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Abstract

In this paper we prove the S-inequality for certain product prob-
ability measures and ideals in Rn. As a result, for the Weibull and
Gamma product distributions we derive concentration of measure type
estimates as well as optimal comparison of moments.
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1 Introduction

The standard Gaussian measure γn on Rn has been thoroughly studied in a
context of dilations of convex and symmetric sets (see [1, 4]). For example,
it is known that for such a set K in Rn we have the estimate

γn(tK) ≥ γn(tP ), t ≥ 1,

where the set P = {x ∈ Rn, |x1| ≤ p} is a strip chosen so that γn(P ) =
γn(K). This result is due to R. Lata la and K. Oleszkiewicz [4] and it is
called the S-inequality. A natural task is to find other examples of measures
for which this type of bounds hold. It was conjectured in [3, Conjecture 5.1]
that the S-inequality holds for rotation-invariant measures whose densities
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are nonincreasing on half lines through the origin. This has been verified in
dimensions lower than or equal to 3 (see [7]).

Besides the Gaussian measure, S-inequality is known to hold for the expo-
nential measure. Loosely speaking, in [6] it has been obtained as a by-product
of the proof that for the measure dνn(x) = (1/2n)e−|x1|−...−|xn|dx in Rn among
the sets which are unions of coordinate parallelepipeds, coordinate-wise sym-
metric (called ideals, see Section 2 for a proper definition) and which have
a fixed measure, the strips have the minimal measure of dilation. The aim
of the present paper is to extend this result for the measures νnp on Rn with
densities

dνnp (x) = (cp/2)ne−|x|
p
pdx, x ∈ Rn, (1)

where we denote |(x1, . . . , xn)|p = (
∑
|xi|p)1/p and cp = 1/Γ(1 + 1/p) is a

normalization constant.
Proving Lata la’s conjecture or at least providing other examples of mea-

sures supporting S-inequality still seems to be a challenge. It is worth recall-
ing that some work has been done in the complex case. One considers the
Gaussian measure dµn(z) = [1/(2π)n] e−|z1|

2−...−|zn|2
∏n

j=1 dRezjdImzj on Cn

and asks whether

µn(K) = µn(C) =⇒ µn(tK) ≥ µn(tP ), t ≥ 1, (2)

for all convex circled sets K ⊂ Cn and all cylinders C = {z ∈ Cn, |z1| ≤ R}.
(K is circled if z ∈ K implies eitz ∈ K for any z ∈ Cn and real t.) This was
conjectured by A. Pe lczyński and seems to be a natural complex counterpart
of the Lata la-Oleszkiewicz S-inequality. Following the methods from [4],
the author obtained a partial result which says that there exists a universal
constant c > 0.64 such that (2) holds for t ∈ [1, t0] with µn(t0K) = c (see
[8]). Using the inductive argument from [2], the authors showed (2) for
all K which are Reinhardt complete, i.e. they are circled with respect to
each coordinate individually — along with each point (z1, . . . , zn) such a set
contains all points (w1, . . . , wn) for which |wk| ≤ |zk|, k = 1, . . . , n (this is
in fact a complex notion of ideals). Surprisingly, that result implies the real
case of the S-inequality for the exponential measures. See [6] for the details.

In Section 2 we present our main results. Section 3 is devoted to their
proofs.
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2 Results

We begin with a few definitions. For a Borel measure µ on R its product
measure µ ⊗ . . . ⊗ µ = µ⊗n is denoted by µn. We say that such a product
measure µn on Rn supports the S-inequality for a Borel set L ⊂ Rn if for any
its dilation K = sL, s > 0, and any strip P = {x ∈ Rn, |x1| ≤ p} we have

µn(K) = µn(P ) =⇒ µn(tK) ≥ µn(tP ), for t ≥ 1. (3)

If we assume that the function Ψ(x) = µ ([−x, x]) is invertible for x ≥ 0, we
can write (3) as

µn(tK) ≥ Ψ
[
tΨ−1

(
µ(K)

)]
, for t ≥ 1. (4)

A set K ⊂ Rn is called an ideal if along with any its point x ∈ K it contains
the cube [−|x1|, |x1|]× . . .× [−|xn|, |xn|].

Now we are able to state the main result.

Theorem 1. Let p ∈ (0, 1]. Then the measure νnp defined in (1) supports the
S-inequality for all ideals in Rn.

Thanks to simple coordinate-wise transport of measure argument we ob-
tain the following corollary.

Corollary 1. For p ∈ (0, 1] and α > 0 introduce the measure µp,α on R with
density

dµp,α(x) = αcp|x|α−1e−|x|
αp

dx. (5)

Then the product measures µnp,α supports the S-inequality for all ideals in Rn.
In particular, defining for α > 0 and q ≥ 1 on R the symmetric Weibull
measure ωα with the parameter α and the symmetric Gamma measure λq
with the parameter q by

dωα(x) =
1

2
α|x|α−1e−|x|

α

dx, (6)

dλq(x) =
1

2Γ(q)
q|x|q−1e−|x|dx. (7)

we obtain that the product measures ωnα and λnq support the S-inequality for
all ideals in Rn.
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The measures ωnα provide the examples of distributions supporting the
S-inequality and having both log-concave and log-convex tails. Indeed, the
tail function of the Weibull distribution is ωp ({|x| > t}) = e−t

α
which is

log-convex for α ∈ (0, 1) and log-concave for α ∈ (1,∞).
The fact that a measure supports the S-inequality for all ideals yields also

the comparison of moments (see [6, Corollary 2]). Here, the relevant result
reads as follows.

Corollary 2. Let ‖ · ‖ be a norm on Rn which is unconditional, i.e.

‖(ε1x1, . . . , εnxn)‖ = ‖(x1, . . . , xn)‖

for any xj ∈ R and εj ∈ {−1, 1}. Suppose that a product Borel probability
measure µn = µ⊗n supports the S-inequality for all ideals in Rn. Then for
p ≥ q > 0 (∫

Rn
‖x‖pdµn(x)

)1/p

≤ Cp,q

(∫
Rn
‖x‖qdµn(x)

)1/q

, (8)

where the constant

Cp,q =

(∫
R |x|

pdµ(x)
)1/p(∫

R |x|qdµ(x)
)1/q

is the best possible. In particular, we might take µ = νp, ωα, λq, for p ∈ (0, 1],
α > 0, q ≥ 1 (see (1), (6), (7)).

3 Proofs

3.1 Proof of Theorem 1

The theorem is trivial in one dimension. For higher dimensions the strategy
of the proof is to reduce the problem to the two dimensional case where
everything can be computed. This is done in the following proposition.

Proposition 1. Let µ be a Borel probability measure on R. Let µn = µ⊗n

be its product measure on Rn. If µ2 supports S-inequality for all ideals on R2

then for any n ≥ 2 the measure µn supports S-inequality for all ideals on Rn.
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Proof. We proceed by induction on n. Let us fix n ≥ 2 and assume that µn

supports S-inequality for all ideals in Rn. We would like to show that µn+1

supports S-inequality for all ideals in Rn+1. To this end consider an ideal
K ⊂ Rn+1 and set t ≥ 1. Thanks to Fubini’s theorem

µn+1(tK) =

∫
R
µn((tK)x)dµ(x) =

∫
R
µn(tKx/t)dµ(x),

where Ax = {y ∈ Rn, (y, x) ∈ A} is a section of a set A ⊂ Rn+1 at a
level x ∈ R. For a set A let PA denote a strip with a width wA such that
µn(A) = µn(PA). Since the section Kx/t is an ideal in Rn, by the induction
hypothesis we obtain

µn+1(tK) ≥
∫
R
µn
(
tPKx/t

)
dµ(x) =

∫
R
µ
(

[−twKx/t , twKx/t ]
)

dµ(x).

For the simplicity denote the function x 7→ wKx by f . If we put Gf ⊂ R2 to
be an ideal generated by f , i.e. Gf = {(x, y) ∈ R2, |y| ≤ f(x), x ∈ R}, then
its dilation tGf is generated by the function x 7→ tf(x/t). Therefore∫

R
µ
(

[−twKx/t , twKx/t ]
)

dµ(x) = µ2(tGf ).

Yet, µ2(Gf ) = µn+1(K), so taking the strip P = [−w,w]×Rn with the same
measure as K we see that the strip [−w,w]×R has the same measure as Gf .
Now the fact that µ2 supports S-inequality implies µ2(tGf ) ≥ µ2(t([−w,w]×
R)) = µn+1(tP ). Thus we have shown that µn+1(tK) ≥ µn+1(tP ), which
completes the proof.

Thus it suffices to show the theorem when n = 2. Notice that any ideal
K ⊂ R2 can be described by a nonincreasing function f : R+ → R+, namely

K =
{

(x, y) ∈ R2, |y| ≤ f(|x|)
}
.

Fix such a function and take a strip P = {|x1| ≤ w} such that ν2
p(K) =

ν2
p(P ). To prove that ν2

p supports the S-inequality for the ideal K it is
enough to show that (see [6, Proposition 1])

d

dt
ν2
p(tK)

∣∣∣
t=1
≥ d

dt
ν2
p(tP )

∣∣∣
t=1
.
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Let

Mp(K) =

∫
K

(|x|p + |y|p) dν2
p(x, y).

We have

ν2
p(tK) =

c2
p

4

∫
tK

e−(|x|p+|y|p) dxdy =
c2
p

4

∫
K

t2e−t
p(|x|p+|y|p) dxdy,

hence
d

dt
ν2
p(tK)

∣∣∣
t=1

= 2ν2
p(K)− pMp(K).

Therefore we are to prove that Mp(K) ≤ Mp(P ). Define the functions T :
R+ → [0, 1], S : R+ → [0, 1]

T (u) = cp

∫ ∞
u

e−x
p

dx, S(u) = cp

∫ u

0

xpe−x
p

dx

and let µ+ be the probability measure with density cpe
−xp on R+. Note that

S(u) = cp
1

p

∫ u

0

x(−e−xp)′ dx = −cp
p
ue−u

p

+
1

p
(1− T (u)).

Thus S(∞) = 1/p. We have

Mp(K) = c2
p

∫ ∞
0

∫ f(x)

0

(xp + yp)e−x
p−yp dy dx

= cp

∫ ∞
0

xpe−x
p

(1− T (f(x))) dx+ cp

∫ ∞
0

S(f(x))e−x
p

dx

=
1

p
−
∫ ∞

0

xpT (f(x)) dµ+(x) +

∫ ∞
0

S(f(x)) dµ+(x).

To compute Mp(P ), it is enough to take f(x) = ∞ for x < w and f(x) = 0
for x ≥ w in the above computations, we obtain∫

P

(|x|p + |y|p) dν2
p(x, y) =

1

p
−
(

1

p
− S(w)

)
+

1

p
(1− T (w))

=
1

p
+ S(w)− 1

p
T (w).
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Let Φ : [0, 1] → R, Φ = S ◦ T−1 and g : R+ → [0, 1], g = T ◦ f . We would
like to prove∫

Φ(g) dµ+ −
∫ ∞

0

xpg(x) dµ+(x) ≤ S(w)− 1

p
T (w).

Observe that

ν2
p(K) = c2

p

∫ ∞
0

∫ f(x)

0

e−y
p−xp dy dx

=

∫ ∞
0

(1− T (f(x))) dµ+(x) = 1−
∫
g dµ+.

Our assumption ν2
p(K) = ν2

p(P ) yields
∫
g dµ+ = T (w). Moreover,

S(w) = Φ(T (w)) = Φ

(∫
g dµ+

)
.

Therefore our inequality can be expressed in the following form∫
Φ(g) dµ+ − Φ

(∫
g dµ+

)
≤
∫ ∞

0

g(x)

(
xp − 1

p

)
dµ+(x).

Note that g : R+ → [0, 1] is nondecreasing. Summing up, to establish Theo-
rem 1 it suffices to prove the following lemma.

Lemma 1. Let p ∈ (0, 1] and let µ+ be a measure with density cpe
−xp sup-

ported on R+. Then for all nondecreasing functions g : R+ → [0, 1] we have∫
Φ(g) dµ+ − Φ

(∫
g dµ+

)
≤
∫ ∞

0

g(x)

(
xp − 1

p

)
dµ+(x). (9)

In order to prove Lemma 1 we shall need a lemma due to R. Lata la and
K. Oleszkiewicz (see [5, Lemma 4] or [9, Theorem 1]). For convenience let us
recall this result.

Lemma 2 (Lata la–Oleszkiewicz). Let (Ω, ν) be a probability space and sup-
pose that Φ : [0, 1] → R has strictly positive second derivative and 1/Φ′′ is
concave. For a nonnegative function g : Ω→ [0, 1] define a functional

ΨΦ(g) =

∫
Ω

Φ(g) dν − Φ

(∫
Ω

g dν

)
. (10)

Then ΨΦ is convex, namely

ΨΦ(λf + (1− λ)g) ≤ λΨΦ(f) + (1− λ)ΨΦ(g).
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Now we show that our function Φ = S ◦ T−1 satisfies the assumptions of
Lemma 2.

Lemma 3. The function Φ = S ◦ T−1 : [0, 1] → R satisfies Φ′′ > 0 and
(1/Φ′′)′′ ≤ 0.

Proof. Let T−1 = F . Note that F ′ = 1
T ′(F )

= − 1
cp
eF

p
. We have

Φ′ = S ′(F )F ′ = cpF
pe−F

p

(
− 1

cp
eF

p

)
= −F p

and
Φ′′ = −pF p−1F ′ =

p

cp
F p−1eF

p

> 0.

Moreover,

(1/Φ′′)′ =
cp
p

(
F 1−pe−F

p)′
=
cp
p

(
(1− p)F−p − pF 1−pF p−1

)
e−F

p

F ′ = 1− 1− p
p

F−p

and

(1/Φ′′)′′ = (1− p)F−p−1F ′ = −1− p
cp

F−p−1eF
p ≤ 0.

Remark. The reader might want to notice that the last inequality is the place
where the proof of the theorem does not work for other values of p.

We are ready to give the proof of Lemma 1.

Proof of Lemma 1. Combining Lemmas 2 and 3 we see that the left hand
side of (9) is a convex functional of g. The right hand side is linear in g
and therefore we see that λg1 + (1 − λ)g2 satisfies (9) for every λ ∈ [0, 1]
whenever g1, g2 satisfy (9). Due to an approximation argument it suffices to
prove our inequality for nondecreasing right-continuous piecewise constant
functions having finite number of values. Every such a function is a convex
combination of a finite collection of functions of the form ga(x) = 1[a,∞)(x),
where a ∈ [0,∞]. Therefore it suffices to check (9) for the functions ga. Since
Φ(0) = S(∞) = 1/p and Φ(1) = 0 we have∫

Φ(ga) dµ+ − Φ

(∫
ga dµ+

)
=

1

p
(1− T (a))− S(a)
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and ∫ ∞
0

ga(x)

(
xp − 1

p

)
dµ+(x) =

1

p
− S(a)− 1

p
T (a),

thus we have equality in (9).

The proof of Theorem 1 is now complete.

3.2 Proof of Corollary 1

The idea behind Corollary 1 is that once a measure supports the S-inequality
for all ideals then so does its image under properly chosen transformation
(cf. the proof of Theorem 2 in [6]). Fix p ∈ (0, 1] and α > 0. Consider the
mapping F : (R+)n −→ (R+)n given by the formula

F (x1, . . . , xn) = (xα1 , . . . , x
α
n).

We will use it to change the variables. So, take an ideal K ⊂ Rn, the strip
P ⊂ Rn such that νnp (K) = νnp (P ), and compute the measure of the dilation
tK for some t ≥ 1

νnp (tK) =
(cp

2

)n ∫
tK

e−|x|
p
pdx = cnp

∫
tK∩(R+)n

e−
∑
xpi dx

= (αcp)
n

∫
F−1(tK∩(R+)n)

∏
yα−1
i e−y

αp
i dy.

In the first equality we have used the symmetries of ideals, while in the
last one we have changed the variables putting x = F (y). Introducing the
measure µp,α on R with density (5) we thus have seen that

νnp (tK) = µp,α(t̃K),

where for an ideal A in Rn the set Ã denotes an ideal such that Ã∩ (R+)n =
F−1(A ∩ (R+)n) (note that it makes sense as F is monotone with respect to
each coordinate). The point is that due to the homogeneity of F we have

t̃K = t1/αK̃. Moreover, strips are mapped onto strips. Therefore

µp,α(t1/αK̃) = νnp (tK) ≥ νnp (tP ) = µp,α(t1/αP̃ ),

which means that µp,α supports the S-inequality for the ideal K̃. Since the
ideal K is arbitrary, we conclude that µp,α supports the S-inequality for
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all ideals. To finish the proof notice that we recover Weibull and Gamma
distribution setting respectively p = 1, α = 1/p = q, i.e. ωα = µ1,α, λq =
µ1/q,q.

Remark. We might use more general change of variables yi = V (xi) for some
increasing function V : R+ −→ R+, V (0) = 0 and ask whether we will derive
the S-inequality for other measures than µp,α exploiting the above technique.

Since we would like to have t̃K = u(t)K̃ for a monotone function u, we check
it would imply that V (st) = CV (s)V (t), and C is a constant. So V should
be a power function yet this case has been studied in the above proof.
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