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Abstract

We establish a discrete analog of the Rényi entropy comparison due to Bobkov and
Madiman. For log-concave variables on the integers, the min entropy is within log e of
the usual Shannon entropy. Additionally we investigate the entropic Rogers-Shephard
inequality studied by Madiman and Kontoyannis, and establish a sharp Rényi version for
certain parameters in both the continuous and discrete cases.

1 Introduction

The Rényi entropy [34] is a family of entropies parameterized by an α belonging to the
extended non-negative real line that generalizes several important notions of uncertainty,
most significantly the Shannon entropy when α = 1, but also the min entropy α = ∞, the
collision entropy α = 2, and the Hartley or max-entropy α = 0.

Definition 1.1. For a random variable X taking countably many values with probabilities
pi > 0, and α ∈ (0, 1) ∪ (1,∞), the Rényi entropy Hα(X) is

Hα(X) =
log
∑

i p
α
i

1− α
, (1)

while the remaining α are defined through continuous limits. H0(X) = log |{i : pi > 0}|,
H1(X) = H(X) = −

∑
i pi log pi, and H∞(X) = − log ‖p‖∞, where | · | denotes cardinality,

and ‖p‖∞ denotes the `∞ norm of the sequence pi.

Similar definitions are put forth in the continuous setting.

Definition 1.2. For an Rd-valued random variable Y with density function f , and α ∈
(0, 1) ∪ (1,∞), the Rényi entropy hα(Y ) is

hα(Y ) =
log
∫
Rd f

α(x)dx

1− α
, (2)

while the remaining α are defined through continuous limits. h0(X) = log |{x : f(x) > 0}|,
h1(X) = h(X) = −

∫
f(x) log f(x)dx, and h∞(X) = − log ‖f‖∞, where | · | denotes Lebesgue

volume, and ‖f‖∞ denotes the L∞ norm with respect to the Lebesgue measure.

1



The Rényi entropy can usefully be described in terms of the α− 1-norm1,

Hα(X) =
log
∑

i p
α−1
i pi

α− 1
= − log ‖p‖α−1,p (3)

where for a positive function q and measure µ on a discrete set, and s ∈ (−∞, 0)∪ (0,∞) we
define

‖q‖s,µ =

(∑
i

qsiµi

) 1
s

. (4)

Thus it follows from Jensen’s inequality that Hα(X) is non-increasing in α. The same argu-
ment in the continuous setting obviously holds. Thus, for α < β

Hβ(X) ≤ Hα(X) (5)

hβ(Y ) ≤ hα(Y ). (6)

It has been known since [3] (see also [2]) that inequality (6) can be reversed up to an additive
constant for log-concave random variables.

Theorem 1.1 (Bobkov-Madiman, [3]). Let Y be random vector in Rd with density f : Rd →
[0,∞) such that f((1− t)x+ ty) ≥ f1−t(x)f t(y) for all t ∈ (0, 1) and x, y ∈ Rd. Then

h(Y ) ≤ h∞(Y ) + d. (7)

Recently (see [13, 12]), a sharp comparison result has been also established between
entropies of arbitrary orders.

Theorem 1.2 (Fradelizi-Li-Madiman-Wang, [13, 12]). Under the assumptions of Theorem
1.1, for α < β, we have

hα(Y )− hβ(Y ) ≤ hα(Z)− hβ(Z), (8)

where Z is a random variable with density e−
∑d
i=1 xi on (0,∞)d.

The key to this theorem is the following fact: for f as in Theorem 1.1, the function
t 7→ log(t

∫
f t) is concave on (0,+∞).

Our pursuit in this paper will be the reversal of (5) for the log-concave random vari-
ables on Z. That is random variables X which are unimodal, and such that the sequence
pn = P(X = n) satisfies p2i ≥ pi−1pi+1. We say that such random variables are monotone (or
that their distributions are monotone) if the sequence (pn) is monotone. We will prove the
following main theorem.

Theorem 1.3. For α ∈ (0,∞), a log-concave random variable X, and Zp a geometric random
variable with parameter p,

Hα(X)−H∞(X) < lim
p→0

(
Hα(Zp)−H∞(Zp)

)
(9)

= logα
1

α−1 . (10)

1This is not truly a norm when α < 2
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This provides a discrete analog of Bobkov and Madiman’s result, with a sharp constant
provided by an extremizing sequence. Let us note, this is distinct from the continuous setting
where for instance, an exponential distribution extremizes h(X) − h∞(X) over log-concave
distributions on R. It is consequence of the proof of Theorem 1.3, that Hα(X)−H∞(X) <

logα
1

α−1 , for X log-concave, and thus that no such extremizer exists in the discrete setting.
The proof methods in the discrete setting are distinct as well. In the continuous setting,

there are analytic and convexity tools that can be leveraged, the Prékopa-Leindler inequality,
integration by parts, perspective function convexity, etc.

Though there has been significant recent interest in developing discrete versions of these
continuous techniques (see [11, 18, 32, 30]), the authors are not aware of a version that
could deliver Theorem 1.3. Our proof method will show that any log-concave distribution
majorizes a “two-sided geometric distribution” with the same ∞-Rényi entropy. Using the
Schur concavity of the Rényi entropy the problem is reduced to direct computation on these
two-sided geometric distributions.

First progress on this result was made by the authors in [31] by a similar argument, which
only applied however to monotone log-concave variables, and was leveraged by the concavity
of Shannon entropy to deliver a sub-optimal reversal, H(X) − H∞(X) ≤ log 2e for general

log-concave variables. In contrast the results here, Hα(X) − H∞(X) ≤ logα
1

α−1 are sharp
for all α, and they apply to general log-concave variables, without the additional assumption
of monotonicity.

As an application we investigate a conjecture of Madiman and Kontoyannis [27], which
can be regarded as an entropic analog of the Rogers-Shephard inequality from Convex Geom-
etry. We consider general orders of the Rényi entropy, where the inequality can be considered
a reversal, under the assumption of log-concavity, of the Rényi entropy power inequalities
that have attracted recent attention (see [4, 5, 7, 19, 20, 21, 25, 29, 28, 33, 35]).

Let us outline the paper. In the next section we gather basic definitions and properties
regarding log-concave sequences and majorization. In Section 3 we prove the desired inequal-
ities in the case that the distribution considered is two-sided geometric. In Section 4 we show
that every log-concave distribution majorizes a two-sided geometric distribution with the
same min-entropy, and use the Schur concavity of the Rényi entropy to reduce the problem
to the result proven in Section 3. In Section 5 we discuss a conjecture which would imply
a sharp reversal of (5) for all Rényi entropies (not just with comparison to min-entropy),
but only for monotone log-concave distributions. This conjecture amounts to the discrete
analog of a result that does hold for all log-concave densities in Rd, however as we show,
in the discrete case, the result fails without the assumption of monotonicity. In Section 6,
we establish Rényi versions of the Rogers-Shephard inequality in both the continuous and
discrete cases.

Acknowledgements. We would like to thank Mokshay Madiman and Arnaud Marsiglietti
for fruitful discussions throughout the development of the paper. We are indebted to anony-
mous reviewers for their remarks which helped improve the paper. TT’s research is partially
supported by NSF grant DMS-1955175. Conjecture 5.1 and a special case of Theorem 1.3
appeared in the conference paper [31].
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2 Preliminaries

We will use the following notation for integer intervals. For a ≤ b ∈ Z, Ja, bK := {x ∈ Z : a ≤
x ≤ b}, Ka, bJ:= {x ∈ Z : a < x < b}, Ja, bJ:= {x ∈ Z : a ≤ x < b} and so on. We also let
Ja,∞J denote {x ∈ Z : a ≤ x}

Definition 2.1 (Log-concavity). A sequence f : Z→ [0,∞) is log-concave when it satisfies

f2(n) ≥ f(n− 1)f(n+ 1) (11)

for all n ∈ Z and a ≤ b, a, b ∈ {f > 0} implies Ja, bK ⊆ {f > 0} (in other words, the support
of f is a contiguous interval of integers). A Z-valued random variable X is log-concave when
the sequence pi = P(X = i) is log-concave. We will denote the space of all log-concave
probability densities on Z by L(Z).

There have already been a few interesting information theoretic results regarding log-
concavity in discrete settings, see for example [16, 17], but there is a vast mathematical
literature, we mention only [37] and recall some relevant facts. The class of log-concave se-
quences is closed under convolution, and thus the log-concave random variables are closed
under independent summation. The class is also closed under weak limits. Important exam-
ples of log-concave distributions are the Bernoulli, Binomial, Geometric, Negative Binomial,
and Poisson distribution.

Let `1(Z) denote the functions f : Z→ R such that
∑

i∈Z |f(i)| <∞.

Definition 2.2 (Decreasing rearrangment). For a function f : Z → [0,∞) in `1(Z) denote

the sequence f↓ to be the decreasing rearrangement of f . Explicitly, f↓ satisfies f↓i ≥ f
↓
i+1 for

all i and f↓i = f(τ(i)) for a bijection τ : N→ Z.

Definition 2.3 (Majorization). For `1(Z) functions f, g : Z→ [0,∞), we say f majorizes g
and write f � g when

k∑
i=1

f↓i ≥
k∑
i=1

g↓i , (12)

and equality holds in the limit with k →∞.

We let P(Z) denote the space of probability densities on Z.

Definition 2.4 (Schur Convexity). A function Φ : P(Z) → R ∪ {∞} is Schur-convex when
f � g implies

Φ(f) ≥ Φ(g). (13)

Φ is Schur-concave when −Φ is Schur-convex.

Definition 2.5 (Two-sided geometric distribution). A density function ϕ on Z is a two-sided
geometric distribution when there exists p, q ∈ [0, 1) and m ∈ Z such that its density function
ϕ can be expressed as

ϕ(n) =
(1− p)(1− q)

1− pq
f(n−m) (14)
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with

f(n) =

{
pn for n ≥ 0

q−n for n ≤ 0.
(15)

with the convention that 00 = 1. We will denote the set of all such densities by E(Z).

For q = 0 and m = 0, ϕ is the usual geometric distribution with parameter 1 − p, and
when p = q = 0 we have a point mass at m. In any case, observe that all two-sided geometric
distributions are log-concave, since their support is by definition contiguous, ϕ2(n) = ϕ(n+
1)ϕ(n− 1) for n 6= m and ϕ2(m) = maxn ϕ

2(n) ≥ ϕ(m− 1)ϕ(m+ 1).

3 Two-sided geometric distributions

In this section we will derive bounds on the Rényi entropy on the two-sided geometric distri-
bution.

Lemma 1. If ϕ is a density function on Z with a two sided geometric distribution with
parameters p and q, then for α ∈ (0,∞), we have

Hα(ϕ)−H∞(ϕ) <
logα

α− 1
. (16)

with logα
α−1

∣∣
α=1

:= log e.

Proof. First we proceed with the case α 6= 1, and for computational convenience in this proof
log is taken to be the natural logarithm. By direct computation,

Hα(ϕ)−H∞(ϕ) = (1− α)−1 log

(∑
n

ϕα(n)

)
+ log ‖ϕ‖∞ (17)

= (1− α)−1
(

log ‖ϕ‖α∞ + log

(
1

1− pα
+

1

1− qα
− 1

))
+ log ‖ϕ‖∞ (18)

=
log ‖ϕ‖∞ + log

(
1

1−pα + 1
1−qα − 1

)
1− α

(19)

=

log

(
1

1−pα+ 1
1−qα−1

1
1−p+

1
1−q−1

)
1− α

. (20)

Thus, it suffices to prove for α > 1

1

1− p
+

1

1− q
− 1 < α

(
1

1− pα
+

1

1− qα
− 1

)
(21)

and

1

1− p
+

1

1− q
− 1 > α

(
1

1− pα
+

1

1− qα
− 1

)
(22)

when α ∈ (0, 1). Note that we have equality when α = 1, so it suffices to show the function

F (α) = α

(
1

1− pα
+

1

1− qα
− 1

)
(23)
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is strictly increasing. Computing directly,

F ′(α) =
pα log pα

(1− pα)2
+
qα log qα

(1− qα)2
+

1

1− pα
+

1

1− qα
− 1. (24)

Writing x = pα and y = qα it is enough to prove

x log x

(1− x)2
+

y log y

(1− y)2
+

1

1− x
+

1

1− y
> 1 (25)

for x, y ∈ (0, 1). To this end, we consider f(x) = x log x
(1−x)2 + 1

1−x , x ∈ (0, 1) and argue that

f(x) > 1
2 for x ∈ (0, 1). Note that (1 − x)3f ′(x) = 2(1 − x) + (1 + x) log x and the right

hand side, call it g(x), is an increasing function of x on (0, 1) because g′(x) = log x+ 1
x − 1 =

− log 1
x + 1

x − 1 > 0. Thus g(x) < g(1) = 0 for x ∈ (0, 1) which shows that f ′(x) < 0 for
x ∈ (0, 1). Thus f is strictly decreasing and we get f(x) > f(1−) = 1

2 for x ∈ (0, 1).
When α = 1, a direct computation gives

H(ϕ)−H∞(ϕ) = −
p log p
(1−p)2 + q log q

(1−q)2
1

1−p + 1
1−q − 1

which is strictly less than 1 by (25).

4 Proof of Theorem 1.3

Lemma 2. For a non-negative monotone log-concave `1(Z) function f , supported on Kn, kJ,
there exists a unique log-affine positive function g with infinite set of support containing Kn, kJ,
the same mode, maximum value, and `1(Z) norm such that f � g.

Proof. Without loss of generality, let us assume that f is non-increasing and supported on
K0, kJ. Define for q ∈ [0, 1) a new function gq to be log-affine supported on K0,∞K and such that
gq(1) = f(1) and g(j + 1) = qg(j). Note that

∑
j g0(j) ≤

∑
j f(j) < limq→1

∑
j gq(j) = ∞

and the function q 7→
∑

j gq(j) is strictly increasing in q. Thus, by the intermediate value
theorem, there exists a unique q∗ ∈ [0, 1) such that

∑
j gq∗(j) =

∑
j f(j). Take g = gq∗ , and

observe that g is log-affine and satisfies ‖g‖∞ = ‖f‖∞ by construction. Since g is log-affine
and f is log-concave, for the function f −g there exists an l ∈ J1, kJ such that f(i)− g(i) ≥ 0
on J1, lK and f(i)− g(i) ≤ 0 on Kl, kJ.

Using the notation Lm(Z) = {f ∈ L(Z) : H∞(f) = m} and Em(Z) = {f ∈ E(Z) :
H∞(f) = m}, we will prove the following general result, that roughly states minimizers of
Schur-convex functions among log-concave densities satisfying a constraint on their maximum
value, are two-sided geometric distributions.

Theorem 4.1. For a Schur convex function, Φ : P(Z) → R, and f ∈ Lm(Z) there exists
ϕ ∈ Em(Z) such that

Φ(f) ≥ Φ(ϕ). (26)

Proof. We will prove the result by showing that given a log-concave density f there exists a
two-sided geometric distribution ϕ with the same maximum such that f � ϕ. Without loss of
generality, suppose that f(0) = ‖f‖∞ and t :=

∑∞
j=0 f(j) ≥

∑0
j=−∞ f(j), note t ≥ 1

2 . Define
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f+(j) = 1[0,∞)(j)f(j) and f−(j) = 1(−∞,0](j)f(j), define a+ to be the log-affine function of
the same maximum and majorized by f+, while a− to be the log-affine function of the same
maximum and majorized by f−, as supplied by Lemma 2. Note that a+(j) = f(0)pj for j ≥ 0
and p ∈ [0, 1) while a−(k) = f(0)q−j for j ≤ 0 for q ∈ [0, 1). Note that by our assumptions∑∞

j=0 a+(j) =
∑∞

j=0 f(j) ≥
∑0

j=−∞ f(j) =
∑0

j=−∞ a−(j) implies p ≥ q. Define

ϕ(j) =


a+(j), j > 0

f(0), j = 0

a−(j), j < 0.

(27)

By construction
∑

i ϕi =
∑

i f(i). In particular, ϕ is a density function on Z. Observe that
ϕ is the two-sided geometric distribution majorized by f as desired, since for every n

n∑
i=1

ϕ↓i = f(0) +

j∑
i=1

a+(i) +

n−j−1∑
i=1

a−(i) (28)

≤ f(0) +

j∑
i=1

f+(i) +

n−j−1∑
i=1

f−(i) (29)

≤
n∑
i=1

f↓i (30)

Thus ϕ ≺ f and by Schur-convexity Φ(ϕ) ≤ Φ(f), and thus the proof is complete.

Proof of Theorem 1.3. As is well known, see [26, 15] the Rényi entropy is Schur-concave.
Given f ∈ Lm(Z), by Theorem 4.1 there exists ϕ ∈ Em(Z) such that

Hα(f) ≤ Hα(ϕ) (31)

< H∞(ϕ) +
logα

α− 1
(32)

= H∞(f) +
logα

α− 1
, (33)

where (32) follows from Lemma 1. This gives the strict inequality of the theorem. To show
that it is attained in the limit of geometric distribution is an easy and direct computation.

5 Varentropy and logconcavity of auxiliary function

We recall the following result from [13] (Theorem 2.9 therein).

Theorem 5.1 (Fradelizi-Madiman-Wang, [13]). If f : Rn → [0,+∞) is log-concave, then
t 7→ tn

∫
Rn f(x)tdx is log-concave on (0,+∞).

(See also Remark 2.10 therein and e.g. [8, 9, 12].) In analogy, in the discrete case, we
pose the following conjecture.

Conjecture 5.1. Let (xn)Nn=1 be a finite monotone log-concave sequence. Then the function

F (t) = log

[
t
N∑
n=1

xtn

]
is concave on (0,+∞).
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By looking at the second derivative, this conjecture is equivalent to the statement that
for every finite monotone log-concave sequence (yn)Nn=1 (yn = xtn), we have(∑

yn log2 yn
)

(
∑
yn)− (

∑
yn log yn)2

(
∑
yn)2

≤ 1

(the left-hand side can be seen as the varentropy – see [13]).
Note that Conjecture 5.1 implies the desired sharp comparison between Rényi entropies

of arbitrary two orders for monotone log-concave random variables. Indeed, suppose X is
such a random variable. By an approximation argument, we can assume that the support of
X is finite, say it is {1, · · · , N} and pn = P(X = n) > 0, n = 1, · · · , N , is log-concave. We
have

Hα(X) =
1

1− α
log

[
N∑
n=1

pαn

]
= log

(
α

1
α−1

)
+

1

1− α
F (α), (34)

where F (α) is the function from Conjecture 5.1 for the sequence (pn). Suppose 1 < α < β
and write α = 1− λ+ λβ with λ = α−1

β−1 ∈ (0, 1). If F was concave, then we would have

F (α) = F ((1− λ) · 1 + λβ) ≥ (1− λ)F (1) + λF (β) = λF (β),

equivalently 1
α−1F (α) ≥ 1

β−1F (β), which, by (34), becomes−Hα(X)+log
(
α

1
α−1

)
≥ −Hβ(X)+

log
(
α

1
β−1

)
, that is

Hα(X)−Hβ(X) ≤ log

(
α

1
α−1

β
1

β−1

)
. (35)

Proceeding in a similar way, this would also follow for α < β < 1 as well as α < 1 < β.
The normalising factor tn in Theorem 5.1 is sharp in the sense that for the exponential

function f(x) = exp(−
∑
xi)1(0,∞)n , the function t 7→ tn

∫
Rn f(x)tdx is constant. Similarly

for Conjecture 5.1, in the limit: for the geometric infinite sequence xn = ((1 − ε)n)∞n=0, we
have Fε(t) + log ε→ 0 as ε→ 0+ (for every fixed t), or in other words, (35) is sharp for the
geometric distribution with parameter tending to 0.

As opposed to the continuous case, Conjecture 5.1 cannot hold without the monotonicity
assumption: for example, for the sequence p = (14 ,

1
2 , 1,

1
2 ,

1
4) the function F is not concave

because we have F ′′(3) > 0.0009. This is a consequence of the fact that for a symmetric
geometric random variable X with P(X = k) = 1−p

1+pp
|k|, k ∈ Z, and α < β, the opposite

inequality to (35) holds.
In view of what is true in the continuous case (see the main result of [9] and its extension,

Theorem 2 in [8]), we propose the following strengthening of Conjecture 5.1.

Conjecture 5.2. Let (yn)Nn=1 be a finite positive monotone and concave sequence, that is
yn ≥ yn−1+yn+1

2 , 1 < n < N . Then for every γ > 0, the function

K(t) = (t+ γ)

N∑
n=1

yt/γn

is log-concave, that is logK(t) is concave on (−γ,+∞).
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The approach from [9] also suggests that the following stronger inequality be true: for
every complex number z = u+ iv with u > −γ, we have |K(z)| ≥ K(u). It turns out that it
implies Conjecture 5.2 (see [9] for a detailed argument).

We remark that a unified result of the continuous analogues can be found in Theorem 3.2
in [12] and Conjectures 5.1 and 5.2 can be seen as discrete analogues of it.

As a final remark, we also point out that Conjecture 5.1 has an application to Khinchine-
type inequalities: it would furnish a large family of examples of the so-called ultra sub-
Gaussian random variables, see Remark 13 in [14]. Conjecture 5.1 was verified therein for
sequences of length 3.

6 Application to Rényi Entropic Rogers-Shephard Inequality

It is a classical theorem of Convex Geometry called the Rogers-Shephard Inequality [36] that
for a convex body K ⊆ Rd (a compact convex set with non-empty interior), we have

V ol(K −K) ≤
(

2d

d

)
V ol(K), (36)

with equality if and only if K is the d-dimensional simplex. This can be easily rephrased as a
Rényi entropic inequality if we recall the usual definition of the Rényi entropy for continuous
variables. The Rogers-Shephard inequality thus says that for independent X and Y with a
common density function f on Rd supported on a convex body in Rd,

h0(X − Y ) ≤ h0(X) + log

(
2d

d

)
. (37)

Note that by Stirling’s formula log
(
2d
d

)
≈ d log 4 and the best possible dimension independent

c such that h0(X − Y ) ≤ h0(X) + d log c holds is c = 4.
An entropic analog of Rogers-Shephard has been pursued in [23], where the following is

conjectured.

Conjecture 6.1 (Madiman-Kontoyannis [23]). For log-concave X and Y iid Rd valued ran-
dom variables

h(X − Y ) ≤ h(X) + d log 2 (38)

with the equality case given by the d-dimensional exponential product distribution.

In the same article Madiman and Kontoyannis prove that under the same hypotheses
h(X − Y ) ≤ h(X) + d log 4, holds. Moreover using alternate methods in [6] a bound of
h(X − Y ) ≤ h(X) + d log e was obtained. In the continuous case we present the following
generalization to the Rényi entropy.

Theorem 6.1. Let X and Y be iid log-concave random vectors in Rd. If α ∈ [2,∞], then

hα(X − Y ) ≤ hα(X) + d log 2, (39)

with equality when X has exponential distribution 1(0,∞)d(x)e−
∑
i xi. If α ∈ [0, 2], then

hα(X − Y ) ≤ hα(X) + d logα
1

α−1 . (40)
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Note that when α = 1 we recover [6], the sharpest known bound in the Shannon case
h(X − Y ) ≤ h(X) + d log e. We will need the following corollary of Theorem 1.2.

Corollary 6.2 (Fradelizi-Madiman-Wang [13]). For 0 ≤ α ≤ β, and X a log-concave vector
in Rd, we have

hβ(X) ≤ hα(X) ≤ hβ(X) + d log
c(α)

c(β)
(41)

where

c(α) = α
1

α−1 , (42)

with c(∞) := 1, c(1) := e, and c(0) :=∞.

Proof. If Z is a random variable with density e−x1(0,∞), then hα(Z) =
log

∫∞
0 e−αxdx
1−α =

logα
1

α−1 . Let Zd be a random vector in Rd with density e−
∑
i xi1(0,∞)d . By Theorem 1.2,

hα(X) ≤ hβ(X) + hα(Zd)− hβ(Zd) (43)

and hα(Zd)− hβ(Zd) = d(hα(Z)− hβ(Z)) = d log c(α)
c(β) .

Proof of Theorem 6.1. The result hinges on the following equality,

h∞(X − Y ) = h2(X). (44)

Explanation: letting f denote the shared density of X and Y , the density function fX−Y of
X − Y is given by

fX−Y (z) =

∫
Rd
f(z − x)f(−x)dx =

∫
Rd
f(z + x)f(x)dx, (45)

which is log-concave and even, thus ‖fX−Y ‖∞ = fX−Y (0) =
∫
Rd f

2(x)dx.
For α ≥ 2,

hα(X − Y ) ≤ h∞(X − Y ) + d log
c(α)

c(∞)
(46)

= h2(X) + d log
c(α)

c(∞)
(47)

≤ hα(X) + d log
c(2)

c(α)
+ d log

c(α)

c(∞)
(48)

= hα(X) + d log
c(2)

c(∞)
. (49)

Since c(2)
c(∞) = 2, this completes the first proof. Moreover, this result is sharp with equality

for 1(0,∞)de
−

∑
i xi , which can be verified by checking the d = 1 case and then tensorizing.

When α < 2,

hα(X − Y ) ≤ h∞(X − Y ) + d log
c(α)

c(∞)
(50)

= h2(X) + d logα
1

α−1 (51)

≤ hα(X) + d logα
1

α−1 . (52)
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Remark 6.3. Identity (44) was also crucial in [19] in Li’s proof of the conjectural entropic
Buseman theorem (see [1, 24]) in the case of Rényi entropy of order 2. In fact, in the
symmetric case (39) for α = 2 follows from Li’s result [19]. When d = 1 and X is symmetric,
Conjecture 6.1 is a special case of [1, Conjecture 1]. Alternatively, under the symmetry
assumption X − Y has the same distribution as X + Y , and the result follows from the
additive case [10, 39, 24] for α ≤ 1 even when X and Y are dependent. Under stronger
concavity assumptions, there are analogous results for α ≥ 1, see [38, 22, 21].

From Theorem 1.3, repeating the above proof mutatis mutandis, we can establish discrete
analogs of the Rényi entropic Rogers-Shephard.

Theorem 6.2. For X and Y iid log-concave variables on Z,

Hα(X − Y )−Hα(X) < log c(α), (53)

with

c(α) =

{
2α

1
α−1 , if α ∈ (2,∞],

α
1

α−1 , if α ∈ (0, 2].
(54)

The limiting cases 1 and ∞ are understood by the same conventions as Corollary 6.2,

1
1

1−1 := e and ∞
1
∞−1 := 1. In the case of the Shannon entropy this gives

H(X − Y )−H(X) < log e. (55)

When α = 0, H0(X − Y ) ≤ H0(X) + log 2 holds, and is strict whenever the support of X is
finite. The inequality is sharp as can be seen by taking a log-concave distribution supported
on {0, 1, . . . , n} for n large.

Proof. The only modification of the proof of Theorem 6.1 is in (48) and (49), where we use

H2(X) < H∞(X) + logα
1

1−α and H∞(X) ≤ H2(X) (with no dimension factor d, that is with
d = 1 in (46) - (52)).

Observe that when Xp and Yp are iid geometric with parameter p, and α > 0, then

lim
p→0

Hα(Xp − Yp)−Hα(Xp) = lim
p→0

1

1− α
log

1 + (1− p)α

(2− p)α
= log 2. (56)

Thus c(α) cannot be improved beyond 2 for any α, and hence Theorem 6.2 is sharp for
α ∈ {2,∞}.
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[31] J. Melbourne and T. Tkocz. On the Rényi entropy of log-concave sequences. In Proc.
IEEE Int. Symp. Inform. Theory. Los Angeles, 2020.

[32] P.-M. Samson N. Gozlan, C. Roberto and P. Tetali. Transport proofs of some discrete
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