like to thank Alan Frieze for many helpful discus-
sions.

2 Results

Recall that a Borel probability measure µ on Rn is κ-concave, κ ∈ [−∞, 1
n ], if for every

λ ∈ [0, 1] and every Borel sets A, B in Rn, we have

µ(λA+ (1− λ)B) ≥
(
λµ(A)κ + (1− λ)µ(B)κ

)1/κ
.

We say that a random vector is κ-concave if its law is κ-concave. For example, vectors
uniform on convex bodies in Rn are 1/n-concave. The right hand side increases with
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κ, so as κ increases, the class of κ-concave measures becomes smaller. It is a natural
extension of the class of log-concave random vectors, corresponding to κ = 0, with the
right hand side in the defining inequality understood as the limit κ→ 0+. Many results
for convex sets have analogues for concave measures (for instance, see [4, 5, 6, 14, 18]).
Consider κ ∈ (0, 1/n). Then a κ-concave random vector is supported on a convex body
and its density is a 1/β-concave function, that is of the form hβ for a concave function
h and β = κ−1 − n. The notion of κ-concavity was introduced and studied by Borell
in [9, 10], which are standard references on this topic. We also recall that a random
vector X in Rn is isotropic if it is centred, that is EX = 0 and its covariance matrix
Cov(X) = [EXiXj ]i,j≤n is the identity matrix. The isotropic constant LX of a log-
concave random vector X with density f is then defined as LX = (ess supRnf)1/n (see,
e.g. [11]).

Our first main result concerns an exponential lower bound for the family of symmetric
log-concave distributions supported in convex bodies.

Theorem 1. Let µ be a symmetric log-concave probability measure supported on a con-
vex body K in Rn. Let X1, X2, . . . be i.i.d. random vectors distributed according to µ.
Let KN = conv{X1, . . . , XN}. There are universal positive constants c1, c2 such that if

N ≤ ec1n/L
2
µ , then

E|KN |
|K|

≤ e−c2n/L
2
µ ,

where Lµ is the isotropic constant of µ.

Our second main result provides a super-exponential upper bound for the family of
κ-concave distributions.

Theorem 2. Let µ be a symmetric κ-concave measure on Rn with κ ∈ (0, 1
n ), supported

on a convex body K in Rn. Let X1, X2, . . . be i.i.d. random vectors uniformly distributed
according to µ. Let KN = conv{X1, . . . , XN}. There is a universal constant C such

that for every ω > C, if N ≥ e 1
κ (logn+2 logω), then

E|KN |
|K|

≥ 1− 1

ω
.

3 Proof overview

It turns out that the following quasi-concave function plays a crucial role in estimates for
the expected volume of the convex hull of random points (see [2, 3, 12]): for a random
vector X in Rn define

qX(x) = inf{P (X ∈ H) , H half-space containing x}, x ∈ Rn. (6)

It is clear that q(λx + (1 − λ)y) ≥ min{q(x), q(y)}, because if a half-space H contains
λx+ (1− λ)y, it also contains x or y. Consequently, superlevel sets

LqX ,δ = {x ∈ Rn, qX(x) ≥ δ} (7)

of this function are convex. Another way of looking at these sets is by noting that they
are intersections of half-spaces: LqX ,δ =

⋂
{H : H is a half-space,P (X ∈ H) > 1− δ}.

When X is uniform on a convex set K, they are called convex floating bodies (K \LqX ,δ
is called a wet part). The function qX in statistics is called the Tukey or half-space
depth of X. The two notions have been recently surveyed in [21].

A key lemma from [12] relates the volume of random convex hulls of i.i.d. samples of
X to the volume the level sets LqX ,δ. Bounds on the latter are obtained by a combination
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of elementary convexity arguments and deep results from asymptotic convex geometry
(notably, Paouris’ reversal of the Lp-affine isoperimetric inequality due to Lutwak, Yang
and Zhang). We shall present these and all the necessary background material in Section
4. Section 5 is devoted to our proofs.

4 Auxiliary results

4.1 Log-concave and κ-concave measures

Theorem 4.3 from [10] provides in particular the following stability of κ-concavity with
respect to taking marginals: if κ ∈ (0, 1

n ) and f is the density of a κ-concave random
vector in Rn, then

the marginal x 7→
∫
Rn−1

f(x, y)dy is a
κ

1− κ
-concave function. (8)

We will also need the following basic estimate: if g : R → [0,+∞) is the density of a
log-concave random variable X with EX = 0 and EX2 = 1, then

1

2
√

3e
≤ g(0) ≤

√
2 (9)

(see, e.g. Chapter 10.6 in [1]).

4.2 Central lemma

The following is a key lemma from [12] (called by the authors “central”) about asymp-
totically matching upper and lower bounds for the volume of the random convex hull.

Lemma 3 ([12]). Suppose X1, X2, . . . are i.i.d. continuous random vectors in Rn. Let
KN = conv{X1, . . . , XN} and define q = qX1 by (6). Then for every subset A of Rn,
we have

E|KN | ≤ |A|+N ·
(

sup
Ac

q

)
· |Ac ∩ {x ∈ Rn, q(x) > 0}| (10)

and

E|KN | ≥ |A|
(

1− 2

(
N

n

)(
1− inf

A
q
)N−n)

. (11)

(The proof therein concerns only the cube, but their argument repeated verbatim
justifies our general situation as well – see also [16]).

4.3 Bounds related to function q

Lemma 3 is applied to level sets Lq,δ of the function q (see (7)). We gather here several
remarks concerning bounds for the volume of such sets. For the upper bound, we will
need the containment Lq,δ ⊂ cZα(X), where c is a universal constant and Zα is the
centroid body (defined below). This was perhaps first observed in Theorem 2.2 in [28]
(with a reverse inclusion as well). We recall an argument below.

Remark 4. Plainly, for the infimum in the definition (6) of qX(x), it is enough to take
half-spaces for which x is on the boundary, that is

qX(x) = inf
θ∈Rn

P (〈X − x, θ〉 ≥ 0) , (12)
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where 〈u, v〉 =
∑
i uivi is the standard scalar product in Rn. Of course, by homogeneity,

this infimum can be taken only over unit vectors. We also remark that by Chebyshev’s
inequality,

P (〈X − x, θ〉 ≥ 0) ≤ e−〈θ,x〉Ee〈θ,X〉.
Consequently,

qX(x) ≤ exp

(
− sup
θ∈Rn

{
〈θ, x〉 − logEe〈θ,X〉

})
and we have arrived at the Legendre transform Λ?X of the log-moment generating func-
tion ΛX of X,

ΛX(x) = logEe〈X,x〉 and Λ?X(x) = sup
θ∈Rn

{〈θ, x〉 − ΛX(θ)} .

Thus, for every α > 0, we have

{x ∈ Rn, qX(x) > e−α} ⊂ {x ∈ Rn, Λ?X(x) < α}. (13)

Remark 5. The level sets {Λ?X < α} have appeared in a different context of the so-
called optimal concentration inequalities introduced by Lata la and Wojtaszczyk in [19].
Modulo universal constants, they turn out to be equivalent to centroid bodies playing
a major role in asymptotic convex geometry (see [20, 23, 24, 25, 26]). Specifically, for a
random vector X in Rn and α ≥ 1, we define its Lα-centroid body Zα(X) by

Zα(X) = {x ∈ Rn, sup{〈x, θ〉 , E| 〈X, θ〉 |α ≤ 1} ≤ 1}

(equivalently, the support function of Zα(X) is θ 7→ (E| 〈X, θ〉 |α)1/α). By Propositions
3.5 and 3.8 from [19], if X is a symmetric log-concave random vector X (in particular,
uniform on a symmetric convex body),

{Λ∗X < α} ⊂ 4eZα(X), α ≥ 2. (14)

(A reverse inclusion Zα(X) ⊂ 21/αe{Λ∗X < α} holds for any symmetric random vector,
see Proposition 3.2 therein.)

We shall need an upper bound for the volume of centroid bodies. This was done by
Paouris (see [25]). Specifically, Theorem 5.1.17 from [11] says that if X is an isotropic
log-concave random vector in Rn, then

|Zα(X)|1/n ≤ C
√
α

n
, 2 ≤ α ≤ n, (15)

where C is a universal constant.

Remark 6. Significant amount of work in [12] was devoted to showing that for the
cube inclusion (13) is nearly tight (for correct values of α, using exponential tilting of
measures typically involved in establishing large deviation principles). We shall take a
different route and put a direct lower bound on qX described in the following lemma.
Our argument is based on property (8).

Lemma 7. Let κ ∈ (0, 1
n ). Let X be a symmetric isotropic κ-concave random vector

supported on a convex body K in Rn. Then for every unit vector θ in Rn and a > 0, we
have

P (〈X, θ〉 > a) ≥ 1

16
κ

(
1− a

hK(θ)

)1/κ

, (16)

where hK(θ) = supy∈K 〈y, θ〉 is the support function of K. In particular, denoting the
norm given by K as ‖ · ‖K , we have

qX(x) ≥ 1

16
κ (1− ‖x‖K)

1/κ
, x ∈ K. (17)
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Proof. Consider the density g of 〈X, θ〉. Let b = hK(θ). Note that g is supported in
[−b, b]. By (8), g

κ
1−κ is concave, thus on [0, b] we can lower-bound it by a linear function

whose values agree at the end points,

g(t)
κ

1−κ ≥ g(0)
κ

1−κ

(
1− t

b

)
, t ∈ [0, b].

This gives

P (〈X, θ〉 > a) =

∫ b

a

g(t)dt ≥ g(0)

∫ b

a

(
1− t

b

) 1−κ
κ

dt = κg(0)b
(

1− a

b

)1/κ
.

Since 〈X, θ〉 is in particular log-concave, by (9), we have 1
2
√
3e
≤ g(0) ≤

√
2. Moreover,

by isotropicity,

1 = E 〈X, θ〉2 =

∫ b

−b
t2g(t)dt ≤ 2b2g(0).

Thus, say g(0)b > 1
16 and we get (16). To see (17), first recall (12). By symmetry,

P (〈X − x, θ〉 ≥ 0) = P (〈X, θ〉 ≥ | 〈x, θ〉 |), so we use (16) with a = | 〈θ, x〉 | and note

that by the definition of hK , |
〈

x
‖x‖K , θ

〉
| ≤ hK(θ), so |〈x,θ〉|hK(θ) ≤ ‖x‖K .

5 Proofs

5.1 Proof of Theorem 1

Since the quantity E|KN |
|K| does not change under invertible linear transformations applied

to µ, without loss of generality we can assume that µ is isotropic. Let q = qX1
be defined

by (6). Fix α > 0 and apply (10) to the set A = {x, q(x) > e−α}. We get

E|KN |
|K|

≤ |A|
|K|

+Ne−α

(we have used {x, q(x) > 0} ⊂ K to estimate the last factor in (10) by 1). Combining
(13), (14) and (15),

|A| ≤ |4eZα(X)| ≤
(

4eC

√
α

n

)n
.

Moreover, by the definition of the isotropic constant of µ,

1 =

∫
K

dµ ≤ Lnµ|K|.

Thus,
|A|
|K|
≤
(

4eCLµ

√
α

n

)n
.

We set α such that 4eCLµ
√

α
n = e−1 and adjust the constants to finish the proof. �

5.2 Proof of Theorem 2

As in the proof of Theorem 1, we can assume that µ is isotropic. Let q = qX1
be defined

by (6). Fix 0 < β < 1. By (11) which we apply to the set A = {x ∈ K, q(x) > β1/κ},
we have

E|KN |
|K|

≥ |A|
|K|

(
1− 2

(
N

n

)(
1− β1/κ

)N−n)
.

6



By the lower bound on q from (17),

A ⊃ {x ∈ Rn, ‖x‖K ≤ 1− (16κ−1)κβ},

hence
|A|
|K|
≥
(
1− (16κ−1)κβ

)n ≥ 1− n(16κ−1)κβ ≥ 1− 32nβ.

We choose β such that 32nβ = 1
2ω and crudely deal with the second term,(

N

n

)(
1− β1/κ

)N−n
≤ Nne−β

1/κ(N−n),

which is nonincreasing in N as long as N ≥ nβ−1/κ. This holds for ω large enough if,

say N ≥ n1/κω2/κ. Then we easily conclude that the dominant term above is e−β
1/κN

which yields, say
E|KN |
|K|

≥
(

1− 1

2ω

)
(1− 2e−ω

n/2

) ≥ 1− 1

ω
,

provided that n and ω are large enough. �

6 Final remarks

Remark 8. Groemer’s result used in (5) for uniform distributions has been substantially
generalised by Paouris and Pivovarov in [27] to arbitrary distributions with bounded
densities. We remark that in contrast to (5), using the extremality result of the ball
from [27] does not seem to help obtain bounds from Theorem 2 for two reasons. For one,
it concerns bounded densities and rescaling will cost an exponential factor. Moreover,
for the example of β-polytopes from [7], we have that they are generated by κ-concave
measures with κ = 1

β+n and the sharp threshold for the volume is of the order n(β+n/2)

(see (3)). The ball would give that N1 = n(1+ε)n/2 points is enough.

Remark 9. The example of beta polytopes from (3) shows that the bound on N in

Theorem 2 has to be at least of the order nβ+n/2 = n
1
κ−n/2 ≥ n

1
2κ . Our bound n

1
κ is

perhaps suboptimal. It is not inconceivable that as in the uniform case, the extremal
example is supported on a Euclidean ball.

Remark 10. It is reasonable to ask about sharp thresholds like the ones in (2), (3),
(3) and (4) for other sequences of convex bodies, say simplices, cross-polytopes, or in
general `p-balls. This is a subject of ongoing work. We refer to [15] for recent results
establishing exponential nonsharp thresholds for a simplex (i.e. with a gap between the
constants for lower and upper bounds).
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