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1 Introduction

Sharp moment comparison inequalities (a.k.a. of the Khinchin-type, [22]) have

been extensively studied (see [1, 2, 3, 5, 6, 10, 11, 12, 17, 18, 19, 23, 24, 25, 26,

27, 31, 33, 34, 35, 37]), nonetheless the investigation of their stability presently

appears to be in its nascent stages and has been focused so far only on the

Rademacher sums (see [2, 9, 21]), as constituting, arguably, the most funda-

mental case. This note makes a first step towards widening the scope of this

∗Email: ttkocz@math.cmu.edu. Research supported in part by NSF grant DMS-2246484.
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investigation and is devoted to sharpening sharp moment comparison inequali-

ties for sums of random vectors uniform on Euclidean spheres, which provide a

natural compelling generalisation of the Rademacher distribution to Euclidean

space.

1.1 New results

Cutting to the chase, our main results read as follows. (We work in Rd, equipped

with the standard inner product 〈x, y〉 =
∑n
j=1 xjyj , x, y ∈ Rd, and the endowed

Euclidean norm |x| =
√
〈x, x〉.)

Theorem 1. Let d ≥ 2 be a fixed dimension, let ξ1, ξ2, . . . be independent

random vectors uniform on the unit Euclidean sphere Sd−1 in Rd and let Z be

a Gaussian random vector in Rd with mean 0 and covariance 1
dId. Let p ≥ 2.

For every n ≥ 1, every real scalars a1, . . . , an with
∑n
j=1 a

2
j = 1, we have

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
p

≤ E|Z|p − cp,d
n∑
j=1

a4
j , (1)

where

cp,d =
(p+ d− 2)(p+ d− 4)

24d2(d+ 2)
·

3p(p− 2), 2 ≤ p ≤ 4,

1, p > 4.

Remark. For a fixed p, as d→∞, we have cp,d = Θp(1/d). This is best possible,

since the special case n = 1 gives the bound

cp,d ≤ E|Z|p − 1 =
Γ(p+d2 )

(d2 )p/2Γ(d2 )
− 1 = Op(1/d),

as can be checked for instance by a direct calculation using that d · |Z|2 follows

the chi-squared distribution χ2(d) with d-degrees of freedom which has density
1

2d/2Γ(d/2)
xd/2−1e−x/2 on (0,+∞).

We emphasise that the Gaussian distribution is normalised so that E|Z|2 =

1 = E|ξ|2, that is there is equality when p = 2, so necessarily c2,d = 0. When

d = 1, the ξj are Rademacher random variables, that is random signs uniform on

{−1, 1} and the Zj are standard Gaussian random variables N(0, 1), and when
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d = 2, the ξj are Steinhaus random variables (upon the usual identification

R2 ' C), both distributions playing a pivotal role in Banach space theory, see

[20, 28, 39].

For coefficient vectors a = (a1, . . . , an) of a fixed length n, we offer the following

stability result.

Theorem 2. Let d ≥ 2 be a fixed dimension, let ξ1, ξ2, . . . be independent

random vectors uniform on the unit Euclidean sphere Sd−1 in Rd. Let p ≥ 2.

For every n ≥ 2, every real scalars a1, . . . , an with
∑n
j=1 a

2
j = 1, we have

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
p

≤ E

∣∣∣∣∣∣
n∑
j=1

1√
n
ξj

∣∣∣∣∣∣
p

− c̃p,d
n∑
j=1

(
1

n
− a2

j

)2

, (2)

where

c̃p,d =
p(p− 2)

4d


(p+d−2)(p+d−4)

d(d+2) , 2 ≤ p ≤ 4,

0.385, p > 4.

1.2 Previous work

Inequalities (1) and (2) have been previously proved without the deficit terms

Op,d(
∑n
j=1 a

4
j ) and Op,d(

∑n
j=1(1/n− a2

j )
2) respectively, by König and Kwapień

in [24], and, independently, by Baernstein II and Culverhouse in [1], who de facto

established a more general convexity-type result which in particular asserts that

the function (x1, . . . , xn) 7→ E
∣∣√xjξj∣∣p is Schur-concave on Rn+ when p ≥ 2 (see

[1] for background and details). The inequality is often restated equivalently in

a homogeneous form as the sharp Lp − L2 moment comparison inequality,

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
p

≤ (E|Z|p)

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
2

p/2

, p ≥ 2, (3)

for all a1, . . . , an ∈ R. The multiplicative constant E|Z|p is sharp, as follows

from the case a1 = · · · = an = 1√
n

, n→∞ in view of the central limit theorem.

As hinted earlier, there are few stability results, and only for Rademacher sums,

that is in the case d = 1, when the ξj are i.i.d. uniform random signs. In this
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classical setting, inequalities (1) and (2) are known to hold for all p ≥ 3, as has

been recently established by Jakimiuk in [21], albeit with a worse dependence on

p of the constant cp,1 for large p; see also Corollary 1 in [2], where this is derived

as a by product of the sharp Lp − L4 inequality for p ≥ 4. Prior to Jakim-

iuk’s work, there had been one more stability result, viz. De, Diakonikolas and

Servedio in [9] found a deficit term in the celebrated Szarek’s L1−L2 inequality

from [37] (see also [13] for a different approach and explicit constants). This was

paralleled in [7, 16, 32] in the geometric context of stability results for maximal

volume sections of `p-balls, polydisc and simplex, respectively (which themselves

can be viewed as the moment comparison inequalities but in “L−1”), and has

found interesting applications, see [13, 30]. In a different spirit, “distributional

stability” has been recently investigated in [14].

We recommend, e.g. [2, 21, 33] for further references on the pursuit of the sharp

constants in the classical Khinchin inequality for random signs, as well as [19]

for an account on what is known for other distributions, and [8] specifically for

spherically symmetric random vectors.

2 Proofs

As in the statement of Theorems 1 and 2, throughout the rest of this paper,

ξ, ξ1, ξ2, . . . are independent identically distributed (i.i.d.) random vectors uni-

form on the unit sphere Sd−1 = {x ∈ Rd, |x| = 1} in Rd, and Z,Z1, Z2, . . .

are independent of them i.i.d. Gaussian random vectors in Rd with mean 0 and

covariance 1
dId.

First, we focus solely on Theorem 1. Second, having established and building

on the important ideas and auxiliary lemmas, we shall prove Theorem 2.

2.1 Overview

At a high level, the main idea to tackle Theorem 1 is reminiscent of Lindeberg’s

swapping argument from his work [29] on the central limit theorem, which has

been widely used in a variety of contexts (see e.g. [36] for historical accounts),
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in particular for moment comparison inequalities (see, e.g. [3, 4, 12, 18]). This

has also been Jakimiuk’s approach in [21].

Specifically, for p > 0, we define the deficit,

Dp(a, v) = E|aZ + v|p − E|aξ + v|p, a ∈ R, v ∈ Rd. (4)

Suppose that it is nonnegative, Dp(a, v) ≥ 0, for all p ≥ 2, a ∈ R and v ∈ Rd.
Then, the proof of (3) goes by repeatedly swapping each ξj with Zj (relying on

the independence of the summands which allows in turn to condition on all but

one summand that is being swapped),

E |a1ξ1 + a2ξ2 + · · ·+ anξn|p ≤ E |a1Z1 + a2ξ2 + · · ·+ anξn|p ≤ . . .

≤ E |a1Z1 + a2Z2 + · · ·+ anZn|p

= E|(a2
1 + · · ·+ a2

n)1/2Z|p.

Now, to make some savings and obtain a deficit term in this bound, compellingly,

we would like to sharpen the bound Dp(a, v) ≥ 0.

This task brings us asking: why is Dp(a, v) nonnegative (when p ≥ 2)? Fix

a ∈ R, v ∈ Rd and consider the function

ha,v(t) = E|v + at1/2ξ|p, t > 0.

The heart of the matter in both [1] and [24] is the convexity of ha,v on (0,+∞),

for then decomposing the distribution of Z as |Z|ξ (the magnitude and inde-

pendent uniform direction), Jensen’s inequality yields

E|v + aZ|p = E|v + a
√
|Z|2ξ|p = E|Z|ha,v(|Z|2)

≥ ha,v(E|Z|2) = ha,v(1) = E|v + aξ|p,

which is Dp(a, v) ≥ 0.

As a side note, this argument is robust enough to treat arbitrary rotationally

invariant random vectors whose magnitudes are comparable in the stochastic

convex ordering, as done in [24], as well as other functionals than just the

moments, as in [1].
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2.2 Main lemmas

Our argument therefore begins with a derivation of an exact expression for the

second derivative of functions ha,v, amenable to quantitative improvements on

their convexity. For greater transparency of the ensuing calculations, we follow

[1] and treat arbitrary (smooth) functionals.

Lemma 3. Let Ψ be a smooth function on Rd. For a fixed vector v ∈ Rd, define

f(t) =

∫
Sd−1

Ψ
(
v + t1/2x

)
dx, t > 0.

Then

f ′(t) =
1

2

∫
Bd

2

∆Ψ
(
v + t1/2x

)
dx, (5)

f ′′(t) =
1

4

∫ 1

0

rd+1

(∫
Bd

2

∆∆Ψ
(
v + t1/2rx

)
dx

)
dr. (6)

Proof. The approach we use was indicated in Remark 15 in [8] and is in the

spirit of Lemma 4 from [1]. Plainly,

f ′(t) =
1

2
t−1/2

∫
Sd−1

〈
∇Ψ

(
v + t1/2x

)
, x
〉

dx.

Since x is the outer-normal unit vector, the divergence theorem gives

f ′(t) =
1

2
t−1/2

∫
Bd

2

divx

(
∇Ψ

(
v + t1/2x

))
dx =

1

2

∫
Bd

2

∆Ψ
(
v + t1/2x

)
dx.

To find the next derivative, note that using polar coordinates,

f ′(t) =
1

2

∫ 1

0

rd−1

(∫
Sd−1

∆Ψ
(
v + t1/2rx

)
dx

)
dr

and the point is that the integral over the sphere, as the function in t is of

the same form as f , with the variable rescaled by r2. Therefore, applying the

previous calculation, we get

f ′′(t) =
1

2

∫ 1

0

rd−1

(
1

2

∫
Bd

2

∆∆Ψ
(
v + t1/2rx

)
· r2dx

)
dr.
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The workhorse of our proof will be the following quantitative bound on the

deficit introduced in (4).

Lemma 4. Let p ≥ 2. For a ∈ R, v ∈ Rd, d ≥ 2, we have

Dp(a, v) ≥ κp,da4 ·

(|v|2 + 2a2)
p−4
2 , 2 ≤ p ≤ 4,

|v|p−4, p > 4,

where

κp,d =
p(p− 2)(p+ d− 2)(p+ d− 4)

4d2(d+ 2)
.

Proof. If a = 0, there is equality. Otherwise, by homogeneity, we can assume

without loss of generality that a = 1. Fix a vector v in Rd and consider the

function

gv(t) = E|v +
√
tξ|p, t > 0.

By the rotational invariance of the Gaussian distribution, Z has the same dis-

tribution as |Z|ξ. Thus,

Dp(1, v) = E
[
gv(|Z|2)− gv(1)

]
.

Using Taylor’s expansion with Lagrange’s remainder, for t > 0, there is ηt

between 1 and t such that

gv(t)− gv(1) = (t− 1)g′v(1) +
1

2
(t− 1)2g′′v (ηt).

As a result (recall E|Z|2 = 1),

Dp(1, v) =
1

2
E
[
(|Z|2 − 1)2g′′v (η|Z|2)

]
. (7)

An application of (6) of Lemma 3 with Ψ(x) = |x|p yields for every η > 0,

g′′v (η) =
p(p− 2)(p+ d− 2)(p+ d− 4)

4|Sd−1|

∫ 1

0

rd+1

(∫
Bd

2

|v + xr
√
η|p−4dx

)
dr

(sweeping under the rug inessential regularity issues caused by the singularity

at the origin, overcome e.g. by taking the smooth approximations Ψδ(x) =

(|x|2 + δ)p/2, δ ↓ 0, see [1], eq. (1.5) for details). Writing the integral over Bd2
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in polar coordinates leads to

g′′v (η) = βp,d

∫ 1

0

∫ 1

0

Eξ|v + r1r2
√
ηξ|p−4drd1drd+2

2 , η > 0, (8)

with

βp,d =
p(p− 2)(p+ d− 2)(p+ d− 4)

4d(d+ 2)
. (9)

Note that for convenience, we have renormalised the double integral
∫ 1

0

∫ 1

0
so

that it is against the probability measure on [0, 1]2 with density d(d+2)rd−1
1 rd+1

2 .

Our argument lower bounding g′′ now differs depending on whether p > 4.

Case 1: 2 ≤ p ≤ 4. Let q = p−4
2 ≤ 0. Here, we lean on the convexity of the

function x 7→ xq on (0,+∞). Rewriting (8) and using Jensen’s inequality,

g′′v (η) = βp,d

∫ 1

0

∫ 1

0

Eξ
(
|v|2 + 2r1r2

√
η 〈v, ξ〉+ r2

1r
2
2η
)q

drd1drd+2
2

≥ βp,d
(
|v|2 +

d

d+ 4
η

)q
. (10)

Plugging this back into (7) and using a crude bound η|Z|2 ≤ max{1, |Z|2}, we

arrive at

Dp(1, v) ≥ 1

2
βp,dE

[
(|Z|2 − 1)2

(
|v|2 +

d

d+ 4
max{1, |Z|2}

)q]
.

To finish off with a clean bound, we use Jensen’s inequality yet again with

respect to the probability measure (|Z|2−1)2

2/d dP and obtain

Dp(1, v) ≥ 1

d
βp,d

(
|v|2 +

d

d+ 4
E
[
max{1, |Z|2} (|Z|2 − 1)2

2/d

])q
.

Finally, crudely max{1, |Z|2} ≤ 1 + |Z|2, thus

E
[
max{1, |Z|2} (|Z|2 − 1)2

2/d

]
≤ d

2

(
E(|Z|2 − 1)2 + E

[
|Z|2(|Z|2 − 1)2

])
= 1+

d+ 4

d
,

where the last two expectations are calculated directly using that d · |Z|2 follows
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the χ2(d) distribution. Consequently,

Dp(1, v) ≥ 1

d
βp,d

(
|v|2 +

d

d+ 4
+ 1

)q
≥ 1

d
βp,d

(
|v|2 + 2

)q
.

Case 2: p > 4. We simply use monotonicity asserted by the following immediate

consequence of (5).

Claim. Let q > 0, v ∈ Rd, d ≥ 2. Then

t 7→ E|v +
√
tξ|q increases on (0,+∞).

In particular,

E|v +
√
tξ|q ≥ |v|q, (11)

and, thanks to rotational invariance,

(v, t) 7→ E|v +
√
tξ|q = E

∣∣|v|ξ′ +√tξ∣∣q increases both in t and |v|. (12)

Indeed, by (5),

d

dt
E|v +

√
tξ|q =

q(q + d− 2)

2|Sd−1|

∫
Bd

2

|v +
√
tx|q−2dx ≥ 0.

Therefore, using (8),

g′′v (η) ≥ βp,d|v|p−4

(deterministically, for every η > 0). Plugging this pointwise bound into (7) gives

Dp(1, v) ≥ 1

2
E
[
(|Z|2 − 1)2

]
βp,d|v|p−4.

Since E
[
(|Z|2 − 1)2

]
= 2

d , we obtain Dp(1, v) ≥ 1
dβp,d|v|

p−4, that is the lemma

holds with κp,d = 1
dβp,d, as desired.

2.3 An auxiliary lemma

In order to handle the averages of the terms E|v|p−4 coming from the bound

on Dp in the case p > 4, with v being sums of uniforms of spheres, we shall
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need some sort of concentration. For simplicity, we choose to use Khinchin-type

inequalities (which in fact yields explicit and decent values of the constants

involved).

Lemma 5. Let d ≥ 2. There is a universal constant cKh > 0 such that for all

real numbers a1, a2, . . . and q > 0, we have

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
q

≥ cKh

 n∑
j=1

a2
j

q/2

.

One can take cKh = 0.77. In particular, the same inequality holds if any of the

variables ξj is replaced by Zj.

Proof. When q ≥ 2, the inequality plainly holds with constant 1 (by Jensen’s

inequality). When 0 < q < 2, let cd,q be the best constant such that the

Khinchin-type inequality

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
q

≥ cd,q

 n∑
j=1

a2
j

q/2

holds for all n ≥ 1 and all scalars aj . It is the main result of [5, 23, 24] that

cd,q = min{2−q/2E|ξ1 + ξ2|q,E|Z|q}.

(see also [8]), and it is known that when d ≥ 3, this minimum is attained at the

second term, E|Z|q, which we now lower bound. We have,

E|Z|q =
Γ( q+d2 )(
d
2

)q/2
Γ(d2 )

.

By the log-convexity of the Gamma function, for x > 0 and 0 < s < 1,

Γ(x+ 1) = Γ
(
s(x+ s) + (1− s)(x+ s+ 1)

)
≤ Γ(x+ s)sΓ(x+ s+ 1)1−s = (x+ s)1−sΓ(x+ s)

(13)

which is Wendel’s inequality, [38], resulting in

Γ(x+ s)

xsΓ(x)
≥
(

x

x+ s

)1−s

.
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Applied to x = d
2 ≥ 1, s = q

2 , we obtain

E|Z|q ≥ 1

(1 + s)1−s ≥ e
−s(1−s) ≥ e−1/4 > 0.778.

It remains to lower bound the first term 2−q/2E|ξ1 + ξ2|q when d = 2. We have,

2−q/2E|ξ1 + ξ2|q = 2q/2
Γ( q2 + 1

2 )
√
πΓ( q2 + 1)

.

Again, by virtue of (13), applied this time with x = q
2 , s = 1

2 , we get

2−q/2E|ξ1 + ξ2|q ≥
2

q+1
2√

π(q + 1)
.

The right hand side is minimised at q = 1
log 2 − 1 attaining value 0.774.., which

finishes the proof.

2.4 Proof of Theorem 1

We shall follow the traditional notation ‖a‖p = (
∑
|aj |p)1/p, ‖a‖∞ = maxj |aj |

for the `p norms of a vector a = (a1, . . . , an) in Rn.

The proof uses two different arguments: when ‖a‖∞ is bounded away from 1,

we shall (iteratively) use the pointwise bounds from Lemma 4 resulting with the

deficit of the order ‖a‖4, whereas in the oppose case we easily get a constant

deficit (i.e. independent of a), leveraging the Schur concavity of the moment

functional. With hindsight, we choose the following cut-off for the `∞ norm,

mp =

1, 2 ≤ p ≤ 4,√
1− 2−

1
p−4 , p > 4.

Case 1: ‖a‖∞ ≤ mp. (Clarification: when 2 ≤ p ≤ 4 this case is exhaustive,

since mp = 1.) We use the classical Lindeberg’s swapping argument. To this

11



end, we define

S0 =

n∑
j=1

ajξj ,

Sk =

k∑
j=1

ajZj +

n∑
j=k+1

ajξj , k = 1, . . . , n

and break the deficit up with a telescoping sum,

E|Z|p − E|S0|p =

n∑
k=1

(
E|Sk|p − E|Sk−1|p

)
.

Note that the sums Sk and Sk−1 only differ by the k-th term which is akZk and

akξk, respectively. Letting

vk =

k−1∑
j=1

ajZj +

n∑
j=k+1

ajξj

and using the notation from (4), we have

E|Sk+1|p − E|Sk|p = EDp(ak, vk).

By Lemma 4,

EDp(ak, vk) ≥ κp,da4
k

E(|vk|2 + 2a2
k)

p−4
2 , 2 ≤ p ≤ 4,

E|vk|p−4, p > 4.

Observe that E|vk|2 =
∑
j 6=k a

2
j = 1− a2

k.

When 2 ≤ p ≤ 4, Jensen’s inequality yields

EDp(ak, vk) ≥ κp,da4
k(1− a2

k + 2a2
k)

p−4
2 = κp,da

4
k(1 + a2

k)
p−4
2 ≥ 1

2
κp,da

4
k.

Summing these bounds over 1 ≤ k ≤ n gives the result and finishes the proof.

When p > 4, Lemma 5 and a crude bound 1−a2
k ≥ 1−‖a‖2∞ ≥ 1−m2

p = 2−
1

p−4

yield

EDp(ak, vk) ≥ cKhκp,da
4
k(1− a2

k)
p−4
2 ≥ 2−1/2cKhκp,da

4
k >

1

2
κp,da

4
k.
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Summing these bounds over 1 ≤ k ≤ n gives the result.

Case 2: ‖a‖∞ > mp. Clarification: when 2 ≤ p ≤ 4, mp = 1, this case is empty,

and the proof has already been completed, so we implicitly assume that p > 4.

Here we simply use the Schur concavity of

Rn+ 3 x 7→ E

∣∣∣∣∣∣
n∑
j=1

√
xjξj

∣∣∣∣∣∣
p

known from [1] to hold in every dimension d ≥ 2 as long as p ≥ 2. Say a1 =

‖a‖∞. Then the vector (a2
1, . . . , a

2
n) majorises the vector (m2

p,
1−m2

p

n−1 , . . . ,
1−m2

p

n−1 ),

provided that m2
p ≥

1−m2
p

n−1 , equivalently nm2
p ≥ 1, and we obtain

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
p

≤ E

∣∣∣∣∣∣mpξ1 +

√
1−m2

p

n− 1
(ξ2 + · · ·+ ξn−1)

∣∣∣∣∣∣
p

.

We can apply Case 1 to the right hand side, which results in

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
p

≤ E|Z|p − 1

2
κp,d

(
m4
p +

(1−m2
p)

2

n− 1

)
≤ E|Z|p − 1

2
κp,dm

4
p

Note that ‖a‖4 ≤ ‖a‖2 = 1. For cosmetics, say m4
p = (1− 2−1/(p−4))2 > 1

3p(p−2)

which gives the constant cp,d from the statement of the theorem. Finally, if

nm2
p < 1, we take an integer N ≥ 2 such that N ≥ 1

m2
p

and observe that

(a2
1, . . . , a

2
n, 0, . . . , 0︸ ︷︷ ︸

N−n

) majorises the vector (m2
p,

1−m2
p

N−1 , . . . ,
1−m2

p

N−1 ), so that we can

repeat the last part of the argument verbatim to finish the proof.

2.5 Proof of Theorem 2

Exactly as for Theorem 1, the argument here will be driven by tracking the

deficit along local changes to the coefficient vector a = (a1, . . . , an) performed

to make it progressively closer to the extremising diagonal one ( 1√
n
, . . . , 1√

n
).

The next lemma will facilitate that. We denote the deficit term from Theorem 2

13



by δ(a),

δ(a) =

n∑
j=1

(
1

n
− a2

j

)2

and note that with the `2 normalisation
∑n
j=1 a

2
j = 1,

δ(a) =

n∑
j=1

a4
j −

1

n
=

n∑
j=1

a4
j −

n∑
j=1

1
√
n

4 , (14)

that is the deficit term can be equivalently derived by comparing the changes

of the `4 norms of the coefficient vectors.

Lemma 6. Let p ≥ 2. Suppose that a1 ≥ b1 ≥ b2 ≥ a2 > 0 with a2
1 + a2

2 =

b21 + b22 = σ2 for some σ > 0. For every vector v in Rd, d ≥ 2, we have

E |b1ξ1 + b2ξ2 + v|p − E |a1ξ1 + a2ξ2 + v|p

≥ 1

d
(a4

1 + a4
2 − b41 − b42) ·

βp,d(|v|2 + σ2)
p−4
2 , 2 ≤ p ≤ 4,

p(p−2)
8 E|v + σξ|p−4, p > 4,

(15)

with βp,d defined in (9).

Proof. Recall that Lemma 3 provides us with good expressions for the deriva-

tives of the function

gv(t) = E|v +
√
tξ|p, t ≥ 0

and this very function emerges naturally: thanks to independence and rotational

invariance of the ensuing random vectors,

E|a1ξ1 + a2ξ2 + v|p = E
∣∣|a1ξ1 + a2ξ2|ξ + v

∣∣p = Egv
(
|a1ξ1 + a2ξ2|2

)
= Egv

(
σ2 + 2a1a2θ

)
,

where the last expectation is with respect to a random variable θ which has

the same distribution as a one-dimensional marginal of ξ, say θ = 〈ξ, e1〉. With

σ > 0 fixed, we set

h(u) = E
[
gv(σ

2 + 2uθ)
]
, u > 0.

14



Then the deficit of interest becomes

∆ = E |b1ξ1 + b2ξ2 + v|p − E |a1ξ1 + a2ξ2 + v|p = h(b1b2)− h(a1a2)

=

∫ b1b2

a1a2

h′(u)du.

Plainly,

h′(u) = 2E
[
g′v(σ

2 + 2uθ)θ
]
.

To manoeuvrer this into a more convenient expression, we shall use an integra-

tion by parts formula for θ.

Claim. Let d ≥ 2 and ξ, ξ̃ be uniform on Sd−1, Sd+1 respectively. For random

variables θ = 〈ξ, e1〉, θ̃ =
〈
ξ̃, e1

〉
and a function f differentiable on (−1, 1) such

that f(x)(1− x2)
d−1
2 → 0 as x→ ±1, we have

E
[
f(θ)θ

]
=

1

d
E
[
f ′(θ̃)

]
. (16)

Proof. One can check that θ has density 1
Ad

(1− x2)
d−3
2 1(−1,1)(x) with the nor-

malising constant Ad =
√
π

Γ( d−1
2 )

Γ( d
2 )

, d ≥ 2. Integration by parts yields

E
[
f(θ)θ

]
=

1

Ad

∫ 1

−1

f(x)x(1− x2)
d−3
2 dx =

1

Ad

∫ 1

−1

f(x)
(
− 1

d− 1
(1− x2)

d−1
2

)′
dx

= − 1

(d− 1)Ad
f(x)(1− x2)

d−1
2

∣∣∣∣∣
1

−1

+
1

(d− 1)Ad

∫ 1

−1

f ′(x)(1− x2)
d−1
2 dx

=
Ad+2

(d− 1)Ad
E
[
f ′(θ̃)

]
and Ad+2

(d−1)Ad
= 1

d , as claimed.

Applying the claim to f(x) = g′v(σ
2 + 2ux) gives

h′(u) =
2

d
E
[
g′′v (σ2 + 2uθ̃) · (2u)

]
where the expectation is over the distribution of θ̃ from the statement of the

15



claim. Moreover, evoking (8),

g′′v (t) = βp,dE|v +R1R2

√
tξ|p−4,

where, to compactify the notation, we let (R1, R2) be random variables with

joint density drd1drd+2
2 on (0, 1)2.

Putting these together,

h′(u) = β̃p,dE
[
|v +R1R2(σ2 + 2uθ̃)1/2ξ|p−4

]
· (2u)

with

β̃p,d =
2

d
βp,d

and the expectation taken over the product distribution of R1, R2, θ̃, ξ. Thus,

we arrive at

∆ = β̃p,d

∫ b1b2

a1a2

E
[
|v +R1R2(σ2 + 2uθ̃)1/2ξ|p−4

]
· (2u)du.

As before, we now break the analysis into two cases depending on whether p > 4.

Case 1: 2 ≤ p ≤ 4. As in Lemma 4, letting q = p−4
2 and using the point-wise

bound (10), we get

∆ ≥ β̃p,d
∫ b1b2

a1a2

(2u) · E
[(
|v|2 +

d

d+ 4
(σ2 + 2uθ̃)

)q]
du.

Since Eθ̃ = 0, Jensen’s inequality and a further simple cosmetic bound d
d+4 < 1

allow to lower-bound the expectation by (|v|2 + σ2)q which results in

∆ ≥ β̃p,d(|v|2 + σ2)q(b21b
2
2 − a2

1a
2
2).

Finally, as a result of the constraint a2
1 + a2

2 = b21 + b22,

0 = (b21 + b22)2 − (a2
1 + a2

2)2 = b41 + b42 − (a4
1 + a4

2) + 2(b21b
2
2 − a2

1a
2
2),

so

b21b
2
2 − a2

1a
2
2 =

1

2
(a4

1 + a4
2 − b41 − b42) (17)

and we are done with the proof in this case with constant 1
2 β̃p,d, as desired.
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Case 2: p > 4. We can crudely bound the expectation by restricting it to the

positive values of θ̃,

∆ ≥ β̃p,d
∫ b1b2

a1a2

E
[
|v +R1R2(σ2 + 2uθ̃)1/2ξ|p−41{θ̃>0}

]
· (2u)du

Thanks to (12), used conditioning on the positive values of R1, R2, θ̃,

∆ ≥ β̃p,d
∫ b1b2

a1a2

E
[
|v +R1R2σξ|p−4

]
· P
(
θ̃ > 0

)
· (2u)du

=
1

2
β̃p,dE

[
|v +R1R2σξ|p−4

]
(b21b

2
2 − a2

1a
2
2).

Since R1R2 ≤ 1 a.s., using (12) once more, we get a bound

E
[
|v+R1R2σξ|p−4

]
≥ E

[
|R1R2v+R1R2σξ|p−4

]
= E(R1R2)p−4E

[
|v+ σξ|p−4

]
.

Consequently, employing (17),

∆ ≥ 1

4
β̃p,dE(R1R2)p−4E

[
|v + σξ|p−4

]
(a4

1 + a4
2 − b41 − b42).

By a direct calculation, E(R1R2)p−4 = d(d+2)
(p−4+d)(p−2+d) , so after tracing the

constants and simplifying, we have

1

4
β̃p,dE(R1R2)p−4 =

p(p− 2)

8d
.

Proof of Theorem 2. When n = 2, we apply Lemma 6 with v = 0 directly to

the coefficient vectors b = ( 1√
2
, 1√

2
) and a = (a1, a2) for which σ = 1. We get

E
∣∣∣∣ 1√

2
ξ1 +

1√
2
ξ2

∣∣∣∣p − E|a1ξ1 + a2ξ2|p ≥ c̃p,dδ(a),

as desired in view of (14), where

c̃p,d =
1

d
·

βp,d, 2 ≤ p ≤ 4,

p(p−2)
8 , p > 4.

Now suppose that n ≥ 3, a1 ≥ · · · ≥ an > 0 and that a 6= ( 1√
n
, . . . , 1√

n
) (in

particular, an <
1√
n

). We follow a strategy from [21], namely we repetitively

17



perform the following local operation on the coefficient vector a until it becomes

the diagonal vector ( 1√
n
, . . . , 1√

n
): we take its largest coefficient a1, the smallest

one an, replace them with a′1 =
√
a2

1 + a2
n − 1

n and a′n = 1√
n

, and finally re-

arrange the coefficients of (a′1, a2, . . . , an−1, a
′
n) to be nonincreasing, calling the

resulting vector b. Since this operation strictly increases the number of coef-

ficients equal to 1√
n

, after finitely many operations, we arrive at the diagonal

vector ( 1√
n
, . . . , 1√

n
). Plainly, this operation preserves the `2 norm. This allows

to apply Lemma 6 (conditioning on the value of v =
∑n−1
j=2 ajξj) which yields

the following bound on the deficit coming from one operation transforming a

to b,

E |a′1ξ1 + a′nξ2 + v|p − E |a1ξ1 + anξ2 + v|p

≥ 1

d
(a4

1 + a4
n − a′41 − a′4n ) ·

βp,d(|v|2 + σ2)
p−4
2 , 2 ≤ p ≤ 4,

p(p−2)
8 E|v + σξ|p−4, p > 4,

where, as in the lemma, σ2 = a2
1 + a2

n = a′21 + a′2n . Moreover, averaging over the

distribution of v gives

• when 2 ≤ p ≤ 4, by Jensen’s inequality,

E(|v|2 + σ2)
p−4
2 ≥

(
E|v|2 + σ2

) p−4
2 =

 n∑
j=1

a2
j


p−4
2

= 1,

• when p > 4, by Lemma 5 (Khinchin’s inequality),

E|v + σξ|p−4 ≥ cKh

 n∑
j=1

a2
j

p−4

= cKh.

Notably, a4
1 +a4

n−a′41 −a′4n = ‖a‖44−‖b‖44, thus adding the contributions over all

operations, these `4 deficit differences add over a telescoping-type sum, leading

to the bound

E

∣∣∣∣∣∣
n∑
j=1

1√
n
ξj

∣∣∣∣∣∣
p

− E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
p

≥ c̃p,d

(
‖a‖44 −

∥∥∥∥( 1√
n
, . . . ,

1√
n

)∥∥∥∥4

4

)
= c̃p,dδ(a),
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with

c̃p,d =
1

d

βp,d, 2 ≤ p ≤ 4,

cKh
p(p−2)

8 , p > 4,

which after plugging in the value of βp,d from (9) finishes the proof.
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