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‘We sharpen the moment comparison inequalities with sharp constants
for sums of random vectors uniform on Euclidean spheres, providing a

deficit term (optimal in high dimensions).
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1 Introduction

Sharp moment comparison inequalities (a.k.a. of the Khinchin-type, [22]) have
been extensively studied (see [1, 2, 3, 5, 6, 10, 11, 12, 17, 18, 19, 23, 24, 25, 26,
27, 31, 33, 34, 35, 37]), nonetheless the investigation of their stability presently
appears to be in its nascent stages and has been focused so far only on the
Rademacher sums (see [2, 9, 21]), as constituting, arguably, the most funda-

mental case. This note makes a first step towards widening the scope of this
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investigation and is devoted to sharpening sharp moment comparison inequali-
ties for sums of random vectors uniform on Euclidean spheres, which provide a
natural compelling generalisation of the Rademacher distribution to Euclidean

space.

1.1 New results

Cutting to the chase, our main results read as follows. (We work in R, equipped

with the standard inner product (x,y) = Z?:l z;y;, ¥,y € RY and the endowed
Euclidean norm |z| = /(z, z).)

Theorem 1. Let d > 2 be a fized dimension, let &1,&s,... be independent
random vectors uniform on the unit Euclidean sphere S?=' in RY and let Z be

a Gaussian random vector in R® with mean 0 and covariance é[d. Let p > 2.

For every n > 1, every real scalars ay,...,a, with 2?21 af =1, we have
P
n n
4
E|> a;é| <E|ZP —cpa ) af, (1)
j=1 =1
where

(p+d—2)(p+d—4) J3pp—2), 2<p<4,

Cp,d =
P 24d2(d + 2) 1

, p > 4.

Remark. For a fixed p, as d — oo, we have ¢, 4 = ©,,(1/d). This is best possible,
since the special case n = 1 gives the bound

L(759)

cpa <E|ZP-1= 2/
: ($)P/20(%)

—1=0,(1/4d),
as can be checked for instance by a direct calculation using that d - |Z|? follows

the chi-squared distribution x?(d) with d-degrees of freedom which has density

a6 on (0, +o0).

We emphasise that the Gaussian distribution is normalised so that E|Z|? =
1 = E[¢|?, that is there is equality when p = 2, so necessarily ¢z 4 = 0. When
d =1, the &; are Rademacher random variables, that is random signs uniform on

{—1,1} and the Z; are standard Gaussian random variables N(0, 1), and when



d = 2, the & are Steinhaus random variables (upon the usual identification
R? ~ C), both distributions playing a pivotal role in Banach space theory, see
[20, 28, 39].

For coefficient vectors a = (aq, ..., ay) of a fired length n, we offer the following

stability result.

Theorem 2. Let d > 2 be a fized dimension, let &1,&2,... be independent

random vectors uniform on the unit Euclidean sphere S*1 in R%. Let p > 2.

For every n > 2, every real scalars ay,...,a, with 2?21 a? =1, we have
P P
n n 1 R n 1 ) 2
BIY 6| <E[Y 6| aad (2-a) ©)
J=1 Jj=1 Jj=1
where
(p+d—2)(p+d—4)
plp—2) ) d(d+p2) ; 2<p<4,

Gpa =
? 4d ) (.385, p> 4.

1.2 Previous work

Inequalities (1) and (2) have been previously proved without the deficit terms
Op,a(327_y af) and Oy 4(377_, (1/n — a3)?) respectively, by Kénig and Kwapieri
in [24], and, independently, by Baernstein IT and Culverhouse in [1], who de facto
established a more general convexity-type result which in particular asserts that
the function (z1,...,z,) — E }\/Efj ’p is Schur-concave on R’} when p > 2 (see
[1] for background and details). The inequality is often restated equivalently in

a homogeneous form as the sharp L, — L, moment comparison inequality,

p 2 p/2
n n
E Zajfj < (E[Z]") | E Zajfj , P22, (3)
j=1 Jj=1
for all aj,...,a, € R. The multiplicative constant E|Z|P is sharp, as follows
from the case a1 = --- = a,, = ﬁ, n — oo in view of the central limit theorem.

As hinted earlier, there are few stability results, and only for Rademacher sums,

that is in the case d = 1, when the {; are i.i.d. uniform random signs. In this



classical setting, inequalities (1) and (2) are known to hold for all p > 3, as has
been recently established by Jakimiuk in [21], albeit with a worse dependence on
p of the constant ¢, 1 for large p; see also Corollary 1 in [2], where this is derived
as a by product of the sharp L, — L4 inequality for p > 4. Prior to Jakim-
iuk’s work, there had been one more stability result, viz. De, Diakonikolas and
Servedio in [9] found a deficit term in the celebrated Szarek’s L — Lo inequality
from [37] (see also [13] for a different approach and explicit constants). This was
paralleled in [7, 16, 32] in the geometric context of stability results for maximal
volume sections of £,-balls, polydisc and simplex, respectively (which themselves
can be viewed as the moment comparison inequalities but in “L_;”), and has
found interesting applications, see [13, 30]. In a different spirit, “distributional

stability” has been recently investigated in [14].

We recommend, e.g. [2, 21, 33| for further references on the pursuit of the sharp
constants in the classical Khinchin inequality for random signs, as well as [19]
for an account on what is known for other distributions, and [8] specifically for

spherically symmetric random vectors.

2 Proofs

As in the statement of Theorems 1 and 2, throughout the rest of this paper,
§,&1,&,. .. are independent identically distributed (i.i.d.) random vectors uni-
form on the unit sphere S~1 = {z € R%, |z| = 1} in RY, and Z,Z;, Zo, ...
are independent of them i.i.d. Gaussian random vectors in R? with mean 0 and

covariance é[ d-

First, we focus solely on Theorem 1. Second, having established and building

on the important ideas and auxiliary lemmas, we shall prove Theorem 2.

2.1 Overview

At a high level, the main idea to tackle Theorem 1 is reminiscent of Lindeberg’s
swapping argument from his work [29] on the central limit theorem, which has

been widely used in a variety of contexts (see e.g. [36] for historical accounts),



in particular for moment comparison inequalities (see, e.g. [3, 4, 12, 18]). This

has also been Jakimiuk’s approach in [21].
Specifically, for p > 0, we define the deficit,
D,(a,v) =E|aZ + v|P — E|a& + v|?, a€R, veR? (4)

Suppose that it is nonnegative, D,(a,v) > 0, for all p > 2, a € R and v € R9,
Then, the proof of (3) goes by repeatedly swapping each §; with Z; (relying on
the independence of the summands which allows in turn to condition on all but

one summand that is being swapped),

Ela1& 4+ aslo + - + anén|” <ElarZy + axéo+ -+ an&nl’ < ...
S E ‘(1121 + a222 + 4 anZn|p
=El(al + - +a})!/?ZP".

Now, to make some savings and obtain a deficit term in this bound, compellingly,
we would like to sharpen the bound Dy (a,v) > 0.

This task brings us asking: why is D,(a,v) nonnegative (when p > 2)? Fix

a € R,v € R? and consider the function
hao(t) = Elv + at'/2¢P, > 0.

The heart of the matter in both [1] and [24] is the convexity of hg . on (0, +00),
for then decomposing the distribution of Z as |Z|¢ (the magnitude and inde-

pendent uniform direction), Jensen’s inequality yields

Elv+aZ[P = Elv + a\/|Z 24P = E|z/ha,u(|Z]?)
> ha,v(]E|Z|2) = ha,v(l) = ]E|U + a§|p,

which is D,(a,v) > 0.

As a side note, this argument is robust enough to treat arbitrary rotationally
invariant random vectors whose magnitudes are comparable in the stochastic
convex ordering, as done in [24], as well as other functionals than just the

moments, as in [1].



2.2 Main lemmas

Our argument therefore begins with a derivation of an exact expression for the
second derivative of functions h, ,, amenable to quantitative improvements on
their convexity. For greater transparency of the ensuing calculations, we follow

[1] and treat arbitrary (smooth) functionals.

Lemma 3. Let U be a smooth function on R%. For a fized vector v € R?, define

f) = / U (v+ t1/2x)dx, t>0.
gd—1

Then
F(t) = % /B AW+ 1), (5)
1
THOE %/ pdtt ( AAY (v + tl/er)dac> dr. (6)
0 BY

Proof. The approach we use was indicated in Remark 15 in [8] and is in the

spirit of Lemma 4 from [1]. Plainly,

=1 |

VU (v 4+t %z ,x ) de.
o (VO 2) )

Since x is the outer-normal unit vector, the divergence theorem gives

=50 [

Bg

. 1
dive (V0 (0 + 1/20) ) dor = /B A1)

To find the next derivative, note that using polar coordinates,

/ L[t g < 1/2 )
= _ AU dz | d
f'(@) 2/0 r /Sd—l (v+t'?ra)dz ) dr

and the point is that the integral over the sphere, as the function in ¢ is of
the same form as f, with the variable rescaled by r2. Therefore, applying the

previous calculation, we get

1
') = %/ rd=1 (; AAT (v + t'/%rz) ~T2dx> dr. O
0

B



The workhorse of our proof will be the following quantitative bound on the
deficit introduced in (4).

Lemma 4. Letp > 2. Fora € R,v € R?, d > 2, we have

2 2) 254
Dy(a,v) > kpqa® - (o] +20%)7=", 2<p<4,
p ) = ''p,

[P~ p>4,

where plp—2)(p+d—2)(p+d—4)
4d2(d + 2) '

Kp,d =

Proof. If a = 0, there is equality. Otherwise, by homogeneity, we can assume
without loss of generality that a = 1. Fix a vector v in R? and consider the
function

go(t) =Elv + V2P, t>0.

By the rotational invariance of the Gaussian distribution, Z has the same dis-
tribution as |Z|¢. Thus,

Dy(1,0) = E[g,(12*) - gu(1)].

Using Taylor’s expansion with Lagrange’s remainder, for ¢ > 0, there is 7
between 1 and ¢ such that

90(t) — 9u(1) = (1 = gl (1) + 5t ~ 10l m).

As a result (recall E|Z]? = 1),

D,(1,0) = JE[(17 ~ 1% (nyz12)] 7)

An application of (6) of Lemma 3 with ¥(z) = |z|P yields for every n > 0,

—2 d—2 d—4) (!
g:}/(n) _ p(p )(p+ d_l)(p+ ) / 7,,d-i—l / |U _’_xr\/ﬁ'p—éldm dr
4|51 0 By

(sweeping under the rug inessential regularity issues caused by the singularity

at the origin, overcome e.g. by taking the smooth approximations ¥s(x) =
(|22 + 6)P/2, 6 | 0, see [1], eq. (1.5) for details). Writing the integral over B



in polar coordinates leads to

%,/)/IQW+HQ¢TP4m%M“Z n>0, (8)

with
plp—2)(p+d—2)(p+d—4)

Bp.a = 4d(d + 2) ' )

Note that for convenience, we have renormalised the double integral fol fol SO

that it is against the probability measure on [0, 1]? with density d(d+2)rf_1rg+1.

Our argument lower bounding ¢” now differs depending on whether p > 4.

Case 1: 2 < p < 4. Let q = % < 0. Here, we lean on the convexity of the

function x — 27 on (0, +00). Rewriting (8) and using Jensen’s inequality,
11
= 5p,d/ / Ee (Jv]? 4 2riray/m (v, €) + r%r%n) dridrd+?
0o Jo

d q
> G (0P + ) - (10

Plugging this back into (7) and using a crude bound 772 < max{1,|Z|?}, we

arrive at
1 d
Dut0) 2 35,8 [(12 ~ 17 (Jof + 74 max2 ) .

To finish off with a clean bound, we use Jensen’s inequality yet again with

respect to the probability measure LdIP and obtain

Dy(1,0) 2 S (WP + 4 (|2 }('Z/d)])

Finally, crudely max{1,|Z]?} <1+ |Z|?, thus

UEC 2] < 8 (02 -1+ B[i2p( 2 - 1)) = 1+ 22

1,|Z
E |max{1,| 7’} !

where the last two expectations are calculated directly using that d-|Z|? follows



the x2(d) distribution. Consequently,

1 9 d 1 9 p
Dy(1,0) 2 Gpa (0 + 797 1) 2 28, (o2 +2)",

Case 2: p > 4. We simply use monotonicity asserted by the following immediate

consequence of (5).
Claim. Let ¢ >0, v € R%, d > 2. Then
t— Elv + Vtg|? increases on (0, +00).

In particular,
Elv + Vi|? > |ol?, (11)

and, thanks to rotational invariance,
(v,t) = Elo + Vt¢|? = E|jv|¢ + Vt£]"  increases both in ¢ and [v].  (12)

Indeed, by (5),

d Q(Q+d—2)/ -2
—E ! = ——7——= tx|T*dz > 0. O
% v+ Ve 25| Bg|v+\fx| x>0

Therefore, using (8),
9y (1) 2 Bp.alv[P~

(deterministically, for every n > 0). Plugging this pointwise bound into (7) gives

Dy(1,v) = SE[(12* = 12| Byalvl

[N

Since E[(\ZP - 1)2] = 2 we obtain D,(1,v) >

holds with &, 4 = é p.d, as desired.

LBp.alv[P™, that is the lemma

2.3 An auxiliary lemma

In order to handle the averages of the terms E|v|P~* coming from the bound

on D, in the case p > 4, with v being sums of uniforms of spheres, we shall



need some sort of concentration. For simplicity, we choose to use Khinchin-type
inequalities (which in fact yields explicit and decent values of the constants

involved).

Lemma 5. Let d > 2. There is a universal constant cxn > 0 such that for all

real numbers a1, as,... and ¢ > 0, we have

q/2

q
n n
2
B> ai&| >exn (D a3
Jj=1 Jj=1

One can take cxy, = 0.77. In particular, the same inequality holds if any of the

variables &; is replaced by Z;.

Proof. When g > 2, the inequality plainly holds with constant 1 (by Jensen’s
inequality). When 0 < ¢ < 2, let ¢q4 be the best constant such that the
Khinchin-type inequality

" q n q/2
B> a&| Zeaa |20
j=1 j=1
holds for all » > 1 and all scalars a;. It is the main result of [5, 23, 24] that
Ca,q = min{27?E[¢) + &1 B[ 2]}

(see also [8]), and it is known that when d > 3, this minimum is attained at the

second term, E|Z|?, which we now lower bound. We have,

(459)

EZ|" = —=F——.
SR

By the log-convexity of the Gamma function, for x > 0 and 0 < s < 1,

D(z+1)=T(s(x+s)+(1—s)(z+s+1))

(13)
<T(z+s)T(x+s+1)7%=(z+5) T (x +5)

which is Wendel’s inequality, [38], resulting in

s ()

10




Applied to z = % > 1, s = 4, we obtain

1
E|Z|? > T 2 e (79 > o711 5 0.778.
51—

It remains to lower bound the first term 2_‘1/2E\§1 + &2|? when d = 2. We have,

)
)

+ o=

2—4/2F 9 —94/2
€1+ &2 L

(4 +
q
2

Again, by virtue of (13), applied this time with z = £, s = 1, we get

g+1

2732

27I2EE) + £]7 > .
| | m(qg+ 1)

The right hand side is minimised at ¢ = @ — 1 attaining value 0.774.., which
finishes the proof. O

2.4 Proof of Theorem 1

We shall follow the traditional notation ||a||, = (3~ |a;|?)'/?, ||la|le = max; |a;]

for the ¢, norms of a vector a = (a1, ...,a,) in R".

The proof uses two different arguments: when ||a||o is bounded away from 1,
we shall (iteratively) use the pointwise bounds from Lemma 4 resulting with the
deficit of the order ||all4, whereas in the oppose case we easily get a constant
deficit (i.e. independent of a), leveraging the Schur concavity of the moment

functional. With hindsight, we choose the following cut-off for the £, norm,

Case 1: ||a|leo < my. (Clarification: when 2 < p < 4 this case is exhaustive,

since m, = 1.) We use the classical Lindeberg’s swapping argument. To this

11



end, we define

So=>_a&,
j=1

k n
Sk:Zaij+ Z a;&;, k=1,....n
j=1

j=k+1

and break the deficit up with a telescoping sum,

E|Z]P —E|SolP = (EISklP — E|Sk_1/7).
k=1

Note that the sums Sy, and Si_; only differ by the k-th term which is axZy and
ar&, respectively. Letting

k—1 n
Ve = Zaij + Z (ljfj
j=1

j=k+1

and using the notation from (4), we have
E|Sk+1|p - E|Sk|p = EDp(ak,vk).
By Lemma 4,

E(jop|? +202)"2, 2<p <4,
E|vk|p*4, p > 4,

ED,(ak, vk) > kpaaj,

Observe that E|vg|> = 35, aF = 1 —aj.

When 2 < p < 4, Jensen’s inequality yields

p—4 p—4

ED,(ax,vx) > "fzxdai(l - ai + 2ai) 2= “Indai(l + ai)T 2 "fp,dai-

N | =

Summing these bounds over 1 < k < n gives the result and finishes the proof.

When p > 4, Lemma 5 and a crude bound 1 —aj > 1—|lal|Z, > 1—m2 = 2 57
yield

4 2\ 254 —1/2 4 1 4
ED,(ak, v) > cknkp,aa,(l —azy) 2 >2 / CKhKp,dG) > inp’dak.

12



Summing these bounds over 1 < k < n gives the result.

Case 2: ||a]|o > my. Clarification: when 2 < p < 4, m,, = 1, this case is empty,
and the proof has already been completed, so we implicitly assume that p > 4.

Here we simply use the Schur concavity of

p

R} >z E|Yz¢;
j=1

known from [1] to hold in every dimension d > 2 as long as p > 2. Say a1 =

2 2
|a||oc. Then the vector (af,...,aZ) majorises the vector (m2, 1n1nip ey 1n1n1’) ),
2
provided that mf, > 1nj;p, equivalently nmf, > 1, and we obtain
P P
E a;&i| <E|\mp& + + o+ €
j}_jl | SE|mpéa+1/ — (& €n-1)

We can apply Case 1 to the right hand side, which results in

p

n 1 (1 _m2)2 1
E|Y a&| <E[ZP - Sfpd (mﬁ +—— | <ElZI" - §ﬁp,dm§

j=1
Note that [|alls < [|a]2 = 1. For cosmetics, say mj = (1 —271/F=1)2 > m
which gives the constant ¢, 4 from the statement of the theorem. Finally, if

nm? < 1, we take an integer N > 2 such that N > # and observe that
P

P
2 2
(af,...,a2,0,...,0) majorises the vector (m2, INTlp ey %), so that we can
——
—n
repeat the last part of the argument verbatim to finish the proof. O

2.5 Proof of Theorem 2

Exactly as for Theorem 1, the argument here will be driven by tracking the

deficit along local changes to the coefficient vector a = (ay,...,a,) performed
to make it progressively closer to the extremising diagonal one ( ﬁ, cee ﬁ)

The next lemma will facilitate that. We denote the deficit term from Theorem 2

13



by d(a),

and note that with the ¢ normalisation Z?Zl ajz =1,

(14)

that is the deficit term can be equivalently derived by comparing the changes

of the ¢4 norms of the coefficient vectors.

Lemma 6. Let p > 2. Suppose that a1 > by > by > as > 0 with a% + a% =

b? + b2 = 02 for some o > 0. For every vector v in R%, d > 2, we have

E[b1&1 + bolo +v|” — E|ar&y + agés +v|”

Bpa(v2+ 027, 2<p<4,

>
HE2E + o€ P4, p >4,

(a + a3 — by —b3) - (15)

S

with Bp.q defined in (9).

Proof. Recall that Lemma 3 provides us with good expressions for the deriva-

tives of the function
gu(t) = Elv + V£, t>0

and this very function emerges naturally: thanks to independence and rotational

invariance of the ensuing random vectors,

Ela1& + az&s + |’ = El[a1&1 + a282(€ + U’p =Eg, (Ja:& + a28/?)
= Egv (0'2 + 2(110,29),

where the last expectation is with respect to a random variable # which has
the same distribution as a one-dimensional marginal of &, say 6 = (£, e1). With
o > 0 fixed, we set

h(u) = E[g,(c” + 2ub)], u > 0.

14



Then the deficit of interest becomes

A =E|bi1& + baés + v’ —Ela1&1 + azée + v|” = h(bibe) — h(ajaz)
bubs

I
=

S
o,
IS

Plainly,
W (u) = 2E[g, (0 + 2ub)6)].

To manoeuvrer this into a more convenient expression, we shall use an integra-

tion by parts formula for 6.

Claim. Let d > 2 and &, £ be uniform on S9!, §9+1 respectively. For random
variables 6 = (£, e,), 6 = <§Z, e1> and a function f differentiable on (—1,1) such

d

that f(z)(1 —22)“2 — 0 as 2 — %1, we have

E[/(0)6] = SE[/(0)). (16)

Proof. One can check that 6 has density A%i(l — xQ)%l(,Ll)(x) with the nor-
ret)
r($)

malising constant Ag = /7 , d > 2. Integration by parts yields

1 1 /
Blrow] =+ [ s@et - ar = [ (- 7095 @
1

1

—1 1 ! d—1
- f@)( -2 +7/ "(z)(1—2%) 7 dz
cerli R I sy vl IRACLE
Ad+2 5
= (d— 1)AdE[f/<9)}
and (déd1+)2Ad = é, as claimed. O

Applying the claim to f(z) = g/ (0% + 2uzx) gives
! 2 "e 2 0
h(u) = EE gu (0 + 2ub) - (2u)

where the expectation is over the distribution of 6 from the statement of the

15



claim. Moreover, evoking (8),
9y (t) = BpaBlv + RiRaVig [P,

where, to compactify the notation, we let (R, Re) be random variables with
joint density dr¢dri*? on (0,1)2.

Putting these together,
h'(u) = Bp)dE“’U + RiRy(0% + 2u§)1/2§|p_4] - (2u)
with

2

Bp,d = aﬂp,d

and the expectation taken over the product distribution of Ry, Ro, é,f . Thus,

we arrive at

b1b2 _
A = Bpa / E[lv + RiRo(0? + 2uf)/2¢[P~] - (2u)du.

1a2

As before, we now break the analysis into two cases depending on whether p > 4.

Case 1: 2 < p < 4. As in Lemma 4, letting ¢ = % and using the point-wise
bound (10), we get

B b1ba d o\ 9
A> 51,,(1/ (2u) - E |:<1}|2 + m(az + 2u9)) } du.

102

Since Ef = 0, Jensen’s inequality and a further simple cosmetic bound #‘u <1

allow to lower-bound the expectation by (|v|? + 02)? which results in
A > Bpa(lof]® +0®)4(07b5 — afa3).
Finally, as a result of the constraint a? + a3 = b3 + b3,
0= (bf +3)* — (a7 + a3)” = by + b — (a1 + a3) + 2(b7b5 — afa3),

SO

1
bb3 — atas = (a1 + az — by — by) (17)

and we are done with the proof in this case with constant % Bp,da as desired.

16



Case 2: p > 4. We can crudely bound the expectation by restricting it to the

positive values of 6,

bibs .
A > ﬁp,d/ EU’U =+ R1R2(0'2 + 2u9)1/2§|p—41{§>0}] . (2u)du

102

Thanks to (12), used conditioning on the positive values of Ry, Ry, 0

b1bs
A > B,,,d/ E[jv + Ry RootP~4] - P (é > o) - (2u)du
araz
:%@mmw+&ﬂwwwm@£—ﬁ@»

Since R4 Ry <1 a.s., using (12) once more, we get a bound

E[|v+ RiRe0€[P™] > E[|R1 Rov + Ry Racé[P™*] = E(RiRo)P*E[|v + o [P~4].
Consequently, employing (17),

A> 2 fy B (RaRo) B[ + o€P ] (a} + o} — b} — 3.

d(d+2)

By a direct calculation, E(RyRp)P~% = —atd)(p—27d)°

constants and simplifying, we have

so after tracing the

1, 4 _plp=2)
BB R~ = B2 .

Proof of Theorem 2. When n = 2, we apply Lemma 6 with v = 0 directly to

the coefficient vectors b = (%, %) and a = (a1, az) for which o = 1. We get

p
—Elai&1 + a282|P > &p.a0(a),

1 1
E ‘\/551 + 552

as desired in view of (14), where

Now suppose that n > 3, a; > --- > a, > 0 and that a # (ﬁ,,ﬁ) (in
particular, a, < ﬁ) We follow a strategy from [21], namely we repetitively

17



perform the following local operation on the coefficient vector a until it becomes
the diagonal vector (ﬁ, ceey ﬁ) we take its largest coefficient aq, the smallest

one a,, replace them with a} = y/a?+a2 — 1 and o}, = ﬁ, and finally re-
arrange the coefficients of (a},az,...,an—1,al,) to be nonincreasing, calling the
resulting vector b. Since this operation strictly increases the number of coef-
ficients equal to ﬁ, after finitely many operations, we arrive at the diagonal
vector (ﬁ, ceey ﬁ) Plainly, this operation preserves the ¢ norm. This allows
to apply Lemma 6 (conditioning on the value of v = Z;L:_Ql a;&;) which yields
the following bound on the deficit coming from one operation transforming a

to b,

Ela1é1 + apés 4+ o|” —Elar&y + ans + v

—4
! Bpallv)? +0)7, 2<p<4,

> (aAll_Fafrlz_al an)'
!

SR

where, as in the lemma, 02 = a? + a2 = a2 + a/2. Moreover, averaging over the

distribution of v gives

e when 2 < p < 4, by Jensen’s inequality,

p—4
2
2 2yt 2 255 ~ 5
E(|v]* +0%) = > (Elf* +0?) = Zaj =1,
j=1
e when p > 4, by Lemma 5 (Khinchin’s inequality),
p—4
n
Elv + o€P~* > ckn Za? = CKh.
j=1

Notably, af +at —at —a/* = ||a||} —||b||, thus adding the contributions over all

operations, these ¢4 deficit differences add over a telescoping-type sum, leading
to the bound

p

P
"1 " 1 1
E —¢&| —E a;j&l > Cpa a4—H()
— \/ﬁ] ; 7157 P <|| ”4 \/ﬁ \/’77,

j=1

4

> = ¢p,ad(a),

4
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with

- 1 Bp,dv 2<p<A4,
Cpd = 5
d CKthgQ), p >4,
which after plugging in the value of 3, 4 from (9) finishes the proof. O
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