Khinchin inequalities for uniforms on spheres with a deficit

Jacek Jakimiuk[†], Colin Tang^{*}, Tomasz Tkocz^{*}

[†]Institute of Mathematics, University of Warsaw, 02-097 Warsaw, Poland.

*Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

We sharpen the moment comparison inequalities with sharp constants for sums of random vectors uniform on Euclidean spheres, providing a deficit term (optimal in high dimensions).

 $2020\ Mathematics\ Subject\ Classification.$ Primary 60E15; Secondary 26D15.

Key words. Khinchin inequality, moment comparison, stability, sums of independent random vectors uniform on spheres

1 Introduction

Sharp moment comparison inequalities (a.k.a. of the Khinchin-type, [22]) have been extensively studied (see [1, 2, 3, 5, 6, 10, 11, 12, 17, 18, 19, 23, 24, 25, 26, 27, 31, 33, 34, 35, 37]), nonetheless the investigation of their stability presently appears to be in its nascent stages and has been focused so far only on the Rademacher sums (see [2, 9, 21]), as constituting, arguably, the most fundamental case. This note makes a first step towards widening the scope of this

^{*}Email: ttkocz@math.cmu.edu. Research supported in part by NSF grant DMS-2246484.

investigation and is devoted to sharpening sharp moment comparison inequalities for sums of random vectors uniform on Euclidean spheres, which provide a natural compelling generalisation of the Rademacher distribution to Euclidean space.

1.1 New results

Cutting to the chase, our main results read as follows. (We work in \mathbb{R}^d , equipped with the standard inner product $\langle x,y\rangle = \sum_{j=1}^n x_j y_j, \, x,y \in \mathbb{R}^d$, and the endowed Euclidean norm $|x| = \sqrt{\langle x,x\rangle}$.)

Theorem 1. Let $d \geq 2$ be a fixed dimension, let ξ_1, ξ_2, \ldots be independent random vectors uniform on the unit Euclidean sphere S^{d-1} in \mathbb{R}^d and let Z be a Gaussian random vector in \mathbb{R}^d with mean 0 and covariance $\frac{1}{d}I_d$. Let $p \geq 2$. For every $n \geq 1$, every real scalars a_1, \ldots, a_n with $\sum_{j=1}^n a_j^2 = 1$, we have

$$\mathbb{E}\left|\sum_{j=1}^{n} a_{j} \xi_{j}\right|^{p} \leq \mathbb{E}|Z|^{p} - c_{p,d} \sum_{j=1}^{n} a_{j}^{4}, \tag{1}$$

where

$$c_{p,d} = \frac{(p+d-2)(p+d-4)}{24d^2(d+2)} \cdot \begin{cases} 3p(p-2), & 2 \le p \le 4, \\ 1, & p > 4. \end{cases}$$

Remark. For a fixed p, as $d \to \infty$, we have $c_{p,d} = \Theta_p(1/d)$. This is best possible, since the special case n = 1 gives the bound

$$c_{p,d} \le \mathbb{E}|Z|^p - 1 = \frac{\Gamma(\frac{p+d}{2})}{(\frac{d}{2})^{p/2}\Gamma(\frac{d}{2})} - 1 = O_p(1/d),$$

as can be checked for instance by a direct calculation using that $d \cdot |Z|^2$ follows the chi-squared distribution $\chi^2(d)$ with d-degrees of freedom which has density $\frac{1}{2^{d/2}\Gamma(d/2)}x^{d/2-1}e^{-x/2}$ on $(0,+\infty)$.

We emphasise that the Gaussian distribution is normalised so that $\mathbb{E}|Z|^2 = 1 = \mathbb{E}|\xi|^2$, that is there is equality when p = 2, so necessarily $c_{2,d} = 0$. When d = 1, the ξ_j are Rademacher random variables, that is random signs uniform on $\{-1,1\}$ and the Z_j are standard Gaussian random variables N(0,1), and when

d=2, the ξ_j are Steinhaus random variables (upon the usual identification $\mathbb{R}^2 \simeq \mathbb{C}$), both distributions playing a pivotal role in Banach space theory, see [20, 28, 39].

For coefficient vectors $a = (a_1, \ldots, a_n)$ of a fixed length n, we offer the following stability result.

Theorem 2. Let $d \geq 2$ be a fixed dimension, let ξ_1, ξ_2, \ldots be independent random vectors uniform on the unit Euclidean sphere S^{d-1} in \mathbb{R}^d . Let $p \geq 2$. For every $n \geq 2$, every real scalars a_1, \ldots, a_n with $\sum_{j=1}^n a_j^2 = 1$, we have

$$\mathbb{E}\left|\sum_{j=1}^{n} a_j \xi_j\right|^p \le \mathbb{E}\left|\sum_{j=1}^{n} \frac{1}{\sqrt{n}} \xi_j\right|^p - \tilde{c}_{p,d} \sum_{j=1}^{n} \left(\frac{1}{n} - a_j^2\right)^2, \tag{2}$$

where

$$\tilde{c}_{p,d} = \frac{p(p-2)}{4d} \begin{cases} \frac{(p+d-2)(p+d-4)}{d(d+2)}, & 2 \le p \le 4, \\ 0.385, & p > 4. \end{cases}$$

1.2 Previous work

Inequalities (1) and (2) have been previously proved without the deficit terms $O_{p,d}(\sum_{j=1}^n a_j^4)$ and $O_{p,d}(\sum_{j=1}^n (1/n - a_j^2)^2)$ respectively, by König and Kwapień in [24], and, independently, by Baernstein II and Culverhouse in [1], who de facto established a more general convexity-type result which in particular asserts that the function $(x_1,\ldots,x_n)\mapsto \mathbb{E}\left|\sqrt{x_j}\xi_j\right|^p$ is Schur-concave on \mathbb{R}^n_+ when $p\geq 2$ (see [1] for background and details). The inequality is often restated equivalently in a homogeneous form as the sharp L_p-L_2 moment comparison inequality,

$$\mathbb{E}\left|\sum_{j=1}^{n} a_j \xi_j\right|^p \le (\mathbb{E}|Z|^p) \left(\mathbb{E}\left|\sum_{j=1}^{n} a_j \xi_j\right|^2\right)^{p/2}, \qquad p \ge 2, \tag{3}$$

for all $a_1, \ldots, a_n \in \mathbb{R}$. The multiplicative constant $\mathbb{E}|Z|^p$ is sharp, as follows from the case $a_1 = \cdots = a_n = \frac{1}{\sqrt{n}}, n \to \infty$ in view of the central limit theorem.

As hinted earlier, there are few stability results, and only for Rademacher sums, that is in the case d = 1, when the ξ_j are i.i.d. uniform random signs. In this

classical setting, inequalities (1) and (2) are known to hold for all $p \geq 3$, as has been recently established by Jakimiuk in [21], albeit with a worse dependence on p of the constant $c_{p,1}$ for large p; see also Corollary 1 in [2], where this is derived as a by product of the sharp $L_p - L_4$ inequality for $p \geq 4$. Prior to Jakimiuk's work, there had been one more stability result, viz. De, Diakonikolas and Servedio in [9] found a deficit term in the celebrated Szarek's $L_1 - L_2$ inequality from [37] (see also [13] for a different approach and explicit constants). This was paralleled in [7, 16, 32] in the geometric context of stability results for maximal volume sections of ℓ_p -balls, polydisc and simplex, respectively (which themselves can be viewed as the moment comparison inequalities but in " L_{-1} "), and has found interesting applications, see [13, 30]. In a different spirit, "distributional stability" has been recently investigated in [14].

We recommend, e.g. [2, 21, 33] for further references on the pursuit of the sharp constants in the classical Khinchin inequality for random signs, as well as [19] for an account on what is known for other distributions, and [8] specifically for spherically symmetric random vectors.

2 Proofs

As in the statement of Theorems 1 and 2, throughout the rest of this paper, $\xi, \xi_1, \xi_2, \ldots$ are independent identically distributed (i.i.d.) random vectors uniform on the unit sphere $S^{d-1} = \{x \in \mathbb{R}^d, |x| = 1\}$ in \mathbb{R}^d , and Z, Z_1, Z_2, \ldots are independent of them i.i.d. Gaussian random vectors in \mathbb{R}^d with mean 0 and covariance $\frac{1}{d}I_d$.

First, we focus solely on Theorem 1. Second, having established and building on the important ideas and auxiliary lemmas, we shall prove Theorem 2.

2.1 Overview

At a high level, the main idea to tackle Theorem 1 is reminiscent of Lindeberg's swapping argument from his work [29] on the central limit theorem, which has been widely used in a variety of contexts (see e.g. [36] for historical accounts),

in particular for moment comparison inequalities (see, e.g. [3, 4, 12, 18]). This has also been Jakimiuk's approach in [21].

Specifically, for p > 0, we define the deficit,

$$D_n(a, v) = \mathbb{E}|aZ + v|^p - \mathbb{E}|a\xi + v|^p, \qquad a \in \mathbb{R}, \ v \in \mathbb{R}^d. \tag{4}$$

Suppose that it is nonnegative, $D_p(a, v) \ge 0$, for all $p \ge 2$, $a \in \mathbb{R}$ and $v \in \mathbb{R}^d$. Then, the proof of (3) goes by repeatedly swapping each ξ_j with Z_j (relying on the independence of the summands which allows in turn to condition on all but one summand that is being swapped),

$$\mathbb{E} |a_1\xi_1 + a_2\xi_2 + \dots + a_n\xi_n|^p \le \mathbb{E} |a_1Z_1 + a_2\xi_2 + \dots + a_n\xi_n|^p \le \dots$$

$$\le \mathbb{E} |a_1Z_1 + a_2Z_2 + \dots + a_nZ_n|^p$$

$$= \mathbb{E} |(a_1^2 + \dots + a_n^2)^{1/2}Z|^p.$$

Now, to make some savings and obtain a deficit term in this bound, compellingly, we would like to sharpen the bound $D_p(a, v) \ge 0$.

This task brings us asking: why is $D_p(a, v)$ nonnegative (when $p \geq 2$)? Fix $a \in \mathbb{R}, v \in \mathbb{R}^d$ and consider the function

$$h_{a,v}(t) = \mathbb{E}|v + at^{1/2}\xi|^p, \qquad t > 0.$$

The heart of the matter in both [1] and [24] is the convexity of $h_{a,v}$ on $(0, +\infty)$, for then decomposing the distribution of Z as $|Z|\xi$ (the magnitude and independent uniform direction), Jensen's inequality yields

$$\mathbb{E}|v + aZ|^p = \mathbb{E}|v + a\sqrt{|Z|^2}\xi|^p = \mathbb{E}_{|Z|}h_{a,v}(|Z|^2)$$

$$\geq h_{a,v}(\mathbb{E}|Z|^2) = h_{a,v}(1) = \mathbb{E}|v + a\xi|^p,$$

which is $D_p(a, v) \geq 0$.

As a side note, this argument is robust enough to treat arbitrary rotationally invariant random vectors whose magnitudes are comparable in the stochastic convex ordering, as done in [24], as well as other functionals than just the moments, as in [1].

2.2 Main lemmas

Our argument therefore begins with a derivation of an exact expression for the second derivative of functions $h_{a,v}$, amenable to quantitative improvements on their convexity. For greater transparency of the ensuing calculations, we follow [1] and treat arbitrary (smooth) functionals.

Lemma 3. Let Ψ be a smooth function on \mathbb{R}^d . For a fixed vector $v \in \mathbb{R}^d$, define

$$f(t) = \int_{S^{d-1}} \Psi(v + t^{1/2}x) dx, \qquad t > 0.$$

Then

$$f'(t) = \frac{1}{2} \int_{B_a^d} \Delta \Psi (v + t^{1/2} x) dx,$$
 (5)

$$f''(t) = \frac{1}{4} \int_0^1 r^{d+1} \left(\int_{B_2^d} \Delta \Delta \Psi (v + t^{1/2} r x) dx \right) dr.$$
 (6)

Proof. The approach we use was indicated in Remark 15 in [8] and is in the spirit of Lemma 4 from [1]. Plainly,

$$f'(t) = \frac{1}{2}t^{-1/2} \int_{S^{d-1}} \left\langle \nabla \Psi(v + t^{1/2}x), x \right\rangle dx.$$

Since x is the outer-normal unit vector, the divergence theorem gives

$$f'(t) = \frac{1}{2}t^{-1/2} \int_{B_2^d} \mathrm{div}_x \Big(\nabla \Psi \big(v + t^{1/2} x \big) \Big) \mathrm{d}x = \frac{1}{2} \int_{B_2^d} \Delta \Psi \big(v + t^{1/2} x \big) \mathrm{d}x.$$

To find the next derivative, note that using polar coordinates,

$$f'(t) = \frac{1}{2} \int_0^1 r^{d-1} \left(\int_{S^{d-1}} \Delta \Psi(v + t^{1/2} r x) dx \right) dr$$

and the point is that the integral over the sphere, as the function in t is of the same form as f, with the variable rescaled by r^2 . Therefore, applying the previous calculation, we get

$$f''(t) = \frac{1}{2} \int_0^1 r^{d-1} \left(\frac{1}{2} \int_{B_2^d} \Delta \Delta \Psi (v + t^{1/2} r x) \cdot r^2 dx \right) dr.$$

The workhorse of our proof will be the following quantitative bound on the deficit introduced in (4).

Lemma 4. Let $p \geq 2$. For $a \in \mathbb{R}, v \in \mathbb{R}^d$, $d \geq 2$, we have

$$D_p(a, v) \ge \kappa_{p,d} a^4 \cdot \begin{cases} (|v|^2 + 2a^2)^{\frac{p-4}{2}}, & 2 \le p \le 4, \\ |v|^{p-4}, & p > 4, \end{cases}$$

where

$$\kappa_{p,d} = \frac{p(p-2)(p+d-2)(p+d-4)}{4d^2(d+2)}.$$

Proof. If a=0, there is equality. Otherwise, by homogeneity, we can assume without loss of generality that a=1. Fix a vector v in \mathbb{R}^d and consider the function

$$g_v(t) = \mathbb{E}|v + \sqrt{t}\xi|^p, \qquad t > 0.$$

By the rotational invariance of the Gaussian distribution, Z has the same distribution as $|Z|\xi$. Thus,

$$D_p(1, v) = \mathbb{E} \left[g_v(|Z|^2) - g_v(1) \right].$$

Using Taylor's expansion with Lagrange's remainder, for t>0, there is η_t between 1 and t such that

$$g_v(t) - g_v(1) = (t-1)g_v'(1) + \frac{1}{2}(t-1)^2 g_v''(\eta_t).$$

As a result (recall $\mathbb{E}|Z|^2 = 1$),

$$D_p(1,v) = \frac{1}{2} \mathbb{E} \Big[(|Z|^2 - 1)^2 g_v''(\eta_{|Z|^2}) \Big]. \tag{7}$$

An application of (6) of Lemma 3 with $\Psi(x) = |x|^p$ yields for every $\eta > 0$,

$$g_v''(\eta) = \frac{p(p-2)(p+d-2)(p+d-4)}{4|S^{d-1}|} \int_0^1 r^{d+1} \left(\int_{B_2^d} |v + xr\sqrt{\eta}|^{p-4} dx \right) dr$$

(sweeping under the rug inessential regularity issues caused by the singularity at the origin, overcome e.g. by taking the smooth approximations $\Psi_{\delta}(x) = (|x|^2 + \delta)^{p/2}$, $\delta \downarrow 0$, see [1], eq. (1.5) for details). Writing the integral over B_2^d

in polar coordinates leads to

$$g_v''(\eta) = \beta_{p,d} \int_0^1 \int_0^1 \mathbb{E}_{\xi} |v + r_1 r_2 \sqrt{\eta} \xi|^{p-4} dr_1^d dr_2^{d+2}, \qquad \eta > 0,$$
 (8)

with

$$\beta_{p,d} = \frac{p(p-2)(p+d-2)(p+d-4)}{4d(d+2)}.$$
(9)

Note that for convenience, we have renormalised the double integral $\int_0^1 \int_0^1$ so that it is against the probability measure on $[0,1]^2$ with density $d(d+2)r_1^{d-1}r_2^{d+1}$.

Our argument lower bounding g'' now differs depending on whether p > 4.

Case 1: $2 \le p \le 4$. Let $q = \frac{p-4}{2} \le 0$. Here, we lean on the convexity of the function $x \mapsto x^q$ on $(0, +\infty)$. Rewriting (8) and using Jensen's inequality,

$$g_v''(\eta) = \beta_{p,d} \int_0^1 \int_0^1 \mathbb{E}_{\xi} (|v|^2 + 2r_1 r_2 \sqrt{\eta} \langle v, \xi \rangle + r_1^2 r_2^2 \eta)^q dr_1^d dr_2^{d+2}$$

$$\geq \beta_{p,d} \left(|v|^2 + \frac{d}{d+4} \eta \right)^q. \tag{10}$$

Plugging this back into (7) and using a crude bound $\eta_{|Z|^2} \leq \max\{1, |Z|^2\}$, we arrive at

$$D_p(1,v) \ge \frac{1}{2}\beta_{p,d}\mathbb{E}\left[(|Z|^2 - 1)^2 \left(|v|^2 + \frac{d}{d+4} \max\{1, |Z|^2\} \right)^q \right].$$

To finish off with a clean bound, we use Jensen's inequality yet again with respect to the probability measure $\frac{(|Z|^2-1)^2}{2/d}d\mathbb{P}$ and obtain

$$D_p(1,v) \ge \frac{1}{d}\beta_{p,d} \left(|v|^2 + \frac{d}{d+4} \mathbb{E}\left[\max\{1,|Z|^2\} \frac{(|Z|^2 - 1)^2}{2/d} \right] \right)^q.$$

Finally, crudely $\max\{1, |Z|^2\} \le 1 + |Z|^2$, thus

$$\mathbb{E}\left[\max\{1,|Z|^2\}\frac{(|Z|^2-1)^2}{2/d}\right] \leq \frac{d}{2}\left(\mathbb{E}(|Z|^2-1)^2 + \mathbb{E}\Big[|Z|^2(|Z|^2-1)^2\Big]\right) = 1 + \frac{d+4}{d},$$

where the last two expectations are calculated directly using that $d \cdot |Z|^2$ follows

the $\chi^2(d)$ distribution. Consequently,

$$D_p(1,v) \ge \frac{1}{d}\beta_{p,d} \left(|v|^2 + \frac{d}{d+4} + 1 \right)^q \ge \frac{1}{d}\beta_{p,d} \left(|v|^2 + 2 \right)^q.$$

Case 2: p > 4. We simply use monotonicity asserted by the following immediate consequence of (5).

Claim. Let q > 0, $v \in \mathbb{R}^d$, $d \ge 2$. Then

$$t \mapsto \mathbb{E}|v + \sqrt{t}\xi|^q$$
 increases on $(0, +\infty)$.

In particular,

$$\mathbb{E}|v + \sqrt{t}\xi|^q \ge |v|^q,\tag{11}$$

and, thanks to rotational invariance,

$$(v,t) \mapsto \mathbb{E}|v+\sqrt{t}\xi|^q = \mathbb{E}\big||v|\xi'+\sqrt{t}\xi\big|^q$$
 increases both in t and $|v|$. (12)

Indeed, by (5),

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbb{E}|v + \sqrt{t}\xi|^q = \frac{q(q + d - 2)}{2|S^{d-1}|} \int_{B_2^d} |v + \sqrt{t}x|^{q-2} \mathrm{d}x \ge 0.$$

Therefore, using (8),

$$g_v''(\eta) \ge \beta_{p,d} |v|^{p-4}$$

(deterministically, for every $\eta > 0$). Plugging this pointwise bound into (7) gives

$$D_p(1,v) \ge \frac{1}{2} \mathbb{E} \Big[(|Z|^2 - 1)^2 \Big] \beta_{p,d} |v|^{p-4}.$$

Since $\mathbb{E}\left[(|Z|^2-1)^2\right]=\frac{2}{d}$, we obtain $D_p(1,v)\geq \frac{1}{d}\beta_{p,d}|v|^{p-4}$, that is the lemma holds with $\kappa_{p,d}=\frac{1}{d}\beta_{p,d}$, as desired.

2.3 An auxiliary lemma

In order to handle the averages of the terms $\mathbb{E}|v|^{p-4}$ coming from the bound on D_p in the case p > 4, with v being sums of uniforms of spheres, we shall

need some sort of concentration. For simplicity, we choose to use Khinchin-type inequalities (which in fact yields explicit and decent values of the constants involved).

Lemma 5. Let $d \ge 2$. There is a universal constant $c_{Kh} > 0$ such that for all real numbers a_1, a_2, \ldots and q > 0, we have

$$\mathbb{E}\left|\sum_{j=1}^n a_j \xi_j\right|^q \ge c_{\mathrm{Kh}} \left(\sum_{j=1}^n a_j^2\right)^{q/2}.$$

One can take $c_{Kh} = 0.77$. In particular, the same inequality holds if any of the variables ξ_j is replaced by Z_j .

Proof. When $q \geq 2$, the inequality plainly holds with constant 1 (by Jensen's inequality). When 0 < q < 2, let $c_{d,q}$ be the best constant such that the Khinchin-type inequality

$$\mathbb{E}\left|\sum_{j=1}^{n} a_j \xi_j\right|^q \ge c_{d,q} \left(\sum_{j=1}^{n} a_j^2\right)^{q/2}$$

holds for all $n \ge 1$ and all scalars a_j . It is the main result of [5, 23, 24] that

$$c_{d,q} = \min\{2^{-q/2}\mathbb{E}|\xi_1 + \xi_2|^q, \mathbb{E}|Z|^q\}.$$

(see also [8]), and it is known that when $d \ge 3$, this minimum is attained at the second term, $\mathbb{E}|Z|^q$, which we now lower bound. We have,

$$\mathbb{E}|Z|^q = \frac{\Gamma(\frac{q+d}{2})}{\left(\frac{d}{2}\right)^{q/2}\Gamma(\frac{d}{2})}.$$

By the log-convexity of the Gamma function, for x > 0 and 0 < s < 1,

$$\Gamma(x+1) = \Gamma(s(x+s) + (1-s)(x+s+1))$$

$$\leq \Gamma(x+s)^s \Gamma(x+s+1)^{1-s} = (x+s)^{1-s} \Gamma(x+s)$$
(13)

which is Wendel's inequality, [38], resulting in

$$\frac{\Gamma(x+s)}{x^s\Gamma(x)} \ge \left(\frac{x}{x+s}\right)^{1-s}.$$

Applied to $x = \frac{d}{2} \ge 1$, $s = \frac{q}{2}$, we obtain

$$\mathbb{E}|Z|^q \ge \frac{1}{(1+s)^{1-s}} \ge e^{-s(1-s)} \ge e^{-1/4} > 0.778.$$

It remains to lower bound the first term $2^{-q/2}\mathbb{E}|\xi_1+\xi_2|^q$ when d=2. We have,

$$2^{-q/2}\mathbb{E}|\xi_1 + \xi_2|^q = 2^{q/2} \frac{\Gamma(\frac{q}{2} + \frac{1}{2})}{\sqrt{\pi}\Gamma(\frac{q}{2} + 1)}.$$

Again, by virtue of (13), applied this time with $x = \frac{q}{2}, s = \frac{1}{2}$, we get

$$2^{-q/2}\mathbb{E}|\xi_1 + \xi_2|^q \ge \frac{2^{\frac{q+1}{2}}}{\sqrt{\pi(q+1)}}.$$

The right hand side is minimised at $q = \frac{1}{\log 2} - 1$ attaining value 0.774.., which finishes the proof.

2.4 Proof of Theorem 1

We shall follow the traditional notation $||a||_p = (\sum |a_j|^p)^{1/p}$, $||a||_{\infty} = \max_j |a_j|$ for the ℓ_p norms of a vector $a = (a_1, \ldots, a_n)$ in \mathbb{R}^n .

The proof uses two different arguments: when $||a||_{\infty}$ is bounded away from 1, we shall (iteratively) use the pointwise bounds from Lemma 4 resulting with the deficit of the order $||a||_4$, whereas in the oppose case we easily get a constant deficit (i.e. independent of a), leveraging the Schur concavity of the moment functional. With hindsight, we choose the following cut-off for the ℓ_{∞} norm,

$$m_p = \begin{cases} 1, & 2 \le p \le 4, \\ \sqrt{1 - 2^{-\frac{1}{p-4}}}, & p > 4. \end{cases}$$

Case 1: $||a||_{\infty} \leq m_p$. (Clarification: when $2 \leq p \leq 4$ this case is exhaustive, since $m_p = 1$.) We use the classical Lindeberg's swapping argument. To this

end, we define

$$S_0 = \sum_{j=1}^{n} a_j \xi_j,$$

$$S_k = \sum_{j=1}^{k} a_j Z_j + \sum_{j=k+1}^{n} a_j \xi_j, \qquad k = 1, \dots, n$$

and break the deficit up with a telescoping sum,

$$\mathbb{E}|Z|^p - \mathbb{E}|S_0|^p = \sum_{k=1}^n (\mathbb{E}|S_k|^p - \mathbb{E}|S_{k-1}|^p).$$

Note that the sums S_k and S_{k-1} only differ by the k-th term which is $a_k Z_k$ and $a_k \xi_k$, respectively. Letting

$$v_k = \sum_{j=1}^{k-1} a_j Z_j + \sum_{j=k+1}^n a_j \xi_j$$

and using the notation from (4), we have

$$\mathbb{E}|S_{k+1}|^p - \mathbb{E}|S_k|^p = \mathbb{E}D_p(a_k, v_k).$$

By Lemma 4,

$$\mathbb{E}D_p(a_k, v_k) \ge \kappa_{p,d} a_k^4 \begin{cases} \mathbb{E}(|v_k|^2 + 2a_k^2)^{\frac{p-4}{2}}, & 2 \le p \le 4, \\ \mathbb{E}|v_k|^{p-4}, & p > 4. \end{cases}$$

Observe that $\mathbb{E}|v_k|^2 = \sum_{j \neq k} a_j^2 = 1 - a_k^2$.

When $2 \le p \le 4$, Jensen's inequality yields

$$\mathbb{E}D_p(a_k, v_k) \ge \kappa_{p,d} a_k^4 (1 - a_k^2 + 2a_k^2)^{\frac{p-4}{2}} = \kappa_{p,d} a_k^4 (1 + a_k^2)^{\frac{p-4}{2}} \ge \frac{1}{2} \kappa_{p,d} a_k^4.$$

Summing these bounds over $1 \le k \le n$ gives the result and finishes the proof.

When p>4, Lemma 5 and a crude bound $1-a_k^2\geq 1-\|a\|_\infty^2\geq 1-m_p^2=2^{-\frac{1}{p-4}}$ yield

$$\mathbb{E}D_p(a_k, v_k) \ge c_{\mathrm{Kh}} \kappa_{p,d} a_k^4 (1 - a_k^2)^{\frac{p-4}{2}} \ge 2^{-1/2} c_{\mathrm{Kh}} \kappa_{p,d} a_k^4 > \frac{1}{2} \kappa_{p,d} a_k^4.$$

Summing these bounds over $1 \le k \le n$ gives the result.

Case 2: $||a||_{\infty} > m_p$. Clarification: when $2 \le p \le 4$, $m_p = 1$, this case is empty, and the proof has already been completed, so we implicitly assume that p > 4. Here we simply use the Schur concavity of

$$\mathbb{R}^n_+ \ni x \mapsto \mathbb{E} \left| \sum_{j=1}^n \sqrt{x_j} \xi_j \right|^p$$

known from [1] to hold in every dimension $d \geq 2$ as long as $p \geq 2$. Say $a_1 = \|a\|_{\infty}$. Then the vector (a_1^2, \dots, a_n^2) majorises the vector $(m_p^2, \frac{1-m_p^2}{n-1}, \dots, \frac{1-m_p^2}{n-1})$, provided that $m_p^2 \geq \frac{1-m_p^2}{n-1}$, equivalently $nm_p^2 \geq 1$, and we obtain

$$\mathbb{E} \left| \sum_{j=1}^{n} a_{j} \xi_{j} \right|^{p} \leq \mathbb{E} \left| m_{p} \xi_{1} + \sqrt{\frac{1 - m_{p}^{2}}{n - 1}} (\xi_{2} + \dots + \xi_{n-1}) \right|^{p}.$$

We can apply Case 1 to the right hand side, which results in

$$\mathbb{E}\left|\sum_{j=1}^{n} a_{j} \xi_{j}\right|^{p} \leq \mathbb{E}|Z|^{p} - \frac{1}{2} \kappa_{p,d} \left(m_{p}^{4} + \frac{(1 - m_{p}^{2})^{2}}{n - 1}\right) \leq \mathbb{E}|Z|^{p} - \frac{1}{2} \kappa_{p,d} m_{p}^{4}$$

Note that $\|a\|_4 \leq \|a\|_2 = 1$. For cosmetics, say $m_p^4 = (1 - 2^{-1/(p-4)})^2 > \frac{1}{3p(p-2)}$ which gives the constant $c_{p,d}$ from the statement of the theorem. Finally, if $nm_p^2 < 1$, we take an integer $N \geq 2$ such that $N \geq \frac{1}{m_p^2}$ and observe that $(a_1^2, \ldots, a_n^2, \underbrace{0, \ldots, 0}_{N-n})$ majorises the vector $(m_p^2, \frac{1-m_p^2}{N-1}, \ldots, \frac{1-m_p^2}{N-1})$, so that we can repeat the last part of the argument verbatim to finish the proof.

2.5 Proof of Theorem 2

Exactly as for Theorem 1, the argument here will be driven by tracking the deficit along *local* changes to the coefficient vector $a = (a_1, \ldots, a_n)$ performed to make it progressively closer to the extremising diagonal one $(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}})$. The next lemma will facilitate that. We denote the deficit term from Theorem 2

by $\delta(a)$,

$$\delta(a) = \sum_{j=1}^{n} \left(\frac{1}{n} - a_j^2\right)^2$$

and note that with the ℓ_2 normalisation $\sum_{j=1}^n a_j^2 = 1$,

$$\delta(a) = \sum_{j=1}^{n} a_j^4 - \frac{1}{n} = \sum_{j=1}^{n} a_j^4 - \sum_{j=1}^{n} \frac{1}{\sqrt{n^4}},\tag{14}$$

that is the deficit term can be equivalently derived by comparing the changes of the ℓ_4 norms of the coefficient vectors.

Lemma 6. Let $p \geq 2$. Suppose that $a_1 \geq b_1 \geq b_2 \geq a_2 > 0$ with $a_1^2 + a_2^2 = b_1^2 + b_2^2 = \sigma^2$ for some $\sigma > 0$. For every vector v in \mathbb{R}^d , $d \geq 2$, we have

$$\mathbb{E} |b_1 \xi_1 + b_2 \xi_2 + v|^p - \mathbb{E} |a_1 \xi_1 + a_2 \xi_2 + v|^p$$

$$\geq \frac{1}{d} (a_1^4 + a_2^4 - b_1^4 - b_2^4) \cdot \begin{cases} \beta_{p,d} (|v|^2 + \sigma^2)^{\frac{p-4}{2}}, & 2 \leq p \leq 4, \\ \frac{p(p-2)}{8} \mathbb{E} |v + \sigma \xi|^{p-4}, & p > 4, \end{cases}$$

$$(15)$$

with $\beta_{p,d}$ defined in (9).

 ${\it Proof.}$ Recall that Lemma 3 provides us with good expressions for the derivatives of the function

$$g_v(t) = \mathbb{E}|v + \sqrt{t}\xi|^p, \qquad t \ge 0$$

and this very function emerges naturally: thanks to independence and rotational invariance of the ensuing random vectors,

$$\mathbb{E}|a_1\xi_1 + a_2\xi_2 + v|^p = \mathbb{E}||a_1\xi_1 + a_2\xi_2|\xi + v|^p = \mathbb{E}g_v(|a_1\xi_1 + a_2\xi_2|^2)$$
$$= \mathbb{E}g_v(\sigma^2 + 2a_1a_2\theta),$$

where the last expectation is with respect to a random variable θ which has the same distribution as a one-dimensional marginal of ξ , say $\theta = \langle \xi, e_1 \rangle$. With $\sigma > 0$ fixed, we set

$$h(u) = \mathbb{E}[g_v(\sigma^2 + 2u\theta)], \quad u > 0.$$

Then the deficit of interest becomes

$$\Delta = \mathbb{E} |b_1 \xi_1 + b_2 \xi_2 + v|^p - \mathbb{E} |a_1 \xi_1 + a_2 \xi_2 + v|^p = h(b_1 b_2) - h(a_1 a_2)$$
$$= \int_{a_1 a_2}^{b_1 b_2} h'(u) du.$$

Plainly,

$$h'(u) = 2\mathbb{E}[g'_v(\sigma^2 + 2u\theta)\theta].$$

To manoeuvrer this into a more convenient expression, we shall use an integration by parts formula for θ .

Claim. Let $d \geq 2$ and $\xi, \tilde{\xi}$ be uniform on S^{d-1} , S^{d+1} respectively. For random variables $\theta = \langle \xi, e_1 \rangle$, $\tilde{\theta} = \langle \tilde{\xi}, e_1 \rangle$ and a function f differentiable on (-1,1) such that $f(x)(1-x^2)^{\frac{d-1}{2}} \to 0$ as $x \to \pm 1$, we have

$$\mathbb{E}[f(\theta)\theta] = \frac{1}{d}\mathbb{E}[f'(\tilde{\theta})]. \tag{16}$$

Proof. One can check that θ has density $\frac{1}{A_d}(1-x^2)^{\frac{d-3}{2}}\mathbf{1}_{(-1,1)}(x)$ with the normalising constant $A_d = \sqrt{\pi} \frac{\Gamma(\frac{d-1}{2})}{\Gamma(\frac{d}{2})}, d \geq 2$. Integration by parts yields

$$\begin{split} \mathbb{E}\big[f(\theta)\theta\big] &= \frac{1}{A_d} \int_{-1}^1 f(x) x (1-x^2)^{\frac{d-3}{2}} \mathrm{d}x = \frac{1}{A_d} \int_{-1}^1 f(x) \Big(-\frac{1}{d-1} (1-x^2)^{\frac{d-1}{2}} \Big)' \mathrm{d}x \\ &= -\frac{1}{(d-1)A_d} f(x) (1-x^2)^{\frac{d-1}{2}} \bigg|_{-1}^1 + \frac{1}{(d-1)A_d} \int_{-1}^1 f'(x) (1-x^2)^{\frac{d-1}{2}} \mathrm{d}x \\ &= \frac{A_{d+2}}{(d-1)A_d} \mathbb{E}\big[f'(\tilde{\theta})\big] \end{split}$$

and
$$\frac{A_{d+2}}{(d-1)A_d} = \frac{1}{d}$$
, as claimed.

Applying the claim to $f(x) = g'_v(\sigma^2 + 2ux)$ gives

$$h'(u) = \frac{2}{d} \mathbb{E} \Big[g_v''(\sigma^2 + 2u\tilde{\theta}) \cdot (2u) \Big]$$

where the expectation is over the distribution of θ from the statement of the

claim. Moreover, evoking (8),

$$g_v''(t) = \beta_{p,d} \mathbb{E}|v + R_1 R_2 \sqrt{t} \xi|^{p-4},$$

where, to compactify the notation, we let (R_1, R_2) be random variables with joint density $dr_1^d dr_2^{d+2}$ on $(0, 1)^2$.

Putting these together,

$$h'(u) = \tilde{\beta}_{p,d} \mathbb{E}[|v + R_1 R_2 (\sigma^2 + 2u\tilde{\theta})^{1/2} \xi|^{p-4}] \cdot (2u)$$

with

$$\tilde{\beta}_{p,d} = \frac{2}{d}\beta_{p,d}$$

and the expectation taken over the product distribution of $R_1, R_2, \tilde{\theta}, \xi$. Thus, we arrive at

$$\Delta = \tilde{\beta}_{p,d} \int_{a_1 a_2}^{b_1 b_2} \mathbb{E} \left[|v + R_1 R_2 (\sigma^2 + 2u\tilde{\theta})^{1/2} \xi|^{p-4} \right] \cdot (2u) du.$$

As before, we now break the analysis into two cases depending on whether p > 4.

Case 1: $2 \le p \le 4$. As in Lemma 4, letting $q = \frac{p-4}{2}$ and using the point-wise bound (10), we get

$$\Delta \geq \tilde{\beta}_{p,d} \int_{a_1 a_2}^{b_1 b_2} (2u) \cdot \mathbb{E} \left[\left(|v|^2 + \frac{d}{d+4} (\sigma^2 + 2u\tilde{\theta}) \right)^q \right] \mathrm{d}u.$$

Since $\mathbb{E}\tilde{\theta} = 0$, Jensen's inequality and a further simple cosmetic bound $\frac{d}{d+4} < 1$ allow to lower-bound the expectation by $(|v|^2 + \sigma^2)^q$ which results in

$$\Delta \ge \tilde{\beta}_{p,d}(|v|^2 + \sigma^2)^q (b_1^2 b_2^2 - a_1^2 a_2^2).$$

Finally, as a result of the constraint $a_1^2 + a_2^2 = b_1^2 + b_2^2$

$$0 = (b_1^2 + b_2^2)^2 - (a_1^2 + a_2^2)^2 = b_1^4 + b_2^4 - (a_1^4 + a_2^4) + 2(b_1^2b_2^2 - a_1^2a_2^2),$$

so

$$b_1^2 b_2^2 - a_1^2 a_2^2 = \frac{1}{2} (a_1^4 + a_2^4 - b_1^4 - b_2^4)$$
 (17)

and we are done with the proof in this case with constant $\frac{1}{2}\tilde{\beta}_{p,d}$, as desired.

Case 2: p > 4. We can crudely bound the expectation by restricting it to the positive values of $\tilde{\theta}$,

$$\Delta \ge \tilde{\beta}_{p,d} \int_{a_1 a_2}^{b_1 b_2} \mathbb{E} \left[|v + R_1 R_2 (\sigma^2 + 2u\tilde{\theta})^{1/2} \xi|^{p-4} \mathbf{1}_{\{\tilde{\theta} > 0\}} \right] \cdot (2u) du$$

Thanks to (12), used conditioning on the positive values of $R_1, R_2, \tilde{\theta}$,

$$\Delta \ge \tilde{\beta}_{p,d} \int_{a_1 a_2}^{b_1 b_2} \mathbb{E} [|v + R_1 R_2 \sigma \xi|^{p-4}] \cdot \mathbb{P} \left(\tilde{\theta} > 0 \right) \cdot (2u) du$$
$$= \frac{1}{2} \tilde{\beta}_{p,d} \mathbb{E} [|v + R_1 R_2 \sigma \xi|^{p-4}] (b_1^2 b_2^2 - a_1^2 a_2^2).$$

Since $R_1R_2 \leq 1$ a.s., using (12) once more, we get a bound

$$\mathbb{E}[|v + R_1 R_2 \sigma \xi|^{p-4}] \ge \mathbb{E}[|R_1 R_2 v + R_1 R_2 \sigma \xi|^{p-4}] = \mathbb{E}(R_1 R_2)^{p-4} \mathbb{E}[|v + \sigma \xi|^{p-4}].$$

Consequently, employing (17),

$$\Delta \ge \frac{1}{4}\tilde{\beta}_{p,d}\mathbb{E}(R_1R_2)^{p-4}\mathbb{E}[|v+\sigma\xi|^{p-4}](a_1^4 + a_2^4 - b_1^4 - b_2^4).$$

By a direct calculation, $\mathbb{E}(R_1R_2)^{p-4} = \frac{d(d+2)}{(p-4+d)(p-2+d)}$, so after tracing the constants and simplifying, we have

$$\frac{1}{4}\tilde{\beta}_{p,d}\mathbb{E}(R_1R_2)^{p-4} = \frac{p(p-2)}{8d}.$$

Proof of Theorem 2. When n=2, we apply Lemma 6 with v=0 directly to the coefficient vectors $b=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ and $a=(a_1,a_2)$ for which $\sigma=1$. We get

$$\mathbb{E} \left| \frac{1}{\sqrt{2}} \xi_1 + \frac{1}{\sqrt{2}} \xi_2 \right|^p - \mathbb{E} |a_1 \xi_1 + a_2 \xi_2|^p \ge \tilde{c}_{p,d} \delta(a),$$

as desired in view of (14), where

$$\tilde{c}_{p,d} = \frac{1}{d} \cdot \begin{cases} \beta_{p,d}, & 2 \le p \le 4, \\ \frac{p(p-2)}{8}, & p > 4. \end{cases}$$

Now suppose that $n \geq 3$, $a_1 \geq \cdots \geq a_n > 0$ and that $a \neq (\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}})$ (in particular, $a_n < \frac{1}{\sqrt{n}}$). We follow a strategy from [21], namely we repetitively

perform the following local operation on the coefficient vector a until it becomes the diagonal vector $(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}})$: we take its largest coefficient a_1 , the smallest one a_n , replace them with $a'_1 = \sqrt{a_1^2 + a_n^2 - \frac{1}{n}}$ and $a'_n = \frac{1}{\sqrt{n}}$, and finally rearrange the coefficients of $(a'_1, a_2, \ldots, a_{n-1}, a'_n)$ to be nonincreasing, calling the resulting vector b. Since this operation strictly increases the number of coefficients equal to $\frac{1}{\sqrt{n}}$, after finitely many operations, we arrive at the diagonal vector $(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}})$. Plainly, this operation preserves the ℓ_2 norm. This allows to apply Lemma 6 (conditioning on the value of $v = \sum_{j=2}^{n-1} a_j \xi_j$) which yields the following bound on the deficit coming from one operation transforming a to b,

$$\mathbb{E} |a_1'\xi_1 + a_n'\xi_2 + v|^p - \mathbb{E} |a_1\xi_1 + a_n\xi_2 + v|^p$$

$$\geq \frac{1}{d} (a_1^4 + a_n^4 - a_1'^4 - a_n'^4) \cdot \begin{cases} \beta_{p,d} (|v|^2 + \sigma^2)^{\frac{p-4}{2}}, & 2 \leq p \leq 4, \\ \frac{p(p-2)}{8} \mathbb{E} |v + \sigma \xi|^{p-4}, & p > 4, \end{cases}$$

where, as in the lemma, $\sigma^2 = a_1^2 + a_n^2 = a_1'^2 + a_n'^2$. Moreover, averaging over the distribution of v gives

• when $2 \le p \le 4$, by Jensen's inequality,

$$\mathbb{E}(|v|^2 + \sigma^2)^{\frac{p-4}{2}} \ge (\mathbb{E}|v|^2 + \sigma^2)^{\frac{p-4}{2}} = \left(\sum_{j=1}^n a_j^2\right)^{\frac{p-4}{2}} = 1,$$

• when p > 4, by Lemma 5 (Khinchin's inequality),

$$\mathbb{E}|v + \sigma \xi|^{p-4} \ge c_{\mathrm{Kh}} \left(\sum_{j=1}^{n} a_j^2\right)^{p-4} = c_{\mathrm{Kh}}.$$

Notably, $a_1^4 + a_n^4 - a_1'^4 - a_n'^4 = ||a||_4^4 - ||b||_4^4$, thus adding the contributions over all operations, these ℓ_4 deficit differences add over a telescoping-type sum, leading to the bound

$$\mathbb{E}\left|\sum_{j=1}^{n} \frac{1}{\sqrt{n}} \xi_{j}\right|^{p} - \mathbb{E}\left|\sum_{j=1}^{n} a_{j} \xi_{j}\right|^{p} \geq \tilde{c}_{p,d} \left(\|a\|_{4}^{4} - \left\|\left(\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right)\right\|_{4}^{4}\right) = \tilde{c}_{p,d} \delta(a),$$

with

$$\tilde{c}_{p,d} = \frac{1}{d} \begin{cases} \beta_{p,d}, & 2 \le p \le 4, \\ c_{\text{Kh}} \frac{p(p-2)}{8}, & p > 4, \end{cases}$$

which after plugging in the value of $\beta_{p,d}$ from (9) finishes the proof.

References

- [1] Baernstein, A., II, Culverhouse, R., Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions. *Studia Math.* 152 (2002), no. 3, 231–248.
- [2] Barański, A., Murawski, D., Nayar, P., Oleszkiewicz, K., On the optimal L_p-L_4 Khintchine inequality. Preprint (2025): arXiv:2503.11869.
- [3] Barthe, F., Naor, A., Hyperplane projections of the unit ball of ℓ_p^n . Discrete Comput. Geom. 27 (2002), no. 2, 215–226.
- [4] Chasapis, G., Eskenazis, A., Tkocz, T., Sharp Rosenthal-type inequalities for mixtures and log-concave variables. Bull. Lond. Math. Soc. 55 (2023), no. 3, 1222–1239.
- [5] Chasapis, G., Gurushankar, K., Tkocz, T., Sharp bounds on p-norms for sums of independent uniform random variables, 0 . J. Anal. Math. 149 (2023), no. 2, 529–553.
- [6] Chasapis, G., König, H., Tkocz, T., From Ball's cube slicing inequality to Khinchin-type inequalities for negative moments. J. Funct. Anal. 281 (2021), no. 9, Paper No. 109185, 23 pp.
- [7] Chasapis, G., Nayar P., Tkocz, T., Slicing ℓ_p -balls reloaded: Stability, planar sections in ℓ_1 . Ann. Probab. 50 (2022), no. 6, 2344–2372.
- [8] Chasapis, G., Singh, S., Tkocz, T., Haagerup's phase transition at polydisc slicing. Anal. PDE 17 (2024), no. 7, 2509–2539.
- [9] De, A., Ilias Diakonikolas, I., Rocco A. S., A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and highdimensional geometry. SIAM J. Discrete Math. 30 (2016), no. 2, 1058–1094.

- [10] Eitan, Y., The centered convex body whose marginals have the heaviest tails. Studia Math. 274 (2024), no. 3, 201–215.
- [11] Eskenazis, A., Nayar, P., Tkocz, T., Gaussian mixtures: entropy and geometric inequalities. Ann. Probab. 46 (2018), no. 5, 2908–2945.
- [12] Eskenazis, A., Nayar, P., Tkocz, T., Sharp comparison of moments and the log-concave moment problem. Adv. Math. 334 (2018), 389–416.
- [13] Eskenazis, A., Nayar, P., Tkocz, T., Resilience of cube slicing in ℓ_p . Duke Math. J. 173 (2024), no. 17, 3377–3412.
- [14] Eskenazis, A., Nayar, P., Tkocz, T., Distributional stability of the Szarek and Ball inequalities. Math. Ann. 389 (2024), no. 2, 1161–1185.
- [15] Figiel, T., Hitczenko, P., Johnson, W. B., Schechtman, G., Zinn, J., Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities. Trans. Amer. Math. Soc. 349 (1997), no. 3, 997–1027.
- [16] Glover, N., Tkocz, T., Wyczesany, K., Stability of polydisc slicing. Mathematika 69 (2023), no. 4, 1165–1182.
- [17] Haagerup, U., The best constants in the Khintchine inequality. Studia Math. 70 (1981), no. 3, 231–283.
- [18] Havrilla, A., Nayar, P., Tkocz, T., Khinchin-type inequalities via Hadamard's factorisation, Int. Math. Res. Not. IMRN 2023, no. 3, 2429– 2445.
- [19] Havrilla, A., Tkocz, T., Sharp Khinchin-type inequalities for symmetric discrete uniform random variables. Israel J. Math. 246 (2021), no. 1, 281– 297.
- [20] Hytönen, T., van Neerven, J., Veraar, M., Weis, L., Analysis in Banach spaces. Vol. II. Martingales and Littlewood-Paley theory. Series of Modern Surveys in Mathematics 63. Springer, Cham, 2016.
- [21] Jakimiuk, J., Stability of Khintchine inequalities with optimal constants between the second and the p-th moment for $p \geq 3$, Preprint (2025): arXiv:2503.07001.
- [22] Khintchine, A., Über dyadische Brüche. Math. Z. 18 (1923), no. 1, 109–116.

- [23] König, H., On the best constants in the Khintchine inequality for Steinhaus variables. Israel J. Math. 203 (2014), no. 1, 23–57.
- [24] König, H., Kwapień, S., Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors. Positivity 5 (2001), no. 2, 115–152.
- [25] Kwapień, S., Latała, R., Oleszkiewicz, K., Comparison of moments of sums of independent random variables and differential inequalities. J. Funct. Anal. 136 (1996), no. 1, 258–268.
- [26] Latała, R., Oleszkiewicz, K., On the best constant in the Khinchin-Kahane inequality. Studia Math. 109 (1994), no. 1, 101–104.
- [27] Latała, R., Oleszkiewicz, K., A note on sums of independent uniformly distributed random variables. Colloq. Math. 68 (1995), no. 2, 197–206.
- [28] Ledoux, M., Talagrand, M., Probability in Banach spaces. Isoperimetry and processes. Springer-Verlag, Berlin, 1991.
- [29] Lindeberg, J. W., Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Math. Z. 15 (1922), no. 1, 211–225.
- [30] Melbourne, J., Roberto, C., Quantitative form of Ball's cube slicing in Rn and equality cases in the min-entropy power inequality. Proc. Amer. Math. Soc. 150 (2022), no. 8, 3595–3611.
- [31] Melbourne, J., Roysdon, M., Tang, C., Tkocz, T., From simplex slicing to sharp reverse Hölder inequalities. Preprint (2025): arXiv:2505.00944.
- [32] Myroshnychenko, S., Tang, C., Tatarko, K., Tkocz, T., Stability of simplex slicing. Preprint (2024): arXiv:2403.11994.
- [33] Nayar, P., Oleszkiewicz, K., Khinchine type inequalities with optimal constants via ultra log-concavity. Positivity 16 (2012), no. 2, 359–371.
- [34] Newman, C. M., An extension of Khintchine's inequality. Bull. Amer. Math. Soc. 81 (1975), no. 5, 913–915.
- [35] Oleszkiewicz, K., Comparison of moments via Poincaré-type inequality. Advances in stochastic inequalities (Atlanta, GA, 1997), 135–148, Contemp. Math., 234, Amer. Math. Soc., Providence, RI, 1999.

- [36] Paulauskas, V.; Račkauskas, A. Approximation theory in the central limit theorem. Exact results in Banach spaces. Math. Appl. (Soviet Ser.), 32 Kluwer Academic Publishers Group, Dordrecht, 1989.
- [37] Szarek, S., On the best constant in the Khintchine inequality. Stud. Math. 58, 197–208 (1976).
- [38] Wendel, J. G., Note on the gamma function. Amer. Math. Monthly 55 (1948), 563–564.
- [39] Wojtaszczyk, P. Banach spaces for analysts. Cambridge Studies in Advanced Mathematics, 25. Cambridge University Press, Cambridge, 1991