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Abstract. We prove that the tail probabilities of sums of independent uni-

form random variables, up to a multiplicative constant, are dominated by the

Gaussian tail with matching variance and find the sharp constant for such

stochastic domination.
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1. Introduction

Concentration inequalities have always played a prominent role in probability theory

and beyond. They quantify the obvious intuition that random variables are likely

to be close, or concentrate around their mean. A prevalent source of concentration

is independence, which has been studied to a great extent, see e.g. monographs [5,

17]. Perhaps the most fundamental setting concerns sums of independent random

variables, for which many robust tools have been developed. One of the precursors

is undoubtedly Hoeffding’s inequality from [14]: for independent mean 0 random

variables X1, . . . , Xn with |Xj | ≤ 1 a.s. for each j and real numbers a1, . . . , an with∑n
j=1 a

2
j = 1, we have

(1) P

∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣ > t

 ≤ 2e−t
2/2, t > 0.

In other words, a Gaussian tail bound of variance 1 holds. When specialised to

the Rademacher random variables (random signs), whose distribution is given by
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P (Xj = ±1) = 1
2 , the sum

∑
ajXj has variance 1. However, note that the tail

of a standard Gaussian random variable (mean 0, variance 1) is asymptotic to
1√
2πt

e−t
2/2, so the factor 1

t is missing. Following Hoeffding’s work, Efron remarked

in [11] that for applications to hypothesis testing, inequality (1) “is not sharp

enough to be useful in practice” and suggested that there is a universal constant C

such that for random signs we have

(2) P

∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣ > t

 ≤ CP (|G| > t) , t > 0,

where G is a standard Gaussian random variable. This was proved by Pinelis

in [21] and after some pursuit, the sharp constant has been found by Bentkus

and Dzindzalieta in [3]. Its value is approximately 3.18 and comes from the case

n = 2, a1 = a2 = 1√
2
, t =

√
2. We refer, for instance, to Pinelis’ work [23],

which besides asymptotic improvements (estimate (2) with C = 1 +O(1/t)), gives

a detailed account on important milestones. For further multivariate analogues

and extensions, we refer to [8, 19, 24]. Truly Gaussian tail bounds have also been

established in a more general setting of martingales with bounded differences (i.e.

bounds without missing factors, as opposed to the classical Azuma inequality), see

Pinelis’ Theorem 5.4 in [22], or Bentkus’ work [2].

This paper proves the sharp bound of the form (2) for sums of independent uniform

random variables. Similarly to the Rademacher distribution playing a fundamental

role in the class of all symmetric distributions, the uniform distribution is a building

block of all (continuous) unimodal ones (every unimodal distribution is a mixture

of uniform distributions, see, e.g. Chapter 1 in [10]). When the Xj are chosen to

be uniform on [−1, 1] with variance 1
3 , even the exponent of the bound by e−t

2/2

in (1) is suboptimal, as the Gaussian tail of matching variance would yield e−3t
2/2.

This can be rectified (see, e.g. Section 5 in [1]) but still lacks the missing factor 1
t .

On the other hand, the aforementioned works [2, 22] as well as Talagrand’s paper

[25] retaining 1
t yield the main term e−t

2/2, suboptimal for uniforms. Our main

result is the following sharp bound, akin to Bentkus and Dzindzalieta’s inequality

from [3].

Theorem 1. Let U1, U2, . . . be independent random variables uniform on [−1, 1].

For every n ≥ 1, real numbers a1, . . . , an with
∑n
j=1 a

2
j = 1 and positive t, we have

(3) P

∣∣∣∣∣∣
n∑
j=1

ajUj

∣∣∣∣∣∣ > t

 ≤ C∗P( 1√
3
|G| > t

)
,
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where G is a standard Gaussian random variable (mean 0, variance 1) and the

constant equals

(4) C∗ = sup
0<t<1

1− t
P
(
|G| > t

√
3
) = 1.345118..

(the supremum attained uniquely at t0 = 0.642908..).

The value of the constant C∗ is clearly best possible because when n = 1, a1 = 1

and t = t0, we have equality in (3). Plainly, the variance 1
3 of the Gaussian on the

right hand side in (3) matches the variance of the sum of uniforms
∑
ajUj , thus,

in view of the central limit theorem, it is also optimal (i.e. cannot be replaced with

any smaller one).

2. Proofs

2.1. Overview. In our proof of Theorem 1, we use two different arguments, de-

pending on whether t is large or not. This strategy in low-resolution mimics the

one of Bentkus and Dzindzalieta from [3], however some fine points are different. In

the small t regime, [3] relies on an improved Chebyshev’s inequality (see Lemma 2.1

in [3]), as well as Berry-Esseen bounds. For uniforms, this approach did not seem

to yield satisfactory bounds, instead, we resort to log-concavity. More specifically,

for the range 0 < t < 1 which admits equality, we rely on arguments leveraging

log-concavity, developed by Barthe and Koldobsky in [1].

For the range t ≥ 1, we employ an inductive argument developed by Bobkov, Götze

and Houdré in [4] for the Rademacher sums. This rests on a certain estimate

for averages of the Gaussian tail function. We emphasise that the bound needed

for the Gaussian tails in the case of uniforms is in fact stronger than the one for

Rademachers (see Remark 2 in Section 4).

We now turn to the details for each of the two regimes.

2.2. Approach for small t. Since the random vector 1
2 (U1, . . . , Un) is uniformly

distributed on the unit volume cube [− 1
2 ,

1
2 ]n in Rn, for a unit vector a in Rn and

t > 0, we have

P

∣∣∣∣ n∑
j=1

ajUj

∣∣∣∣ ≤ t
 = voln

({
x ∈ [− 1

2 ,
1
2 ]n,

∣∣∣∣ n∑
j=1

ajxj

∣∣∣∣ ≤ t/2}),
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that is, geometrically, this probability is equal to the volume (Lebesgue measure) of

the section of the cube [− 1
2 ,

1
2 ]n by the slab {x ∈ Rn, |

∑
ajxj | ≤ t/2} of width t.

Barthe and Koldobsky have studied sections of minimal volume and have obtained

the following sharp result (see Theorem 2 in [1]).

Theorem 2 (Barthe-Koldobsky). Let n ≥ 1. For every unit vector a in Rn and

0 < t ≤ 3
4 , we have

P

∣∣∣∣ n∑
j=1

ajUj

∣∣∣∣ ≤ t
 ≥ t.

By the definition of C∗, this immediately gives (3) for all 0 < t ≤ 3
4 . We conjecture

this to hold for all t ≤ 2(
√

2 − 1) as is known when n = 2 (see Theorem 1 in

[1]). Their arguments rest on the log-concavity of the sum of uniform random

variables. Recall that a function f : R → [0,+∞) is called log-concave if it is of

the form f = e−ϕ for a convex function ϕ : R→ (−∞,+∞] and a random variable

is called log-concave if it has a density which is log-concave (see, e.g. Chapter

2.1 in [6] for background). Specifically, they relax the problem: “given n ≥ 1,

t > 0, find minP
(∣∣∣∑n

j=1 ajUj

∣∣∣ ≤ t) over all unit vectors a in Rn”, to the problem:

“given t > 0, find minP (|X| ≤ t) over all symmetric log-concave random variables

X with EX2 = 1
3 .” Using log-concavity, the latter problem naturally reduces

to optimisation over the subfamily of truncated symmetric exponential densities.

After explicit calculations, this leads to the following bound (obtained by combining

Lemmas 4 and 5 from [1]). To state it, we define functions

ψ(x) =
1

x

∫ x

0

log2(1− y)dy, x > 0,(5)

G(t, p, x) = 3t2ψ(x)− log2(1− px), t > 0, 0 < p, x < 1.(6)

Lemma 3 (Barthe-Koldobsky). Let t > 0, 0 < p < 1 and let X be a symmetric

log-concave random variable with EX2 = 1
3 . If

inf
x∈(0,1)

G(t, p, x) ≥ 0,

then

P (|X| ≤ t) ≥ p.

As this exact formulation, particularly suited for our purposes, is only implicit in

their work, for completeness and reader’s convenience, we sketch the argument in

Section 3.

4



When applied to X =
∑
ajUj , Theorem 2 is then a consequence of the sharp bound

(7) inf
x∈(0,1)

G(t, t, x) = 0,

which holds for all 0 < t ≤ 3
4 (Proposition 6 in [1]). However, this bound fails

as soon as t > 3
4 . Fortunately for us, the log-concave relaxation turns out to still

be sufficient to handle our desired Gaussian bound (3) for 3
4 < t < 1. In view of

Lemma 3, to get (3), it is enough to prove the following technical lemma.

Lemma 4. For t > 0, set p(t) = 1 − C∗P
(
|G| > t

√
3
)
, where G is a standard

Gaussian random variable. For every 3
4 < t < 1 and 0 < x < 1, we have

G(t, p(t), x) ≥ 0.

This inequality turns out to be quite subtle. We have not been able to find any

easier solution than the rather non-elegant direct calculations leaning on convexity

(and simple “netting”). The proof is deferred to Section 3.

2.3. Approach for large t. By the symmetry of the random variables involved,

(3) is equivalent to

P

 n∑
j=1

ajUj > t

 ≤ C∗P( 1√
3
G > t

)
.

Using induction on n and leveraging the independence of the Uj , we exploit the

following natural approach going back to [4]. We have,

(8) P

 n∑
j=1

ajUj > t

 = P

(∑n−1
j=1 ajUj√
1− a2n

>
t− anUn√

1− a2n

)
.

Conditioning on the value of Un, by the inductive hypothesis, as long as we have

that t− anUn > 0, we get

(9) P

 n∑
j=1

ajUj > t

 ≤ EUnC∗PG

(
1√
3
G >

t− anUn√
1− a2n

)
.

To finish this argument, it suffices to establish the following estimate on the averages

of the Gaussian tail.

Lemma 5. Let G be a standard Gaussian random variable. For every 0 < a < 1

and t > 1, we have

1

2

∫ 1

−1
P
(
G >

t+ au√
1− a2

√
3

)
du ≤ P

(
G > t

√
3
)
.

5



We postpone the proof to Section 3. Let us remark that the inductive step from

[4] for Rademacher random variables relied on the estimate

(10)
1

2
P

(
G >

t
√

3 + a√
1− a2

)
+

1

2
P

(
G >

t
√

3− a√
1− a2

)
≤ P

(
G > t

√
3
)
.

We will show in Remark 2 that Lemma 5 is stronger, in that the left hand side of

(10) is upper bounded by the left hand side from Lemma 5.

2.4. Proof of Theorem 1. We prove (3) by induction on n. When n = 1, a1 = ±1

and consequently, the left hand side is simply 0 for t > 1, so the inequality is trivial.

For 0 < t ≤ 1, the inequality follows by the definition of C∗.

For the inductive step, let n ≥ 2 and suppose the result holds for every sum of n−1

uniform random variables. When 0 < t < 1, combining Lemmas 3 and 4 applied to

X =
∑n
j=1 ajUj , which is symmetric log-concave with EX2 = 1

3 , we get

P (|X| ≤ t) ≥ 1− C∗P
(
|G| > t

√
3
)

which is equivalent to (3) and the argument is finished in this case. Thus, we

can now assume that t ≥ 1. Moreover, we can assume that 0 < an < 1. Then

t − anUn > 0 a.s. and the inductive argument from (8) and (9) combined with

Lemma 5 finishes the proof. �

3. Proofs of the auxiliary lemmas

3.1. Proof of Lemma 3 (sketch). Let X be the class of all symmetric log-concave

random variables. First note that given arbitrary parameters σ, t > 0 and 0 < p < 1,

the following two statements are equivalent

For every X ∈ X with EX2 = σ, we have P (|X| ≤ t) ≥ p,(11)

For every X ∈ X with P (|X| ≤ t) = p, we have EX2 ≥ σ.(12)

Indeed, if (11) holds and (12) does not, there is X ∈ X with P (|X| ≤ t) = p

and EX2 < σ. We consider X̃ = λX, λ =
√

σ
EX2 > 1. Then EX̃2 = σ, but

P
(
|X̃| ≤ t

)
= P (|X| ≤ t/λ) < P (|X| ≤ t) = p, contradicting (11). The converse is

proved similarly.

Using a standard argument of “moving mass where it is beneficial” for log-concave

densities, Barthe and Koldobsky (see Lemma 4 in [1]) reduced the problem of finding

inf EX2 over all X ∈ X with P (|X| ≤ t) = p to that over all X with densities of the

form f(x) = ce−α|x|1[−d,d](x) (truncated symmetric exponentials). After explicit
6



calculations with such densities this is in turn reduced in their Lemma 5 to an

optimisation problem over one parameter. Namely,

inf{EX2, X ∈ X ,P (|X| ≤ t) = p} = t2 inf
0<x<1

ψ(x)

log2(1− px)
,

with ψ defined in (5). There is in fact a typo in their statement of Lemma 5: the

square is missing at log(1−px)). In view of the equivalence between (11) and (12),

showing that

(13) t2 inf
0<x<1

ψ(x)

log2(1− px)
≥ 1

3
,

results in P (|X| ≤ t) ≥ p for every X ∈ X with EX2 = 1
3 . �

3.2. Proof of Lemma 4. Our goal is to show that (13) holds for all 3
4 < t < 1.

That is, for all 0 < x < 1 and 3
4 < t < 1 we have

3t2ψ(x) ≥ log2(1− p(t)x),

or, equivalently, after taking the square root on both sides,

t
√

3ψ(x) ≥ − log(1− p(t)x).

Note that the right hand side as a function of the quantity p(t) is increasing. We

first replace the function p(t) by a piece-wise linear one which is pointwise larger

for 3
4 < t < 1. With hindsight, we choose t0 = p0 = 3

4 , t1 = 0.92, p1 = 0.855,

t2 = 1, p2 = 0.888 and let

p̃(t) =

p0 + p1−p0
t1−t0 (t− t0), t0 ≤ t ≤ t1,

p1 + p2−p1
t2−t1 (t− t1), t1 ≤ t ≤ t2.

This is the piecewise linear function which on (tj , tj+1) interpolates linearly between

(tj , pj) and (tj+1, pj+1), j ∈ {0, 1}.

Claim. We have, p(t) < p̃(t) on [ 34 , 1].

Proof. Recall the definition, p(t) = 1 − C∗P
(
|G| > t

√
3
)
. Since the density of |G|

is strictly decreasing, this is a concave function. Let `1(t), `2(t) be its tangents at

t = 0.85 and t = 1 respectively, so that p(t) ≤ `j(t), j = 1, 2. We check that

`1(t0) < 0.748 < p0, `1(t1) < 0.8545 < p1 and `2(t1) < 0.8549 < p1, `2(t2) <

0.888 = p2. By the construction of p̃, these bounds at the end-points finish the

proof. �
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By the claim, we conclude that it suffices to show that for all 3
4 < t < 1 and

0 < x < 1, we have

t
√

3ψ(x) ≥ − log(1− p̃(t)x).

Fix 0 < x < 1. Observe that the right hand side as a function of t is clearly convex

on [t0, t1] as well as on [t1, t2]. Since the left hand side is linear in t, once we have

verified this inequality at t = t0, t1, t2, we obtain that it is valid for all t0 ≤ t ≤ t1

and t1 ≤ t ≤ t2, as desired. Thus, our goal is to show that for j = 0, 1, 2 and all

0 < x < 1, we have

(14) tj
√

3ψ(x) ≥ − log(1− pjx).

When j = 0, tj = pj = 3
4 , so (14) follows from (7) (Proposition 6 in [1]). For

j = 1, 2, we begin by considering small x. Recalling the definition of ψ given in

(5), note that its Taylor series expansion at x = 0 has the leading term x2

3 and all

coefficients positive (because − log(1− y) has positive coefficients, consequently, so

does its square, log2(1− y) and plainly, log2(1− y) = y2 + . . . ). As a result,

ψ(x) is convex on (0,1),(15)

ψ(x) > x2/3, 0 < x < 1.(16)

Therefore,
√

3ψ(x) > x and (14) is implied by tjx + log(1 − pjx) ≥ 0. The left

hand side as a function of x is concave, it vanishes at x = 0 and we check that at

x = 0.15, it equals 0.0007.. and 0.007.. for j = 1, 2, respectively. This proves (14)

for all 0 < x < 0.15.

To finish the proof, we divide the interval [0.15, 1] into 17 smaller ones of equal

length 0.05, [xk, xk+1], xk = 0.15 + 0.05k, k = 0, 1, . . . , 16. We note that (14) is

equivalent to

(17) ψ(x) ≥ 1

3t2j
log2(1− pjx).

Let gj(x) be the right hand side. From (15), we know that ψ(x) is convex, so is

gj(x) (e.g. by the same argument as for ψ, its Taylor series expansion at x = 0

has all coefficients positive). On each interval [xk, xk+1], we pointwise lower bound

ψ(x) by its tangent ψ̃k(x) at the mid-point x̄k = xk+xk+1

2 , that is ψ̃k(x) = ψ(x̄k) +

ψ′(x̄k)(x−x̄k). By the convexity of gj(x), it remains to check that at the end-points

x = xk, xk+1, we have ψ̃k(x) > gj(x). Those calculations are gathered in Table 1

below. �
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Table 1. Proof of (17): lower bounds on the differences at the

end-points between the linear approximations ψ̃k and gj .

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

103(ψ̃k(xk)− g1(xk)) 0.7 1.4 2.4 3.6 4.9 6.4 8.1 9.8 11 13 14 16 17 20 24 34 48

103(ψ̃k(xk+1)− g1(xk+1)) 1.5 2.4 3.6 5 6.5 8.1 9.9 11 13 15 16 18 21 26 41 87 304

103(ψ̃k(xk)− g2(xk)) 1.3 2.5 4.2 6.2 8.5 11 14 17 20 24 27 29 31 30 28 23 3.0

103(ψ̃k(xk+1)− g2(xk+1)) 2.6 4.2 6.2 8.6 11 14 17 20 24 27 30 31 32 30 30 41 17

3.3. Proof of Lemma 5. Note that for a = 0, we have equality, hence it is enough

to show that the left hand side as a function of a is decreasing. Its derivative in a

equals

−
√

3

2(1− a2)3/2

∫ 1

−1
φ

(
t+ au√
1− a2

√
3

)
(u+ at)du

where φ(x) = 1√
2π
e−x

2/2 is the density of G. We will show that this is negative

for all t > 1 and 0 < a < 1. This is clear when at ≥ 1, since then u + at ≥ 0 for

all −1 ≤ u ≤ 1. From now on, we assume that at < 1. Let t± = t±a√
1−a2
√

3. After

a change of variables, v = t+au√
1−a2
√

3 and using that vφ(v) = −φ′(v), it remains to

show that

h(a, t) =
φ(t−)− φ(t+)

t
√

3
√

1− a2
−
∫ t+

t−

φ(v)dv > 0, 0 < a < 1, 1 < t <
1

a
.

Again, there is equality at a = 0, so it is enough to show that the derivative in a of

h is positive. We have,

∂h

∂a
=

aφ(t−)

t
√

3(1− a2)5/2

[
(3a2t2 + 6at+ a2 + 2)e

− 6at
1−a2 − (3a2t2 − 6at+ a2 + 2)

]
.

We let b = at and claim that for every 0 < a < b < 1,

exp

(
− 6b

1− a2

)
>

3b2 − 6b+ a2 + 2

3b2 + 6b+ a2 + 2
= 1− 12b

3b2 + 6b+ a2 + 2
,

which will finish the proof. Notice that the left hand side is clearly decreasing in

a, whilst the right side side is increasing, thus it suffices to show this inequality for

a = b, that is

exp

(
− 6a

1− a2

)
>

2a2 − 3a+ 1

2a2 + 3a+ 1
=

(1− 2a)(1− a)

(1 + 2a)(1 + a)
, 0 < a < 1.
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When a ≥ 1
2 , the right hand side is nonpositve, so the inequality is obvious. For

0 < a < 1
2 , equivalently, we would like to argue that

f(a) = − 6a

1− a2
− log

(
(1− 2a)(1− a)

(1 + 2a)(1 + a)

)
is positive. We have f(0) = 0 and

f ′(a) =
36a4

(1− a2)2(1− 4a2)
,

which is clearly positive, completing the argument. �

4. Final remarks

Remark 1. Our main result, inequality (3) with a suboptimal value of constant C∗

can be obtained from a majorisation result of Theorem 2 from [12], combined with

Pinelis’ technique “from (generalised) moments to tails”, [23]. Such an argument

yields (3) with c = e2/2 = 3.69.. in place of C∗. To sketch this argument, note first

that for every even function f , nondecreasing on [0,+∞), we have by Markov’s

inequality,

P
(∣∣∑ ajUj

∣∣ > t
)
≤ 1

f(t)
Ef
(∑

ajUj
)
.

If f is additionally C1 with f ′ convex on [0,+∞), the sum of uniforms can be

dominated by the sum of Gaussians with matching variances (Theorem 6 combined

with Remark 18 from [12]), resulting with the bound

P
(∣∣∑ ajUj

∣∣ > t
)
≤ 1

f(t)
Ef(G/

√
3).

Letting fu(x) = (|x| − u)+ with a carefully chosen u (depending on t) allows to

estimate this quantity by the tail function (leveraging only the log-concavity of G),

1

fu(t)
Efu(G/

√
3) ≤ e2

2
P
(

1√
3
|G| > t

)
(see Theorem 3.11 in [22], or the direct computation from [8] following Claim 2).

Remark 2. Let G,U, ε be independent, G standard Gaussian, U uniform on [−1, 1]

and ε uniform on {−1, 1}. It can be checked that the following function

x 7→ P

(
G >

t
√

3 + aε
√

3x√
1− a2

)
is convex on [0, 1]. As a result, by Jensen’s inequality,

P

(
G >

t
√

3 + aε√
1− a2

)
= P

(
G >

t
√

3 + aε
√

3EU2

√
1− a2

)
≤ EUP

(
G >

t
√

3 + aε|U |
√

3√
1− a2

)
.
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Since ε|U | has the same distribution as U , we conclude that Lemma 5 implies (10).

Remark 3. As (2) has direct applications to tail bounds for self-normalising sums

of symmetric random variables (see [11, 20]), our inequality (3) finds a similar use

for sums of symmetric unimodal ones. Let X1, . . . , Xn be independent symmetric

unimodal random variables, that is, each Xi has the same distribution as RjUj ,

where R1, . . . , Rn are some independent nonnegative random variables, indepen-

dent of U1, . . . , Un which are i.i.d. uniform on [−1, 1] (we refer to [10] for basic

background, and in particular, Theorem 1.5 for such representation). Then, by

conditioning on the values of the Rj , a direct consequence of Theorem 1 is the

following bound

P

∣∣∣∣∣∣
∑n
j=1RjUj√∑n
j=1R

2
j

∣∣∣∣∣∣ > t

 ≤ C∗P( 1√
3
|G| > t

)
, t > 0.

We emphasise that when the X1, X2, . . . are i.i.d. with finite variance, the self-

normalised sum ∑n
j=1RjUj√∑n
j=1R

2
j

=

∑n
j=1 RjUj√

n√∑n
j=1 R

2
j

n

converges in distribution to
G
√

ER2
1U

2
1√

ER2
1

= 1√
3
G.

Remark 4. There is a short argument justifying Theorem 2 for a slightly smaller

range: 0 < t ≤ 2
3 (still containing the value of t = t0 = 0.64.. where (3) is tight). It

relies on a curious formula with the negative moment, namely

P

∣∣∣∣ n∑
j=1

ajUj

∣∣∣∣ ≤ t
 = tE

∣∣∣∣tξ0 +

n∑
j=1

ajξj

∣∣∣∣−1
 , t > 0,

holds for every unit vector a ∈ Rn, where ξ0, ξ1, . . . are i.i.d. random vectors

each uniform on the unit Euclidean sphere in R3 and | · | denotes the Euclidean

norm. This formula goes back to [15], Proposition 2, where it was derived using

the Fourier transform (a different argument rests on writing densities at 0 using

negative moments, see e.g. (1) in [7], or [9]). Let X =
∑
ajξj . By rotational

invariance and independence,

E
[
|tξ0 +X|−1

]
= Emin

{
t−1, |X|−1

}
= Eft(|X|2),

(see, e.g. Lemma 2 in [13] for a more general statement in arbitrary dimension),

where we set

ft(x) = min{t−1, x−1/2}.
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As long as 0 < t ≤ 2
3 , for the tangent to x−1/2 at x = 1, g(x) = 1 − 1

2 (x − 1) we

have, g(x) ≤ ft(x), x ≥ 0 (by convexity, it suffices to check g(0) ≤ ft(0) which is

g(0) = 3
2 ≤

1
t = ft(0)). Since E|X|2 = 1, we get

Eft(|X|2) ≥ Eg(|X|2) = 1− 1

2
(E|X|2 − 1) = 1,

which, in view of the previous formula, gives Theorem 2 for all 0 < t ≤ 2
3 . We

finish with recalling V. Milman’s beautiful conjecture that given t > 0, the mini-

mum of P (|
∑
ajUj | ≤ t) over all unit vectors a in Rn is attained at a of the form

(1, . . . , 1, 0, . . . , 0) for a suitable number of 1s (see [1], [15] and [18] for progress

made so far). In light of this, we conjecture that for all unit vectors a in Rn,

P

∣∣∣∣∣∣
n∑
j=1

ajUj

∣∣∣∣∣∣ > t

 ≤ P
(

1√
3
|G| > t

)
, t > t1 = 1.04288..,

where t1 is the unique solution of P
(
|U1+U2+U3√

3
| > t

)
= P

(
1√
3
|G| > t

)
, t > 0.
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