STABILITY OF SIMPLEX SLICING

SERGI MYROSHNYCHENKO, COLIN TANG, KATERYNA TATARKO,
AND TOMASZ TKOCZ

ABSTRACT. We establish dimension-free stability of Webb’s sharp simplex slicing (1996). Incidentally, we investigate Lipschitzness of volume of central sections of arbitrary convex bodies.

2020 Mathematics Subject Classification. Primary 52A40; Secondary 52B12.

Key words. regular simplex, volumes of sections, stability, Lipschitzness of sections

1. INTRODUCTION

When a certain nontrivial inequality becomes known along with its precise equality conditions, a natural important next step often seems to be to investigate its stability properties, or quantitative versions. Bonnesen’s inequality for the planar isoperimetric problem provides a good concrete example, see [10, 22]. In analytic and geometric contexts, this paradigm has been particularly fruitful in establishing new results as well as, perhaps even more significantly, developing new methods, see for instance [4, 15, 17, 19] for a handful of recent results.

This paper concerns stability estimates for volume of central hyperplane sections of the regular simplex. Such “slicing” inequalities have had a long and rich history, going back to Anthon Good’s question from the 70s, who asked to determine subspaces of a given dimension that minimise the volume of sections of a centred unit cube. Besides its inherent geometric interest, this question had in fact origins and applications in Diophantine approximations and geometry of numbers, see, e.g. [8]. Important results include sharp bounds, in the case of symmetric convex bodies,
for sections of \(\ell_p\) balls (see \([2, 5, 16, 25, 26, 29, 33, 37]\)), and in the case of non-
symmetric ones, only for the regular simplex (see \([38, 39]\)). For a comprehensive
overview, we refer to the monograph \([30]\) and the survey \([35]\). Despite these being
decades old, only recently have quantitative results begun to develop, and only in
the symmetric cases, only for hyperplane sections (see \([13, 21]\)), with an interesting
application in information theory (see \([31]\)).

This work continues the program and makes a first step in the nonsymmetric case
of maximal volume sections of a simplex, which is far less understood than the
symmetric case (needless to say, even the sharp lower bounds have not been available
only until now, see the second author’s recent work \([36]\)).

2. Results

We work in Euclidean spaces \(\mathbb{R}^n\) equipped with the standard inner product \(\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j\), the norm \(|x| = \sqrt{\langle x, x \rangle}\) and the standard basis \(e_1, \ldots, e_n\) (\(e_j\) has 1 at
\(j\)-th coordinate and 0 elsewhere). We put
\[
1_n = e_1 + \cdots + e_n = (1, \ldots, 1)
\]
to be the vector with all 1s.

2.1. Simplex slicing. We let
\[
\Delta_n = \text{conv}\{e_1, \ldots, e_{n+1}\} = \left\{x \in \mathbb{R}^{n+1}, \sum_{j=1}^{n+1} x_j = 1, x_1, \ldots, x_{n+1} \geq 0\right\}
\]
be the \(n\)-dimensional regular simplex embedded in the hyperplane \(\frac{1}{n+1} 1_{n+1} + 1_{n+1}^\perp\) in \(\mathbb{R}^{n+1}\). We are interested in the volume of central hyperplane sections of \(\Delta_n\) of
codimension 1, that is \((n-1)\)-dimensional sections passing through the barycentre
\(\frac{1}{n+1} 1_{n+1}\) of \(\Delta_n\). Every such section is conveniently represented as \(\Delta_n \cap a^\perp\), as \(a\) ranges over all unit vectors in \(\mathbb{R}^{n+1}\) orthogonal to \(1_{n+1}\), so with \(\sum a_j = 0\). Using
homogeneity of volume, we have the following probabilistic representation for the
volume of slices,
\[
\text{vol}_{n-1}(\Delta_n \cap a^\perp) = \frac{\sqrt{n+1}}{(n-1)!} p_a(0), \quad |a| = 1, \sum a_j = 0.
\]
Here and throughout,
\[p_a\] is the probability density of \(\sum_{j=1}^{n+1} a_j X_j\),
where X_1, \ldots, X_{n+1} are i.i.d. standard exponential random variables (with density $e^{-x}1_{(0,\infty)}(x)$ on \mathbb{R}). For derivation, see Webb’s paper [39], where he proved the following sharp upper bound on the volume of central slices

$$p_a(0) \leq \frac{1}{\sqrt{2}}$$

with equality if and only if $a = \frac{e_j - e_k}{\sqrt{2}}$ for some $j \neq k$ (corresponding to the hyperplanes containing all but two vertices of Δ_n). We obtain a refinement with optimal behaviour near the extremisers.

Theorem 1. Let $a = (a_1, \ldots, a_{n+1})$ be a unit vector in \mathbb{R}^{n+1} with $\sum a_j = 0$ and $a_1 \geq a_2 \geq \cdots \geq a_{n+1}$. Set

$$\delta(a) = \left| a - \frac{e_1 - e_{n+1}}{\sqrt{2}} \right|^2.$$

Then

$$p_a(0) \leq \frac{1}{\sqrt{2}} - \left\{ \begin{array}{ll} \frac{1}{100} \sqrt{\delta(a)}, & \delta(a) \leq \frac{1}{2000}, \\ 2\sqrt{2} \cdot 10^{-5}, & \delta(a) > \frac{1}{2000}. \end{array} \right.$$

In particular, since $\sqrt{\delta(a)} \leq \sqrt{2}$, we have $p_a(0) \leq \frac{1}{\sqrt{2}} - 2 \cdot 10^{-5} \sqrt{\delta(a)}$, for every unit vector a as in Theorem 1.

As for the stability of cube slicing (see (5) in [13]), the deficit term is of the linear order in the Euclidean distance $\sqrt{\delta(a)}$ to the extremiser. The proof however is quite different for a fundamental reason: whilst for the cube there is a curious probabilistic formula for sections (in terms of negative moments, see e.g. (1) in [12]) driving the main bootstrapping/self-improving argument, for the simplex, we have not been able to find a good analogue of such a formula, perhaps for the lack of symmetry (one may write a negative moment formula using Lemma 39 from [35], but it is not clear how to “evaluate” or efficiently work with the limit). As a result, we have had to settle with working with (1). Our proof combines several ad hoc arguments leveraging the exponential distribution as well as a solution to one rather standard optimisation problem over all probability densities on \mathbb{R} with L_∞ norm constrained. Webb gave in fact two completely different proofs of his upper bound (2): one Fourier-analytic and one relying solely on log-concavity. We crucially need to incorporate improvements coming from both approaches, depending on a shape of the outer-normal vector a.

3
We can check that the deficit term \(\Theta(\sqrt{\delta(a)}) \) is optimal by looking at the case \(n = 2 \): if for instance we consider for small \(\epsilon > 0 \), sections by \(a(\epsilon) = \sqrt{1 - \frac{\epsilon}{2}} e_1 - \frac{\epsilon}{2} e_2 \sqrt{2} + \sqrt{\epsilon} e_1 + \epsilon e_2 - 2e_3 \sqrt{3} \), we get \(\delta(a(\epsilon)) = \Theta(\epsilon) \) and \(p_{a(\epsilon)}(0) = 1 - \Theta(\sqrt{\epsilon}) \).

Within our method, we do not strive to derive best possible numerical values of the involved constants, giving priority to clarity of our arguments.

2.2. Lipschitzness. In the proof of the stability of cube slicing from [13], it was useful to know that the section function \(a \mapsto \text{vol}_{n-1}([-\frac{1}{2}, \frac{1}{2}]^n \cap a^\perp) \) is Lipschitz on the unit sphere \(S^{n-1} \) in \(\mathbb{R}^n \) (as a consequence of Busemann’s theorem that requires the symmetry of the set). For a symmetric convex body \(K \), the estimate on the Lipschitz constant of the function \(E \mapsto \text{vol}_{n-\ell}(K \cap E^\perp) \) where \(E \) is an \(\ell \)-dimensional linear subspace is also known (see, for example, Proposition 2.3 in [1]). Investigating the stability of simplex slicing, we got naturally curious whether such property continues to hold for the simplex, or more generally for all convex bodies. It turns out that the answer is affirmative and is well-known to the experts in the field. As we have not found any specific reference for the non-symmetric case, we include a straightforward argument which relies on a functional version of Busemann’s theorem (which in fact holds without symmetry/evenness assumptions) and application of the Grünbaum-type result.

We recall that a convex body in \(\mathbb{R}^n \) is a compact convex set with nonempty interior. A convex body \(K \) in \(\mathbb{R}^n \) is called centred if its barycentre, \(\text{bar}(K) = \frac{1}{\text{vol}_{n-1}(K)} \int_K x \, dx \) is at the origin. The convex body \(K \) is called isotropic if it has volume 1, is centred and its moment of inertia matrix is proportional to the identity,

\[
\left[\int_K x_i x_j \, dx \right]_{i,j \leq n} = L_K^2 I_{n \times n},
\]

for a positive constant \(L_K \) referred to as the isotropic constant of \(K \).

A nonnegative function \(f \) on \(\mathbb{R}^\ell \) is called log-concave if \(f = e^{-V} \) for a convex function \(V: \mathbb{R}^\ell \to (-\infty, +\infty] \). It is a probability density if \(\int_{\mathbb{R}^\ell} f = 1 \) and then it is called centred if \(\int_{\mathbb{R}^\ell} x f(x) \, dx = 0 \). The log-concave probability density \(f \) is called isotropic if it is centred and its covariance matrix is the identity, \(\int_{\mathbb{R}^\ell} x_i x_j f(x) \, dx = \delta_{ij} \). Then its isotropic constant is defined to be \(\|f\|_{\infty}^{1/\ell} \). The central problem in asymptotic convex geometry is to estimate the following quantity

\[
\mathcal{C}_\ell = \sup \|f\|_{\infty}^{1/\ell},
\]

where the supremum is taken over all log-concave isotropic probability density functions \(f \) on \(\mathbb{R}^\ell \). For comprehensive background, consult for instance Chapter
2 in [9]. The best result up to date that \(C_\ell = O(\sqrt{\log \ell}) \) is due to Klartag and Bourgain’s slicing conjecture asks whether in fact \(C_\ell = O(1) \), see [28].

For two subspaces \(E, F \) in \(\mathbb{R}^n \) of the same dimension, we use the distance
\[
d(E, F) = \| P_E - P_F \|_{HS},
\]
given by the Hilbert-Schmidt norm \(\| P_E - P_F \|_{HS} \) of the difference between the orthogonal projection operators \(P_E \) and \(P_F \) onto \(E \) and \(F \) respectively.

Theorem 2. Let \(K \) be an isotropic convex body in \(\mathbb{R}^n \). Let \(1 \leq \ell < n \). For every \(\ell \)-dimensional subspaces \(E, F \) in \(\mathbb{R}^n \), we have
\[
\left| \mathrm{vol}_{n-\ell}(K \cap E^\perp) - \mathrm{vol}_{n-\ell}(K \cap F^\perp) \right| \leq e^{5\ell} \frac{C^{2\ell}}{\ell L_K} d(E, F).
\]

Remark 3. It is well-known that for every isotropic convex body \(K \) and the Euclidean ball \(B \) of unit volume, \(L_K \geq L_B \geq \frac{1}{12} \) (see for instance Lemma 6 in [3]).

3. **Proof of simplex slicing: Theorem 1**

3.1. **Auxiliary results.** We begin with recording several elementary observations. By a standard exponential random variable, we mean a real-valued random variable with density \(e^{-x} \mathbf{1}_{(0, \infty)}(x) \) on \(\mathbb{R} \).

Lemma 4. Let \(X, Y \) be i.i.d. standard exponential random variables, let \(a, b > 0 \). Then \(aX - bY \) has density
\[
g_{a,b}(x) = \frac{1}{a+b} \left(e^{-x/a} \mathbf{1}_{x \geq 0} + e^{x/b} \mathbf{1}_{x < 0} \right).
\]

Proof. The densities of \(aX \) and \(-bY \) are \(\frac{1}{a}e^{-x/a} \mathbf{1}_{x > 0} \) and \(\frac{1}{b}e^{-b} \mathbf{1}_{x < 0} \), respectively. By independence, the density is given by convolution, so for \(x \geq 0 \), we have
\[
g_{a,b}(x) = \frac{1}{ab} \int_x^\infty e^{-t/a} e^{(x-t)/b} dt = \frac{1}{ab} e^{x/b} \frac{1}{1/a + 1/b} e^{-(1/a+1/b)x} = \frac{1}{a+b} e^{-x/a}.
\]
For \(x < 0 \), we proceed similarly. \(\square \)

Lemma 5. Let \(X, Y \) be i.i.d. standard exponential random variables, let \(a, b > 0 \). Then \(aX + bY \) has density on \(\mathbb{R} \) uniformly upper bounded by \(\frac{1}{e} \frac{1}{\min(a,b)} \).
Proof. Without loss of generality, we assume that \(a < b\). The random variable \(aX + bY\) is positive a.s. and at \(x > 0\) has density
\[
\int_0^x \frac{1}{ab} e^{-t/a-(x-t)/b} \, dt = \frac{1}{ab} e^{-x/b} \int_0^x e^{-t(1/a-1/b)} \, dt \leq \frac{1}{ab} e^{-x/b} \int_0^x \frac{x}{a} e^{-x/b} \, dt = \frac{x}{a} e^{-x/b}.
\]
The standard inequality \(ye^{-y} \leq e^{-1}, y \geq 0\), gives the result. \(\square\)

We shall need a solution to a maximisation problem involving integration against densities \(g_{a,b}\).

Lemma 6. Let \(a, b, C > 0\). Let \(g_{a,b}\) be the probability density defined in (6). For every probability density \(f\) on \(\mathbb{R}\) with \(\|f\|_{\infty} \leq C\), we have
\[
\int_{\mathbb{R}} f \cdot g_{a,b} \leq C \left(1 - \exp \left\{ -\frac{1}{C(a + b)} \right\} \right).
\]

Proof. Let \(\alpha, \beta > 0\) be such that \(C(\alpha + \beta) = 1\) and \(\frac{\alpha}{a} = \frac{\beta}{b}\), the second condition being equivalent to \(g_{a,b}(\alpha) = g_{a,b}(\beta)\). Then \(\alpha, \beta\) are uniquely determined in terms of \(a, b, C\), namely
\[
\alpha = \frac{1}{C} \frac{a}{a + b}, \quad \beta = \frac{1}{C} \frac{b}{a + b}.
\]
We consider the uniform density,
\[
f^*(x) = C \mathbf{1}_{[-\beta, \alpha]}(x).
\]
We shall argue that in order to maximise \(\int f g_{a,b}\) subject to \(\|f\|_{\infty} \leq C\), it is beneficial to move mass so that \(f\) becomes \(f^*\). Denote \(m = g_{a,b}(\alpha) = g_{a,b}(\beta)\) and observe that by the monotonicity of \(g_{a,b}\), we have
\[
\min_{[-\beta, \alpha]} g_{a,b} = m = \max_{\mathbb{R} \setminus [-\beta, \alpha]} g_{a,b}.
\]
We break the integral into two bits,
\[
\int_{\mathbb{R}} (f^* - f) g_{a,b} = \int_{[-\beta, \alpha]} (f^* - f) g_{a,b} + \int_{\mathbb{R} \setminus [-\beta, \alpha]} (f^* - f) g_{a,b}.
\]
Note that on \([\beta, \alpha]\), we have \(f^* - f = C - f \geq 0\) and \(g_{a,b} \geq m\), whilst on \(\mathbb{R} \setminus [-\beta, \alpha]\), we have \(f^* - f = -f \leq 0\) and \(g_{a,b} \leq m\). Thus,
\[
\int_{\mathbb{R}} (f^* - f) g_{a,b} \geq \int_{[-\beta, \alpha]} (f^* - f) m + \int_{\mathbb{R} \setminus [-\beta, \alpha]} (f^* - f) m = m \int_{\mathbb{R}} (f^* - f) = 0.
\]
As a result,
\[
\int_{\mathbb{R}} f \cdot g_{a,b} \leq \int_{\mathbb{R}} f^* \cdot g_{a,b} = C \int_{[-\beta, \alpha]} g_{a,b} = C \left(1 - \exp \left\{ -\frac{1}{C(a + b)} \right\} \right),
\]
which finishes the proof. \(\square\)
To employ the previous lemma, we shall use the following sharp bound on L_∞ norms of log-concave densities in terms of their variance.

Lemma 7 (Bobkov-Chistyakov [7], Fradelizi [18]). For a log-concave probability density f on \mathbb{R}, we have

$$\|f\|_\infty \leq \left(\int x^2 f(x) dx - \left(\int x f(x) dx \right)^2 \right)^{-1/2}.$$

Note that this is sharp: the equality holds for a (one-sided) exponential density.

We record for future use the following Fourier-analytic bound (with the main idea going back to [2, 24, 26]).

Lemma 8. For $0 < x < 1$, define

$$\Psi(x) = \frac{\sqrt{2}}{\pi} \int_0^{\infty} \left(1 + xt^2 \right)^{-\frac{1}{2}} dt.$$

Then, with the notation of Theorem 1,

$$p_a(0) \leq \frac{1}{\sqrt{2}} \prod_{j=1}^{n+1} \Psi(a_j^2)^{a_j^2}.$$

Moreover, $\Psi(x)$ is strictly increasing, $\Psi(\frac{1}{2}) = 1$ and

$$\Psi(x) = \frac{1}{\sqrt{2\pi x}} \frac{\Gamma\left(\frac{1}{2x} - \frac{1}{2}\right)}{\Gamma\left(\frac{1}{2x}\right)}.$$

Proof. The inequality follows from the Fourier inversion formula,

$$p_a(0) = \frac{1}{2\pi} \int_{\mathbb{R}} \phi_{\sum a_j X_j} (t) dt,$$

where $\phi_{\sum a_j X_j} (t) = \mathbb{E} e^{it \sum a_j X_j} = \prod_{j} \frac{1}{1 + i a_j t}$ is the characteristic function, and Hölder’s inequality. For details, see Webb’s derivation from [39], pp.23-24. To get the explicit formula for Ψ in terms of the Γ-function, we use a standard change of variables $s = (1 + xt^2)^{-1}$ to reduce the integral to the B-function.

To see about monotonicity, observe that for every fixed $t > 0$, the integrand $(1 + xt^2)^{-\frac{1}{2}}$ is strictly increasing as a function of x: for instance, we check that $(-\frac{1}{x} \log(1 + xt^2))' = \frac{1}{x^2} (\log(1 + xt^2) - \frac{xt^2}{1 + xt^2}) > 0$. \[\Box\]

Finally, we shall also need Webb’s bound relying on log-concavity.
Lemma 9 (Webb, [39], p.25). With the notation of Theorem 1,
\[p_a(0) \leq \frac{1}{2 \max\{a_1, |a_{n+1}|\}}. \]

3.2. Proof of Theorem 1. Throughout, we assume that \(a \) is a unit vector in \(\mathbb{R}^{n+1} \) with \(\sum a_j = 0 \) and \(a_1 \geq \cdots \geq a_l > 0 > a_{l+1} \geq \cdots \geq a_{n+1} \).

We let \(u = a_1, \quad v = -a_{n+1} \), as they play a prominent role in the ensuing analysis. Recall definition (3),
\[\delta = \delta(a) = \left| a - \frac{e_1 - e_{n+1}}{\sqrt{2}} \right|^2 = \left| u - \frac{1}{\sqrt{2}} \right|^2 + \left| v - \frac{1}{\sqrt{2}} \right|^2 + \sum_{j=2}^{n} a_j^2 = 2 - \sqrt{2}(u + v). \]

When \(n = 1, u = v = \frac{1}{\sqrt{2}} \) and \(\delta(a) = 0 \), we plainly have equality in (4) and there is nothing to prove. We shall now assume that \(n \geq 2 \) and break the proof into two main cases, depending on whether \(\delta(a) \) is small or bounded away from 0 by a constant.

3.3. Stability near the maximiser: \(\delta(a) \leq \frac{1}{2000} \). Our goal in this part is to show
\[p_a(0) \leq \frac{1}{\sqrt{2}^2} - \frac{1}{10} \sqrt{\delta(a)}. \]

With hindsight, we define the parameter
\[\sigma = \sqrt{1 - u^2 - v^2} \]
and we need two different arguments depending on whether \(\sigma \) is large relative to \(\sqrt{\delta} \) or not.

Case 1: \(\sigma \geq \frac{1}{\sqrt{2}} \sqrt{\delta} \). We split the sum \(S = \sum_{j=1}^{n+1} a_j X_j \) up into two pieces,
\[S = X - Y, \quad X = uX_1 - vX_{n+1}, \quad Y = - \sum_{j=2}^{n} a_j X_j \]
and let \(f_X, f_Y \) be the densities of \(X \) and \(Y \), respectively. By the independence of \(X \) and \(Y \), \(p_a \), the density of \(S \), is the convolution of \(f_X(\cdot) \) and \(f_Y(-\cdot) \). In particular,
\[p_a(0) = \int_{\mathbb{R}} f_X \cdot f_Y. \]
Note that \(\text{Var}(Y) = \sum_{j=2}^{n} a_j^2 = 1 - u^2 - v^2 = \sigma^2 \). Consequently, by Lemma 7 (\(Y \) is log-concave as a sum of independent log-concave random variables), \(||f_Y||_{\infty} \leq \frac{1}{\sigma} \).
By Lemma 4, \(f_X = g_{u,v} \), so Lemma 6 with \(C = \frac{1}{\sigma} \) gives

\[
p_a(0) \leq \frac{1}{\sigma} \left(1 - \exp \left\{ -\frac{\sigma}{u+v} \right\} \right).
\]

By the monotonicity of slopes of the concave function \(x \mapsto 1 - e^{-x} \), the function \(\frac{1 - e^{-x}}{x} \) is decreasing on \((0, \infty)\), so is the right hand side above as a function of \(\sigma \).

Thus, using the assumed bound \(\sigma \geq \sqrt{\delta/2} \), we get

\[
p_a(0) \leq \frac{1}{\sqrt{\delta/2}} \left(1 - \exp \left\{ -\frac{\sqrt{\delta/2}}{u+v} \right\} \right).
\]

Recall \(u+v = \frac{2-\delta}{\sqrt{2}} \). Note that for \(0 \leq y \leq 1 \), we clearly have \(1 - e^{-y} \leq y - \frac{y^2}{3} \leq y - \frac{y^2}{4} \), which applied to \(y = \frac{\sqrt{\delta/2}}{u+v} = \frac{\sqrt{\delta/2}}{\sqrt{2} - \delta/\sqrt{2}} < 1 \) yields

\[
p_a(0) \leq \frac{1}{u+v} - \frac{1}{3(u+v)^2}.
\]

Using in the first term, \(\frac{1}{u+v} = \frac{1}{\sqrt{2} - \delta/\sqrt{2}} < \frac{1}{\sqrt{2}} + \frac{\delta}{\sqrt{2}} \) (the left hand side is convex in \(\delta \), the right hand side is linear and they agree at \(\delta = 0 \) and \(\delta = 1 \)), whereas in the second term, crudely, \(u+v < \sqrt{2} \), we arrive at

\[
p_a(0) \leq \frac{1}{\sqrt{2}} + \frac{\delta}{\sqrt{2}} - \frac{\sqrt{\delta}}{6\sqrt{2}} < \frac{1}{\sqrt{2}} - \frac{1}{10} \sqrt{\delta},
\]

as long as \(\delta < \left(\frac{1}{6} - \frac{\sqrt{7}}{10} \right)^2 = 0.00063... \) This concludes the argument for Case 1.

Case 2: \(\sigma < \frac{1}{\sqrt{2}} \sqrt{\delta} \). Without loss of generality, we can assume that \(u \geq v \) (by changing \(a \) to \(-a \), if necessary, which leaves \(p_a(0) \) unchanged). By Lemma 9,

\[
p_a(0) \leq \frac{1}{2u}.
\]

We shall argue that this is at most the desired \(\frac{1}{\sqrt{2}} - \frac{1}{10} \sqrt{\delta} \). It is convenient to work with new rotated (nonnegative) variables \(s = \frac{u+v}{\sqrt{2}} \) and \(t = \frac{u-v}{\sqrt{2}} \), so that \(s^2 + t^2 = u^2 + v^2 \). Then, the imposed constraint \(\sigma < \frac{1}{\sqrt{2}} \sqrt{\delta} \) becomes

\[
1 - s^2 - t^2 < \frac{1}{2} \sqrt{\delta} = 1 - s.
\]

This gives the lower bound \(t > \sqrt{s(1-s)} \). Consequently,

\[
p_a(0) \leq \frac{1}{2u} = \frac{1}{\sqrt{2}(s+t)} < \frac{1}{\sqrt{2}(s + \sqrt{s(1-s)})}.
\]

Finally, observe that

\[
s + \sqrt{s(1-s)} = 1 - \frac{\delta}{2} + \sqrt{\frac{1}{2} \left(1 - \frac{\delta}{2} \right)} > 1 + \frac{\sqrt{2}}{2},
\]
as $\delta \leq \frac{1}{2000}$, so in this range,

$$p_a(0) < \frac{1}{\sqrt{2}(1 + \sqrt{\delta}/2)} \leq \frac{1}{\sqrt{2}} - \frac{\sqrt{\delta}}{10},$$

where the last inequality can be quickly verified by evaluating it only at $\delta = 0$ and another end-point, say $\delta = 1$ (using that the left hand side is convex in $\sqrt{\delta}$, whereas the right hand side is linear).

In either case, we have obtained $p_a(0) \leq \frac{1}{\sqrt{2}} - \frac{1}{10} \sqrt{\delta}$.

3.4. **Stability away from the maximiser**: $\delta(a) > \frac{1}{2000}$. Our goal here is to show a constant factor improvement,

(7)
$$p_a(0) \leq \frac{1 - 4 \cdot 10^{-5}}{\sqrt{2}}.$$

As before, we can assume that $u \geq v$. In particular,

$$v \leq \frac{1}{2} (u + v) = \frac{1}{2} \left(\sqrt{2} - \delta(a)/\sqrt{2} \right) < \frac{1 - \frac{1}{2000}}{\sqrt{2}},$$

and since $a_{n+1} = -v$ is the smallest (negative) weight, we also have for each j,

(8)
$$a_j \geq -v \geq -1 - \frac{1}{2000} \sqrt{2}.$$

We fix a small positive constant $\eta < \frac{1}{2}$ (specified soon) and use different arguments depending on the value of u.

*Case 1: $u \leq \sqrt{\frac{1}{2} + \eta}$. There is a further dichotomy in our argument: if all weights a_j have magnitudes bounded away from $\frac{1}{\sqrt{2}}$ (the negative weights do, by (8)), we employ the Fourier-analytic bound from Lemma 8, otherwise, there is a positive weight a_k close to $\frac{1}{\sqrt{2}}$, we can pair up its summand a_kX_k with a_1X_1 and get a good bound from Lemma 5. Specifically, we proceed as follows.

*Case 1.1: $a_j \leq 1 - \frac{1}{2000} \sqrt{2}$, for all $j > 1$. Let $m = \max_{j>1} |a_j|$. By virtue of (8), we have $m \leq \frac{1 - \frac{1}{2000}}{\sqrt{2}}$. Lemma 8 yields

$$\sqrt{2}p_a(0) \leq \Psi(u^2)^{u^2} \prod_{j>1} \Psi(a_j^2)^{a_j^2} \leq \Psi (u^2)^{u^2} \Psi (m^2)^{\sum_{j>1} a_j^2}$$

$$= \Psi (u^2)^{u^2} \Psi (m^2)^{1-u^2}$$

$$\leq \Psi \left(\frac{1}{2} + \eta \right)^{u^2} \Psi (m^2)^{1-u^2},$$
using also the monotonicity of \(\Psi \). Since \(\Psi \left(\frac{1}{2} + \eta \right) > 1 \) and \(\Psi(m^2) < 1 \), the right hand side is increasing in \(u^2 \), so we get a further upper bound by replacing it with \(\frac{1}{2} + \eta \),

\[
\sqrt{2} p_a(0) \leq \Psi \left(\frac{1}{2} + \eta \right) \frac{1}{2} + \eta \Psi (m^2)^{\frac{1}{2} - \eta} \leq \Psi \left(\frac{1}{2} + \eta \right) \frac{1}{2} + \eta \Psi \left(\frac{1}{2} - \frac{1}{8000} \right)^{\frac{1}{2} - \eta}.
\]

Using the explicit form of \(\Psi \) from Lemma 8, it can be checked numerically that the right hand side is less than \(1 - 5 \cdot 10^{-5} \) for \(\eta = 5 \cdot 10^{-5} \). This gives (7).

Case 1.2: \(a_k > \frac{1 - \frac{1}{\sqrt{2}}}{\sqrt{2}} \), for some \(k > 1 \). We split the sum \(S = \sum_{j=1}^{n+1} a_j X_j \) as

\[
S = X + Y, \quad X = a_1 X_1 + a_k X_k, \quad Y = \sum_{j > 1, j \neq k} a_j X_j,
\]

Let \(f_X \) and \(f_Y \) be the densities of \(X \) and \(Y \), respectively. By Hölder’s inequality and Lemma 5, we obtain

\[
p_a(0) = (f_X * f_Y)(0) \leq \|f_X\|_\infty \|f_Y\|_1 = \|f_X\|_\infty \leq \frac{1}{e \min\{a_1, a_k\}} = \frac{1}{e a_k},
\]

where \(f_X * f_Y \) denotes the convolution of \(f_X \) and \(f_Y \). The bound \(a_k > \frac{1 - \frac{1}{\sqrt{2}}}{\sqrt{2}} \) gives (7) with a generous margin.

Case 2: \(u > \sqrt{\frac{1}{2} + \eta} \). Readily, by Lemma 9,

\[
p_a(0) \leq \frac{1}{2u} < \frac{1}{\sqrt{2 + 4\eta}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1 + 10^{-4}}} < \frac{1 - 4 \cdot 10^{-5}}{\sqrt{2}},
\]

which gives (7) and finishes the proof.

4. Proof of Lipschitzness: Theorem 2

4.1. Auxiliary results.** We begin by recalling three results. The first one is a well-known fact that sections of isotropic convex bodies are roughly constant (going back to Hensley, [27]).

Lemma 10. Let \(1 \leq \ell < n \). Let \(K \) be an isotropic convex body in \(\mathbb{R}^n \). For every codimension \(\ell \) subspace \(E \) in \(\mathbb{R}^n \), we have

\[
\frac{1}{\sqrt{2\pi e^3}} \frac{1}{L_K} \leq \text{vol}_{n-\ell}(K \cap E)^{1/\ell} \leq \frac{c_\ell}{L_K},
\]

Constant \(c_\ell \) is defined in (5).

Proof. To sketch a standard argument, consider \(f(x) = \text{vol}_{n-\ell}(K \cap (x + E)) \), \(x \in E^\perp \), which defines a log-concave probability density on \(E^\perp \simeq \mathbb{R}^\ell \) with mean 0 and
covariance matrix $L_K^2 I$, since K is isotropic. Then $\tilde{f}(x) = L_K^t f(L_K x)$ is isotropic and the upper bound follows from the definition of C^t, $\text{vol}_{n-t}(K \cap E) = f(0) = L_K^{-t} \tilde{f}(0) \leq L_K^{-t} \|\tilde{f}\|_\infty \leq L_K^{-t} C^t$. The lower bound follows from the folklore result that for an arbitrary probability density g on \mathbb{R}^ℓ with $\int_{\mathbb{R}^\ell} |x|^2 g(x) dx = \ell$, we have $\|g\|_\infty \geq \frac{1}{(\ell + 2)^{\ell/2}} \text{vol}(B^\ell_2)$ (by a standard comparison argument with the uniform distribution on a Euclidean ball, see e.g. Lemma 6 in [3]). Moreover, for a log-concave density with mean 0, $\|f\|_\infty \leq e^{\ell} f(0)$ (see, e.g. Fradelizi’s work [18]). Combining the two bounds yields the lower bound.

The second result we shall need is a functional version of Busemann’s theorem from [11], essentially due to Ball (who however assumed symmetry).

Theorem 11 (Ball, [3]). Let $f: \mathbb{R}^\ell \to [0, +\infty)$ be a log-concave function satisfying $0 < \int_{\mathbb{R}^\ell} f < \infty$. Define

$$N(x) = \frac{1}{\int_0^\infty f(tx) dt}, \quad x \in \mathbb{R}^\ell, \ x \neq 0,$$

extended with $N(0) = 0$. Then N satisfies, $0 < N(x) < \infty$ and $N(\lambda x) = \lambda N(x)$ for all $x \neq 0, \lambda > 0$, as well as $N(x + y) \leq N(x) + N(y)$, for all $x, y \in \mathbb{R}^\ell$.

Ball stated this result with the additional assumption on f being even, in which case N is in fact a norm, but it is implicit in his proof that the above holds as well (see also Theorem 2.1 and Remark 2.6 in [6], as well as Theorem 3.1 in [14]).

Finally, we shall need an estimate on the proportion of mass of centred log-concave functions retained on half-lines.

Theorem 12 (Meyer-Nazarov-Ryabogin-Yaskin, [32]). Let $f: \mathbb{R}^\ell \to [0, +\infty)$ be a log-concave function satisfying $0 < \int_{\mathbb{R}^\ell} f < \infty$ and $\int_{\mathbb{R}^\ell} x f(x) dx = 0$. Then for every unit vector θ in \mathbb{R}^ℓ, we have

$$\int_0^\infty f(t\theta) dt \geq e^{-\ell} \int_{-\infty}^\infty f(t\theta) dt.$$

The case $\ell = 1$ is the classical Grünbaum lemma originating in [23]. Interestingly, constant $e^{-\ell}$ is sharp. For further generalisations and extensions, including sharp estimates for sections of convex bodies, see [34].

4.2. **Proof of Theorem 2.** We follow closely [1] which assumes the symmetry of K, so we treat in detail only those parts of the argument thanks to which we can omit the symmetry assumption.
Case 1: $F^\perp \cap E = \{0\}$. There is an orthonormal basis $(u_j)_{j=1}^\ell$ of E such that $v_j = \frac{P_F(u_j)}{|P_F(u_j)|}$, $j \leq \ell$, form an orthonormal basis of F (Lemma 4.1 in [20]). Then $\langle u_i, v_j \rangle = |P_F(u_i)| \delta_{ij}$. The idea is to bound the sections swapping one basis vector at a time, that is we consider the sequence of subspaces

$$E_0 = \text{span}\{u_1, u_2, u_3, \ldots, u_{\ell}\},$$
$$E_1 = \text{span}\{v_1, u_2, u_3, \ldots, u_{\ell}\},$$
$$E_2 = \text{span}\{v_1, v_2, u_3, \ldots, u_{\ell}\},$$
$$\ldots$$
$$E_\ell = \text{span}\{v_1, v_2, v_3, \ldots, v_{\ell}\},$$

so that $E = E_0$, $F = E_\ell$, and plainly,

$$|\text{vol}_{n-\ell}(K \cap E_\perp) - \text{vol}_{n-\ell}(K \cap F_\perp)| \leq \sum_{j=1}^\ell |\text{vol}_{n-\ell}(K \cap E_j^\perp) - \text{vol}_{n-\ell}(K \cap E_{j-1}^\perp)|.$$

We fix $j \leq \ell$ and bound the j-th term. By the construction of the bases (u_i) and (v_i), the subspaces E_{j-1}^\perp and E_j^\perp are of the form $E_\perp + a$ and $E_\perp + b$ with $E = E_{j-1}^\perp \cap E_j^\perp = E_j^\perp \cap u_j^\perp$ and $a = P_{E_{j-1}^\perp}(v_j)$, $b = -P_{E_j^\perp}(u_j)$. Then, $\lambda = |a| = |b| = \sqrt{1 - \langle u_j, v_j \rangle^2}$. We define functions on E_\perp,

$$f(x) = \text{vol}_{n-\ell-1}(K \cap (x + E)), \quad x \in E_\perp$$

and

$$N_+(x) = \frac{1}{\int_0^\infty f(tx)dt}, \quad N_-(x) = \frac{1}{\int_{-\infty}^0 f(tx)dt}, \quad x \in E_\perp, x \neq 0,$$

both extended by 0 at 0. They allow us to avoid assuming that K is symmetric. By Theorem 11, each N_\pm satisfies the triangle inequality on E_\perp. Introducing the normalised vectors, $\tilde{a} = \lambda^{-1} a$, $\tilde{b} = \lambda^{-1} b$, we have,

$$|\text{vol}_{n-\ell}(K \cap E_j^\perp) - \text{vol}_{n-\ell}(K \cap E_{j-1}^\perp)| = \frac{1}{N_+(\tilde{a})} + \frac{1}{N_-(\tilde{a})} - \frac{1}{N_+(\tilde{b})} - \frac{1}{N_-(\tilde{b})} \leq \left| \frac{1}{N_+(\tilde{a})} - \frac{1}{N_+(\tilde{b})} \right| + \left| \frac{1}{N_-(\tilde{a})} - \frac{1}{N_-(\tilde{b})} \right|.$$

Moreover,

$$|N_\pm(\tilde{a})^{-1} - N_\pm(\tilde{b})^{-1}| = \left| \frac{N_\pm(\tilde{a}) - N_\pm(\tilde{b})}{N_\pm(\tilde{a}) N_\pm(\tilde{b})} \right|.$$

By the triangle inequality,

$$-N_\pm(\tilde{b} - \tilde{a}) \leq N_\pm(\tilde{a}) - N_\pm(\tilde{b}) \leq N_\pm(\tilde{a} - \tilde{b}).$$
As a result,

\[|N_\pm(\tilde{a})^{-1} - N_\pm(\tilde{b})^{-1}| \leq \frac{\max\left\{ N_\pm\left(\frac{\tilde{a} - \tilde{b}}{|\tilde{a} - \tilde{b}|}\right), N_\pm\left(\frac{\tilde{b} - \tilde{a}}{|\tilde{a} - \tilde{b}|}\right)\right\}}{N_\pm(\tilde{a})N_\pm(\tilde{b})} \lambda^{-1}|a - b|, \]

using homogeneity and \(|\tilde{a} - \tilde{b}| = \lambda^{-1}|a - b| \). Also, \(|a - b| = \sqrt{1 - \langle u_j, v_j \rangle^2}|u_j - v_j| \), we obtain

\[\lambda^{-1}|a - b| = |u_j - v_j|. \]

It remains to upper and lower bound \(N_\pm(\theta) \) for an arbitrary unit vector \(\theta \) in \(\tilde{E}^\perp \).

We shall do it for \(N_+ \) and of course the argument for \(N_- \) is identical (by changing \(f(\cdot) \) to \(f(-\cdot) \)). By Theorem 12,

\[\frac{1}{\int_{-\infty}^{\infty} f(\theta)\,dt} \leq N_+(\theta) \leq \frac{e^{\ell+1}}{\int_{-\infty}^{\infty} f(\theta)\,dt}. \]

Moreover, \(\int_{-\infty}^{\infty} f(\theta)\,dt = \text{vol}_{n-\ell}(K \cap (\tilde{E} \oplus \theta)) \), so Lemma 10 yields

\[\mathcal{E}_{\ell} L_K^\ell \leq N_+(\theta) \leq e^{\ell+1}(2\pi e^3)^{\ell/2} L_K^\ell. \]

Putting everything together, we obtain

\[|N_\pm(\tilde{a})^{-1} - N_\pm(\tilde{b})^{-1}| \leq (2\pi)^{\ell/2} e^{5\ell/2 + 1} \frac{\mathcal{E}_{\ell}^2 L_K}{d(E,F)} |u_j - v_j|. \]

Hence, by the Cauchy-Schwarz inequality and a basic estimate \(\sqrt{\sum_{j=1}^\ell |u_j - v_j|^2} \leq \sqrt{2} \cdot d(E,F) \) (see Proposition 2.2 in [1]),

\[|\text{vol}_{n-\ell}(K \cap E^\perp) - \text{vol}_{n-\ell}(K \cap F^\perp)| \leq \sqrt{2}\ell(2\pi)^{\ell/2} e^{5\ell/2 + 1} \frac{\mathcal{E}_{\ell}^2 L_K}{d(E,F)} \]

\[\leq e^{5\ell} \frac{\mathcal{E}_{\ell}^2 L_K}{d(E,F)}. \]

Case 2: \(E' = F^\perp \cap E \neq \{0\} \). Then we have \(E = E' \oplus E'' \) with \(F^\perp \cap E'' = \{0\} \). We choose an orthonormal basis of \(E'' \) as in Case 1, say \((u_i)_{i=1}^k \), which gives an orthonormal system \(v_i = P_E(u_i) / |P_E(u_i)| \) in \(F \). We complement it to an orthonormal basis \((v_i)_{i=1}^\ell \) of \(E \). We also complement \((u_i)_{i=1}^k \) to an orthonormal basis \((u_i)_{i=1}^\ell \) of \(E \). Note that \(\text{span}\{u_i, k < i \leq \ell\} \) and \(\text{span}\{v_i, k < i \leq \ell\} \) are orthogonal. Swapping the \(u_i \) by \(v_i \), we then define the chain of subspaces \(E = E_0, E_1, \ldots, E_\ell = F \) as in Case 1 and proceed exactly as therein to bound \(\text{vol}_{n-\ell}(K \cap E_j^\perp) - \text{vol}_{n-\ell}(K \cap E_{j-1}^\perp) \). Bounding the terms \(j \leq k \) is unchanged, whereas for the terms \(j > k \), calculations are even simpler because then \(u_j \) and \(v_j \) are orthogonal.
Acknowledgments. We should very much like to thank Giorgos Chasapis and Grigoris Paouris for their comments. We appreciate the hospitality and excellent working conditions at the Hausdorff Research Institute for Mathematics in Bonn during the programme “Synergies between modern probability, geometric analysis and stochastic geometry”.

References

(SM) **University of the Fraser Valley, Abbotsford, BC, Canada.**

(KT) **University of Waterloo, Waterloo, ON, Canada.**

(CT & TT) **Carnegie Mellon University; Pittsburgh, PA 15213, USA.**

Email address: ttkocz@math.cmu.edu