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Abstract

We establish several optimal moment comparison inequalities (Khinchin-type inequal-

ities) for weighted sums of independent identically distributed symmetric discrete ran-

dom variables which are uniform on sets of consecutive integers. Specifically, we obtain

sharp constants for even moments (using ultra subgaussianity introduced by Nayar and

Oleszkiewicz) as well as for the second moment and any moment of order at least 3 (us-

ing convex dominance by Gaussian random variables). In the case of only 3 atoms, we

also establish a Schur-convexity result. For moments of order less than 2, we get sharp

constants in two cases by exploiting Haagerup’s arguments for random signs.
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1 Introduction

The classical Khinchin inequality asserts that all moments of weighted sums of independent

random signs are comparable (see [15]). More specifically, if we consider independent random

signs ε1, ε2, . . ., the probability of each εi taking the value ±1 is a half and form a weighted

sum S =
∑n
i=1 aiεi with real coefficients ai, then for every p, q > 0, there is a positive constant

Cp,q independent of n and the ai such that

‖S‖p ≤ Cp,q‖S‖q. (1)

As usual, ‖X‖p = (E|X|p)1/p denotes the p-th moment of a random variable X. Moment

comparison inequalities like this one are well understood up to universal constants in a great

generality due to Lata la’s formula from [20]. They have found numerous applications in clas-

sical results in analysis (for example in the proof of the Littlewood-Payley decomposition or

Grothendieck’s inequality) and, especially their extensions to vector valued settings (Kahane’s

inequalities), have been widely used in (local) theory of Banach spaces (see [23], [26]). One

of the major challenges is to find the best constants Cp,q, which has attracted considerable
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attention and has important applications (for instance in geometry, C2,1 is directly linked with

the maximum volume projections of the n-dimensional cross-polytope onto n− 1 dimensional

subspaces, see [3, 5]). Besides, attacking sharp inequalities forces us to uncover often deep

and effective mechanisms explaning bigger pictures and providing insights as to why certain

inequalities are true.

Plainly, since for any random variable X, the function p 7→ ‖X‖p is nondecreasing, the best

value of Cp,q in (1) when p < q equals 1. Since ‖S‖2 is explicit in terms of the weights ai, that

is ‖S‖2 =
√∑

a2
i , the most important are Cp,2 when p > 2 and C2,q when q < 2. In the case

being discussed of symmetric random signs, the values of these constants have been known

since the work of Haagerup [13]. We mention in passing works [39, 9, 37] which had made

important partial contributions preceeding Haagerup’s result. Papers [27, 29] provide great

simplifications and deeper understanding of technical parts in Haagerup’s proofs. Paper [21]

establishes in a slick way that C2,1 =
√

2 in a general setting of norm space-valued coefficients ai

(for recent results concerning this setting see also [33]). We refer to [28] for historical accounts

and beautiful recent results for even moments. The constants Cp,2, p > 2 are attained in

the asymptotic case when the number of summands n tends to infinity with weights ai being

chosen all equal. Consequently, by the central limit theorem, the value of Cp,2 is given by

the p-th moment of a standard Gaussian. This phenomenon is in some sense universal – for

distributions other than random signs where such results are known, the same case is extremal.

The behaviour of the opimal value of C2,q, q < 2, is more involved: as q decreases, the worst

case changes at q = q0 = 1.847.. from the asymptotic one just described to the one given by

n = 2 and equal weights a1 = a2 (see [13]).

There have been only a handful of results concering random variables other than random

signs. They involve continuous random variables uniformly distributed on symmetric intervals

and generalisations for random vectors uniformly distributed on Euclidean spheres and balls

(see [2, 17, 18, 22]), as well as mixtures of centred Gaussians (see [1, 10]). Papers [19, 32]

establish moment comparison inequalities for quite general random variables (based on their

spectral properties, introducing differential inequalities techniques), which additionally yield

sharp constants in certain cases. In recent works [10, 11], Eskenazis, Nayar and the second

author have settled most of the cases for random variables with densities proportional to

e−|x|
α

when 0 < α < ∞ (the so-called exponential family). This, combined with results from

[4], yields sharp constants in Khinchin inequalities for linear forms based on vectors uniformly

distributed on unit balls Bnα = {x ∈ Rn, |x1|α + . . .+ |xn|α ≤ 1} of `α spaces (previously these

constants were known up to constant factors – see [4]). This is particularly interesting because

the summands of such linear forms are not independent. For results concerning dependent

random signs, see [34, 36] (moment comparison is obtained with constants of the right order,

but their optimal values in most cases do not seem to be known).

This paper initiates the study of Khinchin-type inequalitites with sharp constant for sym-

metric discrete random variables, generalising random signs by allowing more than just two

atoms. Specifically, in the simplest case, let L be a positive integer and let X be uniform on the

set {−L, . . . ,−1} ∪ {1, . . . , L}. What are best constants in moment comparison inequalities

for weighted sums of independent copies of X? Note that the following two extreme cases
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have been understood: when L = 1, X is a symmetric random sign discussed above, whereas

when L→∞, X/L converges in distribution to a random variable uniform on [−1, 1], the case

analysed in [22].

We present our results in the next section and then proceed with their proofs in their order

of statement. We say that a random variable X is symmetric if −X has the same distribution

as X, equivalently εX and ε|X| have the same distribution as X, where ε is an independent

symmetric random sign, that is P (ε = −1) = P (ε = 1) = 1
2 . We usually denote byG a standard

Gaussian random variable, that is a real-valued random variable with density 1√
2π
e−x

2/2. For

p > 0, we have E|G|p =
2p/2Γ( p+1

2 )√
π

, where Γ stands for the gamma function. If p is a positive

even integer, then E|G|p = p!
2p/2(p/2)!

= 1 · 3 · . . . · (p − 1) = (p − 1)!! (the double factorial of

p−1). A nonnegative sequence (an)∞n=1 is called log-concave, if it is supported on a contiguous

set, that is the set {n ≥ 1, an > 0} is of the form {a, a + 1, . . . , b} for some 1 ≤ a ≤ b ≤ ∞,

and a2
n ≥ an−1an+1 for n = 2, 3, . . .. Sometimes we write x+ which is max{x, 0}.

Acknowledgements. We are indebted to Piotr Nayar for his suggestions regarding ultra

sub-Gaussianity without which Theorem 2 would not have been discovered. We also thank

Krzysztof Oleszkiewicz for his help and valuable feedback.

2 Results

2.1 Even moments

Nayar and Oleszkiewicz introduced in [28] the following notion of ultra sub-Gaussianity (as

well as its multidimensional analogue): a random variable X is ultra sub-Gaussian if it is

symmetric, has all moments finite and the sequence (am)∞m=0 defined by a0 = 1, am = E|X|2m
(2m)!
2mm!

,

m ≥ 1, is log-concave, that is am−1am+1 ≤ a2
m for every m ≥ 1. This means that we have

E|X|4 ≤ 3(E|X|2)2 (2)

(m = 1) and reverse Cauchy-Schwarz estimates hold

2m− 1

2m+ 1
E|X|2m−2E|X|2m+2 ≤ (E|X|2m)2, for all m ≥ 2. (3)

The normalisation is chosen such that if X is a standard Gaussian random variable G, then

a = (1, 1, . . . ) is a constant sequence (since E|G|2m = 1 · 3 · · · · · (2m − 1)). For example, a

symmetric random sign is ultra sub-Gaussian. Results from [28] (see Lemma 2 and Theorem 2

therein) assert that sums of independent sub-Gaussian random variables are sub-Gaussians and,

consequently, it leads to Khinchin-type inequalities with sharp constants for even moments.

Theorem 1 (Nayar and Oleszkiewicz, [28]). Let 2 ≤ p < q be even integers and let X1, . . . , Xn

be independent ultra sub-Gaussian random variables. Then X1 + . . .+Xn is ultra sub-Gaussian

and (
E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
q)1/q

≤ (E|G|q)1/q

(E|G|p)1/p

(
E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p)1/p

, (4)
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where G is a standard Gaussian random variable, so (E|G|q)1/q
(E|G|p)1/p

= [1·3·...·(q−1)]1/q

[1·3·...·(p−1)]1/p
.

In particular, in this elegant and slick way, Nayar and Oleszkiewicz obtained sharp constants

in the classical Khinchin inequalities for even moments. We extend this result to symmetric

random variables on consecutive integers by verifying that they are ultra sub-Gaussian.

Theorem 2. Let ρ0 ∈ [0, 1] and let L be a positive integer. Let X1, X2, . . . be i.i.d. copies of

a random variable X with P (X = 0) = ρ0 and P (X = −j) = P (X = j) = 1−ρ0
2L , j = 1, . . . , L.

Then X is ultra sub-Gaussian if and only if ρ0 = 1, or

ρ0 ≤ 1− 2

5

3L2 + 3L− 1

(L+ 1)(2L+ 1)
. (5)

If this holds, then, consequently, for positive even integers q > p ≥ 2, every n ≥ 1 and reals

a1, . . . , an, we have (
E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
q)1/q

≤ Cp,q

(
E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p)1/p

(6)

with Cp,q = [1·3·...·(q−1)]1/q

[1·3·...·(p−1)]1/p
which is sharp.

Remark 3. It can be checked that the right hand side of (5) as a function of L is strictly

decreasing. It converges to 1 − 2
5 ·

3
2 = 2

5 as L → ∞, so (5) holds for every positive integer

L as long as ρ0 ≤ 2
5 . This is precisely the condition under which a random variable θU is

ultra sub-Gaussian, where θ is a Bernoulli random variable with parameter 1− ρ0 and U is an

independent random variable uniformly distributed on [−1, 1] (which is not surprising because

X/L converges in distribution to θU).

As explained in the proof, it is condition (2) that imposes the restriction (5) on ρ0, the mass

put at 0. It turns out that condition (3) holds for every integers L ≥ 1 and m ≥ 2 (regardless

ρ0) and our proof proceeds by induction on L.

2.2 Second, third and higher moments

Here we first need to recall the classical notions of majorisation and Schur-convexity. Given

two nonnegative sequences (ai)
n
i=1 and (bi)

n
i=1, we say that (bi)

n
i=1 majorises (ai)

n
i=1, denoted

(ai) ≺ (bi) if

n∑
i=1

ai =

n∑
i=1

bi and

k∑
i=1

a∗i =

k∑
i=1

b∗i for all k = 1, . . . , n,

where (a∗i )
n
i=1 and (b∗i )

n
i=1 are nonincreasing permutations of (ai)

n
i=1 and (bi)

n
i=1 respectively.

For example, ( 1
n ,

1
n , . . . ,

1
n ) ≺ (a1, a2, . . . , an) ≺ (1, 0, . . . , 0) for every nonnegative sequence (ai)

with
∑n
i=1 ai = 1. A function Ψ: [0,∞)n → R which is symmetric (with respect to permuting

the coordinates) is said to be Schur-convex if Ψ(a) ≤ Ψ(b) whenever a ≺ b and Schur-concave

if Ψ(a) ≥ Ψ(b) whenever a ≺ b. For instance, a function of the form Ψ(a) =
∑n
i=1 ψ(ai) with

ψ : [0,+∞)→ R being convex is Schur-convex. We refer to the classical monograph [14], or to

[6] for a concise exposition of majorisation.
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Let p > 0, let X1, . . . , Xn be i.i.d. copies of a symmetric random variable X with finite

p-th moment and consider the function Ψ: [0,∞)n → [0,+∞) defined as

Ψ(a1, . . . , an) = E

∣∣∣∣∣
n∑
i=1

√
aiXi

∣∣∣∣∣
p

.

When X is uniform on [−1, 1], Lata la and Oleszkiewicz showed in [22] that Ψ is Schur-concave

when p ≥ 2 and Schur-convex when 1 ≤ p ≤ 2 (see also [11] for a different proof). Such results

give extremal sequences in Khinchin inequalities for any fixed number of summands n and in

particular yield that optimal values of constants valid for all n are Gaussian. Suppose now

that X is a symmetric random sign. Based on Eaton’s criterion from [9], Komorowski showed

in [16] that when p ≥ 3 (the easy regime), Φ is Schur-concave (which gives sharp constants

in Khinchin inequalities; they were first found by Young in Theorem 9 in [40] and can be

easily deduced from Corollary 2.5 from Pinelis’ work [35]). For p < 3 (the hard regime), the

Schur-convexity/concavity of Ψ fails and its behaviour is much more complicated (it is worth

mentioning here the tantalizing Zinn’s doubling-conjecture discussed in [41]: for p ∈ (2, 3),

n ≥ 1, a1, . . . , an ≥ 0, we have Ψ(a12 ,
a1
2 , . . . ,

an
2 ,

an
2 ) ≥ Ψ(a1, . . . , an, 0, . . . , 0)).

2.2.1 No atom at 0

If X is uniformly distributed on the set {−L, . . . ,−1} ∪ {1, . . . , L}, then we confirm for the

easy regime that the Gaussian case yields sharp constants in Khinchin inequalities.

Theorem 4. Let L be a positive integer. Let X1, X2, . . . be i.i.d. copies of a random variable

X with P (X = −j) = P (X = j) = 1
2L , j = 1, . . . , L. For every n ≥ 1, reals a1, . . . , an and

p ≥ 3, we have (
E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p)1/p

≤ Cp

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
2
1/2

(7)

with Cp =
√

2
(

Γ( p+1
2 )√
π

)1/p

which is sharp.

Our inductive argument (on n) crucially uses independence and convexity of certain func-

tions and is based on swapping the Xi one by one with independent Gaussians (the same yields

a short proof of the classical Khinchin inequalities with sharp constants – see Theorem 1.1. in

[12] as a nice illustration of such an approach; see also [5] and [11] where the same was used).

Remark 5. When p is a positive even integer, then of course Theorem 4 follows from Theorem 2.

In this special case, it can be deduced from the main result of [30] (see also [31]). Indeed, after

Newman, a random variable X if of type L if EezX , z ∈ C is well defined, possibly vanishes

only if z is purely imaginary and there is a positive constant C such that EezX ≤ eCz
2

for all

real z. Newman’s result asserts that if the Xi are independent, each of type L, then (7) holds

for every even integer p. It can be checked that X from Theorem 4 is of type L.

2.2.2 A Schur-convexity result for 3 atoms

We make an incremental progress for Schur-convexity in the easy regime for more general

symmetric distributions than random signs by allowing an atom at zero.
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Theorem 6. Let ρ0 ∈ [0, 1
2 ]. Let X1, X2, . . . be i.i.d. copies of a random variable X with

P (X = 0) = ρ0 and P (X = −1) = P (X = 1) = 1−ρ0
2 . Let p ≥ 3. For every n ≥ 1 and reals

a1, . . . , an, b1, . . . , bn such that (a2
i )
n
i=1 ≺ (b2i )

n
i=1, we have

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p

≥ E

∣∣∣∣∣
n∑
i=1

biXi

∣∣∣∣∣
p

. (8)

Our proof follows a direct approach from Eaton’s work [9], combined with rather standard

techniques (used for instance in [12], or [11]) exploiting linearity and allowing to reduce verifi-

cation of certain inequalities needed for averages of power functions | · |p to simple (piecewise

linear) functions.

As an immediate corollary, we obtain best constants in Khinchin inequalities (it can be

done as, for instance, in the proof of Corollary 25 from [10]).

Corollary 7. Under the assumptions of Theorem 6 for every n ≥ 1 and reals a1, . . . , an, we

have (
E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p)1/p

≤ Cp

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
2
1/2

(9)

with Cp =
√

2
(

Γ( p+1
2 )√
π

)1/p

which is sharp.

2.3 First and second moments

Littlewood posed in [24] the conjecture that the sharp constant in the classical Khinchin

inequality for the first and second moment (C2,1 in (1)) is attained in the case of exactly

two nonzero equal weights (n = 2, a1 = a2). Not until 45 years after it had been stated, was

Littlewood’s conjecture proved, by Szarek in [37]. His argument was simplified by Tomaszewski

in [38]. Haagerup, using integral representations for power functions, gave a different, much

shorter proof in his seminal work [13] on sharp constants in Khinchin inequality. We show here

that his argument is robust enough to cover certain cases for more atoms.

Theorem 8. Let ρ0 ∈ [ 1
2 , 1] and let L be a positive integer. Let X1, X2, . . . be i.i.d. copies of

a random variable X with P (X = 0) = ρ0 and P (X = −j) = P (X = j) = 1−ρ0
2L , j = 1, . . . , L.

For every n ≥ 1 and reals a1, . . . , an, we have

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ c1
E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
2
1/2

(10)

with c1 = E|X|√
E|X|2

=
√

3(1−ρ0)L(L+1)
2(2L+1) which is sharp.

Remark 9. When L = 1 and ρ0 = 1
2 , then c1 = 1√

2
. Note that the Xi have the same distribution

as
εi+ε

′
i

2 , where ε1, ε
′
1, . . . are i.i.d. symmetric random signs. Consequently, (10) follows directly

from Szarek’s result,

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ = E

∣∣∣∣∣
n∑
i=1

ai
εi + ε′i

2

∣∣∣∣∣ ≥ 1√
2

E

∣∣∣∣∣
n∑
i=1

ai
εi + ε′i

2

∣∣∣∣∣
2
1/2

= c1

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
2
1/2

.
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The sharpness of c1 can be seen by taking n = 1.

Remark 10. A substantial generalisation of (10) to arbitrary symmetric random variables and

coefficients in Banach space is provided by Corollary 2.4 of [32]. The value of the constant c1

obtained therein is sharp for three-valued random variables. Thus in this special case, that is

of L = 1, it recovers Theorem 8.

3 Proofs

3.1 Even moments: Proof of Theorem 2

Let X be a random variable as in the statement of Theorem 2. If X is ultra sub-Gaussian, then

so are aiXi, thus (6) follows directly from (4). The sharpness of Cp,q can be seen by taking

a1 = · · · = an = 1√
n

, letting n→∞ and invoking the central limit theorem.

Showing that X is ultra sub-Gaussian amounts to verifying (2) and (3). Note that (2) is

necessary for (6), as seen by taking there n = 1, a1 = 1, p = 2 and q = 4. We can write the

low order moments explicitly,

E|X|2 =
1− ρ0

L

L∑
k=1

k2 =
1− ρ0

6
(L+ 1)(2L+ 1),

E|X|4 =
1− ρ0

L

L∑
k=1

k4 =
1− ρ0

30
(L+ 1)(2L+ 1)(3L2 + 3L− 1).

As a result, (2) becomes

1− ρ0 ≥
2

5

3L2 + 3L− 1

(L+ 1)(2L+ 1)

which is (5).

Condition (3) is equivalent to the following: for all integers m ≥ 2

2m− 1

2m+ 1

L∑
k=1

k2m−2
L∑
k=1

k2m+2 ≤

(
L∑
k=1

k2m

)2

.

It turns out to be true for every integers L ≥ 1 and m ≥ 2. We only have a rather lengthy

cumbrous proof by induction on L. It turns out that the sequence bm = m
∑L
k=1 k

m−1,

m ≥ 1, is log-concave, that is bm−1bm+1 ≤ b2m for all m ≥ 2 (Lemma 12 below, see also

Remark 13). Then, for all m ≥ 2, we have b22m ≥ b2m−1b2m+1 ≥
√
b2m−2b2m

√
b2mb2m+2, thus

b22m ≥ b2m−2b2m+2, which gives the above with a slightly better constant (2m−1)(2m+3)
(2m+1)2 in place

of the required 2m−1
2m+1 . Before showing the log-concavity of (bm), which will occupy the rest of

this section, we make a remark about the i.i.d. assumption in Theorem 2.

Remark 11. Since Nayar and Oleszkiewicz’s Theorem 1 does not require the Xi to be identically

distributed, but only independent, we can drop that assumption in Theorem 2 and consider

the Xi there to be independent (not necessarily identically distributed). We stated it in the

i.i.d. case for simplicity.

As indicated, the log-concavity of (bm) follows from the following lemma.
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Lemma 12. For integers q ≥ 2 and n ≥ 1, we have

q(q + 2)

(q + 1)2

n∑
k=1

kq−1
n∑
k=1

kq+1 ≤

(
n∑
k=1

kq

)2

.

Proof. Let

Sn(q) =

n∑
k=1

kq.

By induction on n we show that for every q ≥ 2, we have

q(q + 2)Sn(q − 1)Sn(q + 1) ≤ (q + 1)2Sn(q)2.

The statement is clearly true for n = 1. Assume the statement holds for some n ≥ 1. For

n+ 1, using the inductive hypothesis, we have

q(q+2)Sn+1(q − 1)Sn+1(q + 1)

= q(q + 2)
(
Sn(q − 1) + (n+ 1)q−1

)(
Sn(q + 1) + (n+ 1)q+1

)
≤ (q + 1)2Sn(q)2 + q(q + 2)(n+ 1)q−1

(
Sn(q + 1) + (n+ 1)2Sn(q − 1) + (n+ 1)q+1

)
.

It suffices to show that this is at most

(q + 1)2Sn+1(q)2 = (q + 1)2(Sn(q) + (n+ 1)q)2

= (q + 1)2Sn(q)2 + 2(q + 1)2(n+ 1)qSn(q) + (q + 1)2(n+ 1)2q

which is equivalent to showing that for q ≥ 2 and n ≥ 1, we have

q(q + 2)
(
Sn(q + 1) + (n+ 1)2Sn(q − 1)

)
≤ 2(q + 1)2(n+ 1)Sn(q) + (n+ 1)q+1.

We shall do this inductively on n. The base case

5q(q + 2) ≤ 4(q + 1)2 + 2q+1, q ≥ 2 (11)

is verified later. By the inductive hypothesis, for n ≥ 1, we have

q(q + 2)
(
Sn+1(q + 1) + (n+ 2)2Sn+1(q − 1)

)
≤ 2(q + 1)2(n+ 1)Sn(q) + (n+ 1)q+1

− q(q + 2)(n+ 1)2Sn(q − 1)

+ q(q + 2)
(

(n+ 1)q+1 + (n+ 2)2Sn+1(q − 1)
)

= 2(q + 1)2(n+ 1)Sn(q) + q(q + 2)(2n+ 3)Sn(q − 1)

+ (q + 1)2(n+ 1)q+1 + q(q + 2)(n+ 2)2(n+ 1)q−1.

It suffices to show that this is at most

2(q + 1)2(n+ 2)Sn+1(q) + (n+ 2)q+1
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which is equivalent to showing that for q ≥ 2 and n ≥ 1, we have

q(q + 2)(2n+ 3)Sn(q − 1) + (q + 1)2(n+ 1)q+1 + q(q + 2)(n+ 2)2(n+ 1)q−1

≤ 2(q + 1)2Sn(q) + 2(q + 1)2(n+ 2)(n+ 1)q + (n+ 2)q+1.

Writing (n+ 2)2 = (n+ 1)2 + 2(n+ 1) + 1 as well as n+ 2 = (n+ 1) + 1 and simplifying gives

q(q + 2)(2n+ 3)Sn(q − 1) + q(q + 2)(n+ 1)q−1

≤ 2(q + 1)2Sn(q) + (n+ 2)q+1 + (n+ 1)q+1 + 2(n+ 1)q.

We show this again by induction on n. The base case

5q(q + 2) + q(q + 2)2q−1 ≤ 2(q + 1)2 + 3q+1 + 2q+2, q ≥ 2 (12)

is verified later. By the inductive hypothesis, for n ≥ 1, we have

2(q + 1)2Sn+1(q) ≥ q(q + 2)(2n+ 3)Sn(q − 1) + q(q + 2)(n+ 1)q−1

− (n+ 2)q+1 − (n+ 1)q+1 − 2(n+ 1)q

+ 2(q + 1)2(n+ 1)q.

It suffices to show that this is at least

q(q + 2)(2n+ 5)Sn+1(q − 1) + q(q + 2)(n+ 2)q−1 − (n+ 3)q+1 − (n+ 2)q+1 − 2(n+ 2)q

which after simplifying is equivalent to showing that for q ≥ 2 and n ≥ 1, we have

(n+ 3)q+1 + 2(n+ 2)q

≥ 2q(q + 2)Sn+1(q − 1) + q(q + 2)(n+ 2)q−1 + (n+ 1)q+1.

We show this again by induction on n. The base case

4q+1 + 2 · 3q ≥ 2q(q + 2)(1 + 2q−1) + q(q + 2)3q−1 + 2q+1, q ≥ 2 (13)

is verified later. By the inductive hypothesis, for n ≥ 1, we have

2q(q + 2)Sn+2(q − 1) ≤2q(q + 2)(n+ 2)q−1 + (n+ 3)q+1 + 2(n+ 2)q

− q(q + 2)(n+ 2)q−1 − (n+ 1)q+1.

It suffices to show that this is at most

(n+ 4)q+1 + 2(n+ 3)q − q(q + 2)(n+ 3)q−1 − (n+ 2)q+1

which after simplifying is equivalent to showing that for q ≥ 2 and n ≥ 1, we have

q(q + 2)(n+ 3)q−1 + q(q + 2)(n+ 2)q−1 + (n+ 3)q+1 + 2(n+ 2)q + (n+ 2)q+1

≤ (n+ 4)q+1 + 2(n+ 3)q + (n+ 1)q+1.
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Setting x = n + 1 and swapping q for q + 1, we see that it is enough to show that for every

q ≥ 1 the function

fq(x) = (x+ 3)q+2 − (x+ 2)q+2 − (x+ 1)q+2+xq+2 + 2(x+ 2)q+1 − 2(x+ 1)q+1

− (q + 1)(q + 3)
(

(x+ 2)q + (x+ 1)q
)

is nonnegative for x ≥ 2. We show in fact that it is nonnegative for x ≥ 0. From now on we

use that q is an integer and apply the binomial formula (if it was not, we could proceed by

writing Taylor’s expansion instead, but we would need to verify that the bqc derivative of fq

is nonnegative). The coefficients at xq+2 and xq+1 vanish and we have

fq(x) =

q∑
k=0

[(
q + 2

k

)
(3q+2−k − 2q+2−k − 1) + 2

(
q + 1

k

)
(2q+2−k − 1)

− (q + 1)(q + 3)

(
q

k

)
(2q−k + 1)

]
xk.

It suffices to show that for every 0 ≤ k ≤ q, we have(
q + 2

k

)
(3q+2−k − 2q+2−k − 1) + 2

(
q + 1

k

)
(2q+2−k − 1) ≥ (q + 1)(q + 3)

(
q

k

)
(2q−k + 1)

or dividing by
(
q
k

)
and simplifying,

(q + 2)

(q + 2− k)(q + 1− k)
(3q+2−k − 2q+2−k − 1) +

2

q + 1− k
(2q+2−k − 1) ≥ (q + 3)(2q−k + 1).

Setting l = q − k and multiplying through by (l+1)(l+2)
q+3 , it becomes

q + 2

q + 3
(3l+2 − 2l+2 − 1) +

1

q + 3
2(l + 2)(2l+2 − 1) ≥ (l + 1)(l + 2)(1 + 2l). (14)

We show this for every integers 0 ≤ l ≤ q in the following steps.

Step 1. We check that (14) for l = 0, 1 becomes equality and for l = 2, 3, it becomes respectively
4(q+1)
q+3 ≥ 0, 30(q+1)

q+3 ≥ 0, so it holds true for l ≤ 3.

Step 2. For integers q ≥ l ≥ 4 we bound the left hand side below by

6

7
(3l+2 − 2l+2 − 1)

and verify that
6

7
(3l+2 − 2l+2 − 1) ≥ (l + 1)(l + 2)(2l + 1), l ≥ 4. (15)

To finish the proof, we shall now show the omitted inductive base inequalities (11), (12),

(13) as well as final estimate (15).

Proof of (11). The right hand side minus the left hand side is

2q+1 + 4(q + 1)2 − 5q(q + 2) = 2q+1 − q2 − 2q + 4 = 2q+1 − (q + 1)2 + 5.

This is nonnegative for q = 2. For q ≥ 3, we use that 2x ≥ x2 for x ≥ 4 (which is easy to

check).

10



Proof of (12). The right hand side minus the left hand side is

3q+1 + 2q+2 + 2(q+ 1)2− 2q−1q(q+ 2)− 5q(q+ 2) = 3q+1− 2q−1q(q+ 2) + 2q+2− 3q(q+ 2) + 2.

We check directly that this is nonnegative for q = 2, 3, 4. For q ≥ 5, easy inductive arguments

show that 3q+1 ≥ 2q−1q(q + 2) and 2q+2 ≥ 3q(q + 2).

Proof of (13). We check the inequality directly for q = 2, 3, . . . , 10. For q ≥ 11, easy inductive

arguments show that 4q+1 ≥ 3q−1q(q + 2) and 3q ≥ (1 + 2q−1)q(q + 2) + 2q. Multiplying the

second inequality and adding to the first one gives (13).

Proof of (15). We verify the inequality for l = 4. Then, by induction, for l ≥ 4, we have

6

7
3l+3 ≥ 3(l + 1)(l + 2)(2l + 1) + 3 · 6

7
2l+2 + 3 · 6

7
.

It remains to check that this is at least (l + 2)(l + 3)(2l+1 + 1) + 6
72l+3 + 6

7 . The difference is

2l
(
l2 − l − 18

7

)
+ 2l2 + 4l + 2 · 6

7

which is clearly positive for l ≥ 4.

Remark 13. It is natural to ask what other symmetric discrete random variables are ultra

sub-Gaussian. We pose the following question: is it true that for every positive integer L

and every positive monotone log-concave sequence (xn)Ln=1 of length L, the function F (t) =

log
[
t
∑L
k=1 x

t
k

]
is concave on (0,∞)? This would imply that a symmetric discrete random

variable X with P (X = 0) = ρ0 and P (X = −xk) = P (X = xk) = 1−ρ0
2L , k = 1, . . . , L, for

some ρ0 ∈ [0, 1] satisfies (3), hence X would be ultra sub-Gaussian if and only if it satisfies

(2). When xk = k, Lemma 12 implies that the sequence (F (t))∞t=1 is concave. This question

also naturally appears in a different context (see [25]). Moreover, it is known that if γ > 0 and

f : (a, b) → (0,+∞) is such that fγ is concave on (a, b), then t 7→ log
(

(t+ γ)
∫ b
a
f(x)γdx

)
is

concave on (−γ,∞) (see [7], [8]). It is therefore tempting to ask for a stronger statement: for

γ > 0 and a positive monotone concave sequence (yn)Nn=1, is the function

t 7→ log

(
(t+ γ)

N∑
n=1

yt/γn

)

concave on (−γ,∞)? As pointed to us by Melbourne (also see [25]), the examples of sequences

x = ( 1
4 ,

1
2 , 1,

1
2 ,

1
4 ) and y = (1, 2, 3, 2, 1) show that the assumption of monotonicity is needed in

both questions.

Remark 14. The question from Remark 13 has the affirmative answer for N = 3. In this

case, the assumption of the log-concavity of (xn) is not needed (the assertion does not depend

on the order of the xn and given 3 numbers x1, x2, x3 we can always order them to form a

concave sequence by choosing x2 to be max{x1, x2, x3}). Thus, we claim that for every positive

numbers s, t, a, b, c, we have

s+ t

2
(a

s+t
2 + b

s+t
2 + c

s+t
2 ) ≥

√
s(as + bs + cs) · t(at + bt + ct)

11



which is equivalent to the conjecture being true when N = 3. To show the above, by homo-

geneity, it is enough to consider s + t = 2, that is to prove that for every positive numbers

a, b, c and s ∈ (0, 2), we have

a+ b+ c ≥
√
s(2− s)(as + bs + cs)(a2−s + b2−s + c2−s),

or, after squaring and rearranging,

(s− 1)2(a2 + b2 + c2) + 2(ab+ bc+ ca) ≥ s(2− s)
(
asb2−s + a2−sbs

+ bsc2−s + b2−scs + csa2−s + c2−sas
)
.

This holds if we show that for every positive a, b and s ∈ (0, 2), we have

(s− 1)2

2
(a2 + b2) + 2ab ≥ s(2− s)(asb2−s + a2−sbs).

This follows from the following claim (divide through by ab and set ex = a
b , θ = 1− s).

Claim. Let θ ∈ [−1, 1] and x ∈ R. Then

2 + θ2 coshx ≥ 2(1− θ2) cosh(θx).

Proof of the claim. Expanding into a power series yields,

S = 2 + θ2 coshx− 2(1− θ2) cosh(θx) = 2 + θ2

1 +
x2

2
+
∑
k≥2

x2k

(2k)!


− 2(1− θ2)

1 +
θ2x2

2
+
∑
k≥2

θ2kx2k

(2k)!


= θ2

[
3 +

2θ2 − 1

2
x2 +

∑
k≥2

1− 2θ2k−2(1− θ2)

(2k)!
x2k

]
.

Note that for k ≥ 2, we have 1− 2θ2k−2(1− θ2) ≥ 1− 2θ2(1− θ2) ≥ 1
2 > 0, so if 2θ2 − 1 ≥ 0,

then S is clearly positive. If 2θ2 − 1 < 0, then using 1− 2θ2k−2(1− θ2) ≥ 1− 2θ2, we get

S ≥ θ2

[
3 +

2θ2 − 1

2
x2 + (1− 2θ2)

∑
k≥2

x2k

(2k)!

]

= θ2

[
3 + (1− 2θ2)

−x2

2
+
∑
k≥2

x2k

(2k)!

].
It remains to observe that −x

2

2 +
∑
k≥2

x2k

(2k)! ≥ −
x2

2 + x4

24 = (x2−6)2

24 − 3
2 ≥ −

3
2 , thus S ≥

θ2(3− 3
2 (1− 2θ2)) = θ2( 3

2 + 3θ2) ≥ 0.

Combining Remarks 13 and 14 yields the following corollary.

Corollary 15. Let ρ0 ∈ [0, 1) and let x1, x2, x3 be positive. Let X1, X2, . . . be i.i.d. copies of

a random variable X with P (X = 0) = ρ0 and P (X = −xj) = P (X = xj) = 1−ρ0
6 , j = 1, 2, 3.

Then X is ultra sub-Gaussian if and only if x4
1 + x4

2 + x4
3 ≤ (1− ρ0)(x2

1 + x2
2 + x2

3)2. Moreover

in this case, (6) holds.
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3.2 Second, third and higher moments, no atom at 0: Proof of The-

orem 4

The value of the constant Cp equals the p-th moment of a standard Gaussian random variable

and is seen to be sharp by taking a1 = . . . = an = 1√
n

, letting n→∞ and applying the central

limit theorem.

To establish (7), we shall follow an inductive argument exploiting independence based on

swapping the Xi one by one with independent Gaussians (similar ideas have appeared e.g. in

[5], [11] or [12]). An appropriate normalisation of the Gaussians is crucial and we shall choose

them to have the same variance as the Xi.

Let

σ =
√

E|X1|2 =

(
(L+ 1)(2L+ 1)

6

)1/2

(16)

and let G1, G2, . . . be i.i.d. centred Gaussian random variables with variance σ2. Since

Cpp

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
2
p/2

= Cpp

(
n∑
i=1

a2
i

)p/2
σp/2 = E

∣∣∣∣∣
n∑
i=1

aiGi

∣∣∣∣∣
p

,

inequality (7) is equivalent to

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p

≤ E

∣∣∣∣∣
n∑
i=1

aiGi

∣∣∣∣∣
p

.

By independence and induction, it suffices to show that for every reals a, b, we have

E|a+ bX1|p ≤ E|a+ bG1|p. (17)

This will follow from the following claim.

Claim. For every convex nondecreasing function h : [0,+∞)→ [0,+∞), we have

Eh(X2
1 ) ≤ Eh(G2

1). (18)

Indeed, (17) for b = 0 is clear. Assuming b 6= 0, by homogeneity, (17) is equivalent to

E|a+X1|p ≤ E|a+G1|p.

Using the symmetry of X1, we can write

2E|a+X1|p = E|a+ |X1||p + E|a− |X1||p = Eha(X2
1 ),

where

ha(x) = |a+
√
x|p + |a−

√
x|p, x ≥ 0 (19)

(and similarly for G1). The convexity of ha is established in the following standard lemma (see

also e.g. Proposition 3.1 in [12]).

Lemma 16. Let p ≥ 3, a ∈ R. Then ha defined in (19) is convex nondecreasing on [0,∞).
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Proof. The case a = 0 is clear (and the assertion holds for p ≥ 2). The case a 6= 0 reduces by

homogeneity to, say a = 1. We have

h′1(x) =
p

2
√
x

[
|1 +

√
x|p−1 + sgn(

√
x− 1)|

√
x− 1|p−1

]
and it suffices to show that the function g(y) = |1+y|p−1+sgn(y−1)|y−1|p−1

y is nondecreasing on

(0,∞). Call the numerator f(y). Since g(y) = f(y)−f(0)
y−0 , it suffices to show that f is convex

(0,∞). We have f ′(y) = (p− 1)(|1 + y|p−2 + |y− 1|p−2) which is convex on R for p ≥ 3, hence

nondecreasing on (0,∞) (as being even). This justifies that h′1 is nondecreasing, hence h1 is

convex. Since h′1(0) = f ′(0) = 2(p − 1) > 0, we get h′1(x) ≥ h′1(0) > 0, so h1 is increasing on

(0,∞).

Thus 2E|a+X1|p = Eha(X2
1 ) ≤ Eha(G2

1) = 2E|a+G1|p by the claim, as desired. It remains

to prove the claim.

Proof of the claim. When L = 1, the claim follows immediately because X2
1 = 1 and by

Jensen’s inequality, Eh(G2
1) ≥ h(EG2

1) = h(1) = Eh(X2
1 ). We shall assume from now on that

L ≥ 2.

By standard approximation arguments, it suffices to show that the claim holds for h(x) =

(x− a)+ for every a > 0. Here and throughout x+ = max{x, 0}. Note that

E(X2
1 − a)+ =

1

2L

L∑
k=−L

(k2 − a)+ =
1

L

L∑
k=d
√
ae

(k2 − a)

and

E(G2
1 − a)+ =

∫ ∞
−∞

(x2 − a)+
1√

2πσ2
e−x

2/2σ2

dx =

√
2

πσ2

∫ ∞
√
a

(x2 − a)e−x
2/2σ2

dx

with σ (depending on L) defined by (16). Fix an integer L ≥ 2 and set for nonnegative a,

f(a) =

√
2

πσ2

∫ ∞
√
a

(x2 − a)e−x
2/2σ2

dx− 1

L

L∑
k=d
√
ae

(k2 − a).

Our goal is to show that f(a) ≥ 0 for every a ≥ 0. This is clear for a > L2 because then

the second term is 0. Note that f is continuous (because x 7→ x+ is continuous). For a ∈
(b2, (b+ 1)2) with b ∈ {0, 1, . . . , L− 1} our expression becomes

f(a) =

√
2

πσ2

∫ ∞
√
a

(x2 − a)e−x
2/2σ2

dx− 1

L

L∑
k=b+1

(k2 − a),

is differentiable and

f ′(a) = −
√

2

πσ2

∫ ∞
√
a

e−x
2/2σ2

dx− 1

L

L∑
k=b+1

(−1)

= −
√

2

πσ2

∫ ∞
√
a

e−x
2/2σ2

dx+
L− b
L

, a ∈ (b2, (b+ 1)2). (20)
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Bounding b <
√
a yields

f ′(a) ≥ −
√

2

πσ2

∫ ∞
√
a

e−x
2/2σ2

dx+
L−
√
a

L

= −
√

2

π

∫ ∞
√
a/σ

e−x
2/2dx+

(
1−
√
a

L

)
.

Call the right hand side g̃(a),

g̃(a) = −
√

2

π

∫ ∞
√
a/σ

e−x
2/2dx+

(
1−
√
a

L

)
.

We have obtained f ′ ≥ g̃ on (0, L2) (except for the points 12, 22, . . .). Since f is absolutely

continuous and f(0) = 0, we can write f(a) =
∫ a

0
f ′(x)dx and consequently

f(a) ≥ g(a), a ∈ [0, L2],

where we define

g(a) =

∫ a

0

g̃(x)dx.

Note: g′′(a) = g̃′(a) = 1
2
√
a

(√
2
π

1
σ e
− a

2σ − 1
L

)
which changes sign from positive to negative

(since
√

2
π

1
σ −

1
L > 0 for L ≥ 2). This implies that g′ is first strictly increasing, then strictly

decreasing and together with g′(0) = g̃(0) = 0, g′(∞) = −∞, it gives that g′ is first positive,

then negative. Consequently, g is first strictly increasing and then strictly decreasing. Since

g(0) = 0, to conclude that g is nonnegative on [0, L2] (hence f), it suffices to check that

g(L2) ≥ 0. We have,

g(L2) =

∫ L2

0

[
−
√

2

π

∫ ∞
√
a/σ

e−x
2/2dx+

(
1−
√
a

L

)]
da

=

∫ L2

0

[√
2

π

∫ √a/σ
0

e−x
2/2dx−

√
a

L

]
da

=

√
2

π

∫ L/σ

0

(L2 − σ2x2)e−x
2/2dx− 2

3
L2.

Note that for t = t(L) = L2

σ2 = 6L2

(L+1)(2L+1) , the expression g(L2)
σ2 becomes

h(t) =

√
2

π

∫ √t
0

(t− x2)e−x
2/2dx− 2

3
t.

We have,

h′(t) =

√
2

π

∫ √t
0

e−x
2/2dx− 2

3
.

For L ≥ 7, we have t ≥ t0 = t(7) = 49
20 . We check that h′(t0) = h′( 49

20 ) > 0.2 and since

h′ is increasing, h′(t) is positive for t ≥ t0, hence h(t) ≥ h(t0) = h( 49
20 ) > 0.01 for t ≥ t0.

Consequently, g(L2) > 0 for every L ≥ 7, which completes the proof for L ≥ 7.

It remains to address the cases 2 ≤ L ≤ 6. Here lower-bounding f by g incurs too much

loss, so we show that f is nonnegative on [0, L2] by direct computations. First note that
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f ′(a) (see (20)) is strictly increasing on each interval a ∈ (b2, (b + 1)2), b ∈ {0, 1, . . . , L − 1}.
Clearly f ′(0+) = 0 and we check that θL,b = f ′(b2+) > 0 for every b ∈ {1, . . . , L − 2} and

3 ≤ L ≤ 6 (see Table 1), so f(a) is strictly increasing for a ∈ (0, (L − 1)2). Since f(0) = 0,

this shows that f(a) > 0 for a ∈ (0, (L − 1)2). On the interval ((L − 1)2, L2), we use the

convexity of f and we lower-bound f by its tangent at a = (L − 1)2+ with the slope θL,L−1

(which is negative), that is f(a) ≥ θL,L−1(a − (L − 1)2) + f((L − 1)2). It remains to check

that vL = θL,L−1(2L − 1) + f((L − 1)2), the values of the right hand side at the end point

a = L2, are positive. We have, v2 > 0.2, v3 > 0.7, v4 > 1.2, v5 > 1.9, v6 > 2.6. This finishes

the proof.

Table 1: Lower bounds on the values of the slopes θL,b = f ′(b2+).

b = 1 b = 2 b = 3 b = 4

θ3,b 0.02

θ4,b 0.03 0.03

θ5,b 0.03 0.05 0.03

θ6,b 0.03 0.05 0.05 0.02

Remark 17. We can drop the assumption in Theorem 4 of the Xi being identically distributed

and only assume their independence (we stated it in the i.i.d. case for simplicity). The proof

does not change: we only have to choose the independent Gaussian random variables Gi to be

such that E|Gi|2 = E|Xi|2 and then (18), hence (17) holds for each Xi.

3.3 A Schur-convexity result for 3 atoms: Proof of Theorem 6

We need to begin with two technical lemmas. Let C be the linear space of all continuous

functions on R equipped with pointwise topology. Let C1 ⊂ C be the cone of all odd functions

on R which are nondecreasing convex on (0,+∞) and let C2 ⊂ C be the cone of all even

functions on R which are nondecreasing convex on (0,+∞). Note that C2 is the closure (in the

pointwise topology) of the set S = {(|x| − γ)+, γ ≥ 0} .

Lemma 18. Let q ≥ 2, w ≥ 0 and φw(x) = sgn(x+ w)|x+ w|q + sgn(x− w)|x− w|q, x ∈ R.

Then φw ∈ C1. Let rw(x) = φw(x)
x , x ∈ R (with the value at x = 0 understood as the limit).

Then rw ∈ C2.

Proof. The case w = 0 is clear. For w > 0, verifying that φw ∈ C1 and rw ∈ C2, by homogeneity,

is equivalent to doing so for w = 1. Let w = 1 and denote φ = φ1 and r = r1. Suppose we

have shown that r ∈ C2. Then, plainly, φ(x) = xr(x) is also nondecreasing on (0,∞) and

φ′′(x) = (r(x) + xr′(x))′ = 2r′(x) + xr′′(x) is nonnegative on (0,∞) since r′ and r′′ are

nonnegative on (0,∞).

It remains to prove that r ∈ C2. Plainly φ(x) is odd and thus r(x) is even. Thus we consider

x > 0.
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Case 1. x ≥ 1. We have, φ(x) = (x+ 1)q + (x− 1)q,

r′(x) =
φ′(x)

x
− φ(x)

x2
= q

(x+ 1)q−1 + (x− 1)q−1

x
− (x+ 1)q + (x− 1)q

x2

and

x3r′′(x) = x3

[
φ′′(x)

x
− 2

φ′(x)

x2
+ 2

φ(x)

x3

]
= q(q − 1)x2

[
(x+ 1)q−2 + (x− 1)q−2

]
− 2qx

[
(x+ 1)q−1 + (x− 1)q−1

]
+ 2
[
(x+ 1)q + (x− 1)q

]
.

Note that taking one more derivative gives

(x3r′′(x))′ = q(q − 1)(q − 2)x2
[
(x+ 1)q−3 + (x− 1)q−3

]
which is clearly positive for x > 1 since q ≥ 2. Thus, for x > 1, we have

x3r′′(x) > r′′(1) = q(q − 1) · 2q−2 − 2q · 2q−1 + 2 · 2q = 2q−2

((
q − 5

2

)2

+
7

4

)
> 0.

Therefore, r′′(x) > 0 for x > 1. Since r′(1) = q2q−1 − 2q = 2q−1(q − 2) ≥ 0, we also get that

r′(x) is positive for x > 1.

Case 2. 0 < x < 1. The argument and the computations are very similar to Case 1. We have,

φ(x) = (1 + x)q − (1− x)q,

r′(x) =
φ′(x)

x
− φ(x)

x2
= q

(1 + x)q−1 + (1− x)q−1

x
− (1 + x)q − (1− x)q

x2

and

x3r′′(x) = x3

[
φ′′(x)

x
− 2

φ′(x)

x2
+ 2

φ(x)

x3

]
= q(q − 1)x2

[
(1 + x)q−2 − (1− x)q−2

]
− 2qx

[
(1 + x)q−1 + (1− x)q−1

]
+ 2
[
(1 + x)q − (1− x)q

]
.

Taking one more derivative yields

(x3r′′(x))′ = q(q − 1)(q − 2)x2
[
(1 + x)q−3 + (1− x)q−3

]
.

If q > 2, this is positive for 0 < x < 1. Then in this case, consequently, x3r′′(x) >

x3r′′(x)
∣∣∣
x=0

= 0, so r′′(x) is positive for 0 < x < 1. As a result, r′(x) > r′(0+) = 0 for

0 < x < 1. If q = 2, we simply have φ(x) = 4x and r(x) = 4.

Combining the cases, we see that both r′ and r′′ are nonnegative on (0,+∞), which finishes

the proof.

Lemma 19. The best constant D such that the inequality

D ·
[
φ(a+ b)− φ(b− a)

2a
− φ(a+ b) + φ(b− a)

2b

]
≥
[
φ(b)

b
− φ(a)

a

]
(21)

holds for all 0 < a < b and every function φ(x) of the form xr(x), r ∈ C2, is D = 1.

17



Proof. For φ(x) = xr(x), r(x) = |x|, by homogeneity, inequality (21) is equivalent to: for all

0 < a < 1, we have

D ·
[

(1 + a)2 − (1− a)2

2a
− (1 + a)2 + (1− a)2

2

]
≥ 1− a,

that is D · (1− a2) ≥ (1− a) for all 0 < a < 1, which holds if and only if D ≥ 1. Now we show

that in fact (21) holds with D = 1 for every φ(x) = xr(x), where r ∈ C2. Since C2 is the closure

of S, by linearity, it suffices to show this for all simple functions r ∈ S, that is r(x) = (|x|−γ)+.

By homogeneity, this is equivalent to showing that for all γ ≥ 0 and 0 < a < 1, we have

(1 + a)(1 + a− γ)+ − (1− a)(1− a− γ)+

2a
− (1 + a)(1 + a− γ)+ + (1− a)(1− a− γ)+

2

≥ (1− γ)+ − (a− γ)+.

Fix 0 < a < 1. Let ha(γ) be the left hand side minus the right hand side. For γ ≥ 1 + a,

ha(γ) = 0. Since as a function of γ, ha(γ) is piecewise linear, showing that it is nonnegative on

[0, 1+a] is equivalent to verifying it at the nodes γ ∈ {0, 1, a, 1−a}. We have, ha(0) = a−a2 > 0.

Next, ha(1) = (1+a)a
2a − (1+a)a

2 = 1
2 (1 + a)(1 − a) > 0. Finally, to check γ = a and γ = 1 − a,

we consider two cases.

Case 1. a ≤ 1− a, that is 0 < a ≤ 1
2 . Then,

ha(a) =
(1 + a)− (1− a)(1− 2a)

2a
− (1 + a) + (1− a)(1− 2a)

2
− (1− a) = a(1− a) > 0

and

ha(1− a) =
(1 + a)2a

2a
− (1 + a)2a

2
− a = 1− a2 − a ≥ 1− 1

4
− 1

2
=

1

4
.

Case 2. a > 1− a, that is 1
2 < a < 1. Then,

ha(a) =
(1 + a)

2a
− (1 + a)

2
− (1− a) =

(1− a)2

2a
> 0

and

ha(1− a) =
(1 + a)2a

2a
− (1 + a)2a

2
− [a− (2a− 1)] = a(1− a) > 0.

Proof of Theorem 6. Fix p ≥ 3 and let F (x) = |x|p. Then (8) is equivalent to saying that the

function

Φ(a1, . . . , an) = EF

(
n∑
i=1

√
aiXi

)
is Schur concave. Since Φ is symmetric, by Ostrowski’s criterion (see, e.g., Theorem II.3.14 in

[6]), Φ is Schur concave if and only if

∂Φ

∂a1
≥ ∂Φ

∂a2
, a1 < a2,

which is equivalent to
1
√
a1

E[X1F
′(S)] ≥ 1

√
a2

E[X2F
′(S)],

18



where S =
√
a1X1 +

√
a2X2 + W and W =

∑
i>2

√
aiXi. After taking the expectation with

respect to X1 and X2, it becomes

1
√
a1

(
1− ρ0

2
ρ0E[F ′(

√
a1 +W )− F ′(−

√
a1 +W )]

+

(
1− ρ0

2

)2

E[F ′(
√
a1 +

√
a2 +W )− F ′(−

√
a1 +

√
a2 +W )

+ F ′(
√
a1 −

√
a2 +W )− F ′(−

√
a1 −

√
a2 +W )]

)

≥ 1
√
a2

(
1− ρ0

2
ρ0E[F ′(

√
a2 +W )− F ′(−

√
a2 +W )]

+

(
1− ρ0

2

)2

E[F ′(
√
a2 +

√
a1 +W )− F ′(−

√
a2 +

√
a1 +W )

+ F ′(
√
a2 −

√
a1 +W )− F ′(−

√
a2 −

√
a1 +W )]

)
.

This trivially holds for ρ0 = 1. Suppose ρ0 < 1. Note that F ′ is odd and W is symmetric.

Thus, −EF ′(−√a1 + W ) = EF ′(√a1 + W ) and similarly for the other terms. Consequently,

the inequality is equivalent to

1
√
a1

(
2ρ0EF ′(

√
a1 +W )

+ (1− ρ0)E[F ′(
√
a1 +

√
a2 +W )− F ′(−

√
a1 +

√
a2 +W )]

)

≥ 1
√
a2

(
2ρ0EF ′(

√
a2 +W )

+ (1− ρ0)E[F ′(
√
a2 +

√
a1 +W ) + F ′(

√
a2 −

√
a1 +W )]

)
.

Set a =
√
a1, b =

√
a2 and

φ(x) = EF ′(x+W ), x ∈ R

(φ is also odd). Suppose ρ0 > 0. Then, the validity of the above inequality is equivalent to the

question whether for all 0 < a < b,

(ρ−1
0 − 1)

[
φ(a+ b)− φ(b− a)

2a
− φ(a+ b) + φ(b− a)

2b

]
≥
[
φ(b)

b
− φ(a)

a

]
. (22)

By the symmetry of W , it has the same distribution as ε|W |, where ε is an independent

symmetric random sign, so we can write φ(x) = 1
2Eφ|W |(x), where for w ≥ 0, we set φw(x) =

F ′(x+ w) + F ′(x− w). By Lemmas 18 and 19, inequality (22) holds for φw in place of φ (for

every w ≥ 0) as long as ρ−1
0 − 1 ≥ 1. Taking the expectation against |W | yields the inequality

for φ, as desired. For ρ0 = 0, we can for instance argue by taking the limit ρ0 → 0+ directly

in (8).
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3.4 First and second moments: Proof of Theorem 8

Note that for a1 = 1, a2 = · · · = an = 0, we have equality in (10), which explains why the

value of the constant c1 is sharp.

We shall closely follow Haagerup’s approach from [13]. Let φX(t) = EeitX be the charac-

teristic function of X. We have

φX(t) = ρ0 + (1− ρ0)
1

L

L∑
k=1

cos(kt)

≥ ρ0 − (1− ρ0) = 2ρ0 − 1 ≥ 0.

We also define

F (s) =
2

π

∫ ∞
0

[
1−

∣∣∣∣φX ( t√
s

)∣∣∣∣s] dtt2 , s ≥ 1.

By symmetry, without loss of generality we can assume that a1, . . . , an are positive with
∑
a2
j =

1. By Lemma 1.2 from [13] and independence,

E

∣∣∣∣∣∣
∑
j

ajXj

∣∣∣∣∣∣ =
2

π

∫ ∞
0

1−
∏
j

φX(ajt)

 dt
t2
.

As in the proof of Lemma 1.3 from [13], by the AM-GM inequality,∏
φX(ajt) ≤

∑
a2
j |φX(ajt)|a

−2
j ,

thus

E

∣∣∣∣∣∣
∑
j

ajXj

∣∣∣∣∣∣ ≥
∑
j

a2
jF (a−2

j ).

If we show that

F (s) ≥ F (1), s ≥ 1, (23)

then

E

∣∣∣∣∣∣
∑
j

ajXj

∣∣∣∣∣∣ ≥
∑
j

a2
jF (1) = F (1) =

F (1)√
E|X|2

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
2
1/2

.

Since φX is nonnegative, using again Lemma 1.2 from [13], we have

F (1) =
2

π

∫ ∞
0

[1− |φX (t)|] dt
t2

=
2

π

∫ ∞
0

[1− φX (t)]
dt

t2
= E|X|,

so the proof of (10) is finished.

It remains to show (23). For a fixed s ≥ 1, the left hand side

F (s) =
2

π

∫ ∞
0

[
1−

∣∣∣∣∣ρ0 + (1− ρ0)
1

L

L∑
k=1

cos

(
kt√
s

)∣∣∣∣∣
s]
dt

t2

is concave as a function of ρ0, whereas the right hand side F (1) = E|X| = (1−ρ0)L+1
2 is linear

as a function of ρ0. Therefore, it is enough to check the cases: 1) ρ0 = 1 which is clear, 2)

ρ0 = 1/2 which becomes

2

π

∫ ∞
0

[
1−

∣∣∣∣∣12 +
1

2

1

L

L∑
k=1

cos

(
kt√
s

)∣∣∣∣∣
s]
dt

t2
≥ L+ 1

4
.
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Using cos x+1
2 = cos2(x/2) and then employing convexity, the left hand side can be rewritten

and lower bounded as follows

2

π

∫ ∞
0

[
1−

∣∣∣∣∣ 1L
L∑
k=1

cos2

(
kt

2
√
s

)∣∣∣∣∣
s]
dt

t2
≥ 1

L

L∑
k=1

2

π

∫ ∞
0

[
1−

∣∣∣∣cos

(
kt

2
√
s

)∣∣∣∣2s
]
dt

t2
.

A change of variables t =
√

2t′/k allows to write the right hand side as

1

L

L∑
k=1

2

π

∫ ∞
0

[
1−

∣∣∣∣cos

(
t′√
2s

)∣∣∣∣2s
]
dt′

t′2
k√
2

=
L+ 1

2
√

2
FHaa(2s),

where FHaa(s) = 2
π

∫∞
0

[
1−

∣∣∣cos
(

t√
s

)∣∣∣s] dtt2 is Haagerup’s function (see Lemma 1.3 and 1.4 in

[13]). He showed therein that it is increasing, so for s ≥ 1, we get FHaa(2s) ≥ FHaa(2) = 1√
2

and this finishes the proof.

Remark 20. Thanks to Remark 2.5 from [13], the same proof also works if we replace the first

moment by p0-th one, where p0 = 1.847... is the unique solution to Γ(p+1
2 ) =

√
π

2 , p ∈ (0, 2).

The cases of other values of p ∈ (1, 2) have been elusive.
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