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Abstract

We establish a sharp moment comparison inequality between an arbitrary neg-
ative moment and the second moment for sums of independent uniform random
variables, which extends Ball’s cube slicing inequality.
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1 Introduction

Ball’s celebrated cube slicing inequality established in [3] states that the maximal volume
cross-section of the centred cube [−1, 1]n in Rn by a hyperplane (a subspace of codimen-
sion 1) equals 2n−1

√
2, attained by the hyperplane with normal vector ( 1√

2
, 1√

2
, 0, . . . , 0)

(see also [4]). Khinchin-type inequalities provide moment comparison, typically for
weighted sums of independent identically distributed (i.i.d.) random variables. The clas-
sical one concerns symmetric random signs and goes back to the work [20] of Khinchin.
Such inequalities are instrumental in studying unconditional convergence and are used
extensively in (functional) analysis and geometry, particularly in (local) theory of Banach
spaces. We refer to several works [2, 15, 22, 25, 27, 28, 33, 34, 37, 38] for further back-
ground and references (particularly, [2] provides a detailed historic account on Khinchin
inequalities with sharp constants).

The main motivation for this article and its starting point is a fact well-known to experts
that Ball’s inequality can be viewed as a Khinchin-type inequality (the dual question
of extremal volume hyperplane-projections of convex bodies is also linked to Khinchin-
type inequalities, see for example [5, 6, 11]). An elementary derivation can be sketched
as follows. For a unit vector a = (a1, . . . , an) in Rn, let f be the density of X =
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∑n
k=1 akUk, where U1, . . . , Un are i.i.d. uniform on [−1, 1]. Then the (n − 1)-volume

of the cross-section of the cube [−1, 1]n by the hyperplane a⊥ perpendicular to a is
Voln−1

(
[−1, 1]n ∩ a⊥

)
= 2nf(0). On the other hand, for every symmetric unimodal

bounded random variable X with density f , we have

f(0) = ‖f‖∞ = lim
p→1−

1− p
2

E|X|−p

(X is called symmetric if it has the same distribution as −X). Thus Ball’s inequality,
put probabilistically, says that for every unit vector a in Rn, we have

lim
p→1−

(1− p)E

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
−p

6
√

2.

Our main result shows in particular that not only does this inequality hold in the limit,
but also for every p ∈ (p0, 1), where p0 = 0.793... . To view this inequality as actual
moment comparison, let ξ1, ξ2, . . . be i.i.d. random vectors in R3 uniform on the centered
Euclidean unit sphere S2. As a result of Archimedes’ hat-box theorem and rotational

invariance, the left hand side can be rewritten as E ‖
∑n
k=1 akξk‖

−1
, where ‖·‖ stands for

the standard Euclidean norm on R3 (see Lemma 3 below). We thus have the following
identity for a unit vector a in Rn,

21−n Voln−1

(
[−1, 1]n ∩ a⊥

)
= lim
p→1−

(1− p)E

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
−p

= E

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
−1

. (1)

For a generalisation, see Proposition 3.2 in [7] and Proposition 3.2 in [26]. As a result, we
can rephrase Ball’s inequality as the following sharp L−1−L2 Khinchin-type inequality:
for every n and every reals a1, . . . , an,

E

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
−1

6
√

2

(
n∑
k=1

a2
k

)−1/2

. (2)

We extend this to a sharp L−p − L2 moment comparison for p ∈ (0, 1) with arbitrary
matrix-valued coefficients (Corollary 4 below). We refer to [2, 22, 25, 29] for sharp
results for positive moments.

We describe our results in the next section and then present our proofs, preceded with
a short overview of them. We conclude with a summary highlighting possible future
work. Throughout, 〈x, y〉 =

∑d
j=1 xjyj denotes the standard scalar product on Rd,

‖x‖ =
√
〈x, x〉 is the Euclidean norm whose unit sphere and closed unit ball are denoted

by Sd−1 and Bd2 , respectively. Moreover, ej is the j-th vector of the standard basis
whose j-th coordinate is 1 and the rest are 0.

2 Results

Let U1, U2 be i.i.d. random variables uniform on [−1, 1] and let Z be a standard Gaussian
random variable (mean 0, variance 1). For p ∈ (0, 1), we define the constants

c2(p) = E
∣∣∣∣U1 + U2√

2

∣∣∣∣−p = 2p/2
∫ 2

−2

|x|−p
(

1

2
− |x|

4

)
dx =

21−p/2

(1− p)(2− p)
,

c∞(p) = E
∣∣∣∣ Z√3

∣∣∣∣−p =
3p/2√

2π

∫ ∞
−∞
|x|−pe−x

2/2dx =
(3/2)p/2√

π
Γ

(
1− p

2

) (3)
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and
Cp = max{c2(p), c∞(p)}. (4)

By comparing c2(p) and c∞(p) as done in Lemma 7 from Section 4 below, in fact we
have

Cp =

{
c∞(p), if p ∈ (0, p0),

c2(p), if p ∈ (p0, 1),
(5)

where p0 is the unique p ∈ (0, 1) such that c2(p) = c∞(p). Our main result is the
following L−p − L2 Khinchin-type inequality for sums of symmetric uniform random
variables.

Theorem 1. Let p ∈ (0, 1) and let Cp be defined by (4). Let U1, U2, . . . be i.i.d. random
variables uniform on [−1, 1]. For every n and every reals a1, . . . , an, we have

E

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
−p

6 Cp

(
n∑
k=1

a2
k

)−p/2
. (6)

Remark 2. Applying (6) to n = 2, a1 = a2 = 1√
2

and to n large, a1 = · · · = an = 1√
n

(with the aid of the central limit theorem) shows that the value of Cp in (6) is sharp.

Moments of a Euclidean norm of weighted sums of independent random vectors uniform
on Sd+1 and Bd2 , d > 1, are proportional (see Proposition 4 in [25] or its generalisation,
Theorem 4 in [2]). We recall a special case of this result relevant for us and for conve-
nience sketch its proof (particularly because the proofs available in the literature treat
the case of positive moments, but of course they repeat verbatim to negative moments).

Lemma 3 (Proposition 4, [25]). Let ξ1, ξ2, . . . be i.i.d. random vectors uniformly dis-
tributed on the unit sphere S2 in R3. Let U1, U2, . . . be i.i.d. random variables uniform
on [−1, 1]. For a vector a = (a1, . . . , an) in Rn and p ∈ (−∞, 1), we have

E

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
−p

= (1− p)E

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
−p

.

Proof. We reproduce here an argument utilising rotational invariance from [25] at-
tributed to Lata la. Let θ be a random vector uniform on S2, independent of all the
other variables. By rotational invariance, for a vector x in R3, we have

E|〈x, θ〉|−p = E|〈e1‖x‖, θ〉|−p = ‖x‖−pE|θ1|−p,

where θ1 denotes the first component of θ, so

‖x‖−p =
E|〈x, θ〉|−p

E|θ1|−p
.

Applying this to x =
∑n
k=1 akξk and taking the expectation gives

Eξ

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
−p

= EξEθ
|〈
∑n
k=1 akξk, θ〉|−p

E|θ1|−p
=

1

E|θ1|−p
EθEξ

∣∣∣∣∣
〈

n∑
k=1

akξk, θ

〉∣∣∣∣∣
−p

.

By the rotational invariance of
∑
akξk, we also have

Eξ

∣∣∣∣∣
〈

n∑
k=1

akξk, θ

〉∣∣∣∣∣
−p

= Eξ

∣∣∣∣∣
〈

n∑
k=1

akξk, e1‖θ‖

〉∣∣∣∣∣
−p

.
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However, θ is a unit vector and the random variables 〈ξk, e1〉 are i.i.d. uniform on
[−1, 1] (recall that ξk is uniform on the 2-dimensional unit sphere and Archimedes’ hat-
box theorem states that the surface area measure of a set {x ∈ S2, 〈x, e1〉 ∈ [a, b]} is
proportional to b− a). Therefore,

Eξ

∣∣∣∣∣
〈

n∑
k=1

akξk, e1‖θ‖

〉∣∣∣∣∣
−p

= Eξ

∣∣∣∣∣
n∑
k=1

ak〈ξk, e1〉

∣∣∣∣∣
−p

= EU

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
−p

.

Since θ1 is uniform on [−1, 1], we get E|θ1|−p =
∫ 1

0
x−pdx = 1

1−p . Putting these equa-
tions together finishes the proof.

It follows from Lemma 3 that (6) is equivalent to

E

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
−p

6 (1− p)Cp

(
n∑
k=1

a2
k

)−p/2
. (7)

We extend this to matrix-valued coefficients using isometrical embeddings into Lp spaces
(Orlicz-Szarek’s argument, see Remark 3 in [38]). This offers a sharp version of the very
general result of Gorin and Favarov from [14] (see Corollary 2 therein) in the case of
uniform vectors on S2 and the L−p − L2 moment comparison. For a matrix A, ‖A‖HS
stands for its Hilbert-Schmidt norm.

Corollary 4. Let p ∈ (0, 1) and let Cp be defined by (4). Let ξ1, ξ2, . . . be i.i.d. random
vectors uniform on the unit sphere S2 in R3. For every n and every real 3× 3 matrices
A1, . . . , An, we have

E

∥∥∥∥∥
n∑
k=1

Akξk

∥∥∥∥∥
−p

6 Cp

(
n∑
k=1

‖Ak‖2HS

)−p/2
. (8)

Remark 5. Both (7) and (8) are sharp. The constant in (8) is larger than in (7) . The

former specialised to the case when each matrix Ak is proportional to the matrix
[

1 0 0
0 0 0
0 0 0

]
reduces to (6).

Remark 6. A sharp reversal of (7) (analogously of (8)) is immediate from convexity.
Using Jensen’s inequality (for the function t−p), the monotonicity of p-norms: ‖ · ‖L1 6
‖ · ‖L2

and the fact that E ‖
∑
akξk‖2 =

∑
a2
k, we obtain

E

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
−p

>

(
E

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
)−p

>


E

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
2
1/2


−p

=

(
n∑
k=1

a2
k

)−p/2
.

By (1), the case p = 1 of this inequality gives yet another simple proof of Hadwiger’s
and Hensley’s result (see [16] and [18], see also Theorem 2 in [3]).

3 Proof overview

Haagerup’s work [15] can perhaps be seen as a landmark in the pursuit of sharp Khinchin-
type inequalities. Later, Nazarov and Podkorytov in [34] offered an informative exposi-
tion of [15] (and [3]), developing novel tools which allowed for significant simplications
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of the most technically demanding parts of [15] (as well as of [3]). We shall closely follow
their approach which comprises two main steps. (For other works which used techniques
from [34] to establish sharp Khinchin-type inequalities, we refer for instance to [22, 32].)

Step I (Section 5.2). We prove (6) in the case that all weights ak are “small”, that is for

the sequences a = (ak)nk=1 with maxk6n |ak| 6 1√
2

(∑n
k=1 a

2
k

)1/2
(call it Case A). This

in turn is accomplished by a Fourier-analytic expression for negative moments (used for
instance in [14]), which allows to leverage independence. As in [3], by the use of Hölder’s
inequality, the following integral inequality allows to finish the whole argument,

sp/2
∫ ∞

0

∣∣∣∣ sin tt
∣∣∣∣s tp−1dt 6 2p−1

√
π

Γ
(
p
2

)
Γ
(

1−p
2

)Cp, 0 < p < 1, s > 2. (9)

This inequality is an extension of Ball’s integral inequality from [3] and is proved with the
methods of [34]. For other results related to Ball’s integral and cube slicing inequalities
see for instance [10, 19, 23, 24, 30, 31].

Step II (Section 5.3). With the aid of the result of Step I, we use induction on n to
prove certain strengthening of (6) for all sequences a = (ak)nk=1 in order to handle
those which do not satisfy Case A, that is have a “large” weight (call those Case B).
Were (9) true for all s > 1, this step would have been spared. In [34] the inductive
step is possible thanks to an algebraic identity obtained by averaging with respect to
one random sign. In our setting, for uniform [−1, 1] random variables, such an identity
does not seem to present itself. To overcome this obstacle, we work with S2-uniform
random vectors for which certain algebraic identities allowing for induction are much
more natural. For Ball’s inequality (2) (case p = 1), this step was in [3] taken care of by
a simple projection argument, but its analogue for p < 1 is not sufficient (see Remark
21 at the end of Section 5.3).

We remark that in the range p ∈ (0, p0) when Cp = c∞(p), see (5), the extremizing
sequence is a1 = · · · = an = 1√

n
with n → ∞, it is only Case A which admits equality

(attained asymptotically as n→∞), whereas in the range p ∈ (p0, 1) when Cp = c2(p)
and the extremizing sequence is a1 = a2 = 1√

2
, n = 2, both Case A and B admit equality

(in Case B when taking n = 2 and a1 = 1√
2−δ , a2 = 1√

2+δ
, δ → 0+) and hence both

Step I and II have to be subtle enough to overcome this difficulty.

As a final comment here, convexity-type arguments leading to more precise results such
as Schur-convexity of moments of sums with a fixed number of summands n (see [1, 2,
9, 11, 13, 17, 21, 25, 36]) do not seem to be available here. One of the obstacles is for
instance the fact that the function t 7→ E|U1 +

√
tU2|−p is not convex/concave on the

whole half-line (0,+∞) (it is concave on (0, 1) and convex on (1,+∞)).

4 Technical lemmas

We gather several elementary but technical results needed in our proofs. The first
one explains the comparison between the constants c2(p) and c∞(p) arising from two
different extremizing sequences of weights ak in our Khinchin inequality.

Lemma 7. Let c2(p), c∞(p) be defined in (3). The equation c2(p) = c∞(p) has a
unique solution p0 = 0.793... on (0, 1). Moreover, c2(p) > c∞(p) for p ∈ (p0, 1), whilst

5



c2(p) < c∞(p) for p ∈ (0, p0).

Proof. For p ∈ (0, 1), the difference c2(p)− c∞(p) has the same sign as

f(p) = 2
√
π3−p/2 − (1− p)(2− p)Γ

(
1− p

2

)
.

Claim. The function p 7→ log
(
(1− p)(2− p)Γ

(
1−p

2

))
is strictly concave on (0, 1).

Note that f(0+) = 0, f(1−) = 2(
√
π/3 − 1) > 0 (uΓ(u) → 1 as u → 0) and f( 2

3 ) =

2
√
π3−1/3 − 4

9Γ( 1
6 ) < −0.016. In view of the claim (after taking the logarithm and

noting that a linear function intersects a strictly concave function at most twice), the
proof of the lemma is finished.

To prove the claim, we let u = 1−p
2 and h(u) = − log

(
u
(
u+ 1

2

)
Γ(u)

)
. We want to

show that h is strictly convex on (0, 1
2 ). Recall (log Γ(u))′′ =

∑∞
k=0

1
(u+k)2 . Thus for

u ∈ (0, 1
2 ),

h′′(u) =
1

u2
+

1

(u+ 1
2 )2
−
∞∑
k=0

1

(u+ k)2
>

1

(u+ 1
2 )2
− 1

(u+ 1)2
− 1

(u+ 2)2
−
∞∑
k=3

1

k2
.

We now show that the right hand side is positive on (0, 1
2 ). Call it h1(u) and note that

1

2
h′1(u) =

1

(u+ 1)3
+

1

(u+ 2)3
− 1

(u+ 1
2 )3

<
2

(u+ 1)3
− 1

(u+ 1
2 )3

.

The right hand side has the same sign as
(
u+ 1

2

u+1

)3

− 1
2 which is clearly increasing in u,

thus at most
(

2
3

)3− 1
2 = − 11

54 < 0 for u ∈ (0, 1
2 ). Thus h1(u) is decreasing for u ∈ (0, 1

2 ).
Going back to the lower bound h′′(u) > h1(u), we conclude that h′′(u) > h1(u) >

h1( 1
2 ) = 1481

900 −
π2

6 > 0.0006, for u ∈ (0, 1
2 ). This shows that h is strictly convex on

(0, 1
2 ).

The next three lemmas are elementary facts about functions showing up in calculations
from Step I (Section 5.2) needed to prove the integral inequality (9).

Lemma 8. supt∈R
∣∣cos t− sin t

t

∣∣ < 6
5 .

Proof. Since both cos t and sin t
t are even, it suffices to consider positive t. By the

Cauchy-Schwarz inequality, we have
∣∣cos t− sin t

t

∣∣ 6 √1 + 1
t2 , so it suffices to consider

t 6 5√
11

. It remains to note that 5√
11
< π

2 and that on (0, π2 ), we have
∣∣cos t− sin t

t

∣∣ =
sin t
t − cos t < 1 + 0 = 1.

Lemma 9. Let y1 = maxt∈[π,2π]

∣∣ sin t
t

∣∣. For y ∈ (0, y1), let t = t0 be the unique solution

to sin t
t = y on (0, π). Then t0 > 2.

Proof. Since y1 <
1
π , for every y ∈ (0, y1), we have sin t0

t0
= y < 3

√
3

4π = sin(2π/3)
2π/3 . Since

sin t
t is decreasing on (0, π), it follows that t0 >

2π
3 > 2.
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Lemma 10. For every p ∈ (0, 1), we have (1− p)(2− p)Γ
(

1−p
2

)
> 2

3−p
2 .

Proof. Thanks to the claim from Lemma 7, it suffices to check the stated inequality
at the endpoints: for p = 0, it becomes 2

√
π > 23/2 which clearly holds, whereas for

p→ 1−, it becomes equality.

The following lemma is an important step in the proof of (9). Essentially it is a conse-
quence of convexity of sums of exponential functions.

Lemma 11. For p ∈ (0, 1) and m = 1, 2, . . . , we set

Rm(p) =
5

3

(
π−1/221/2−p

)( log
(
π(m+ 3/2)

))1−p/2

π(m+ 3/2)

(
2p + 2πp

m∑
k=1

kp

)
.

We have, Rm(p) > 1.

Proof. For m = 1, 2, . . . , we let

Am =
5

3

√
2

π

log
(
π(m+ 3/2)

)
π(m+ 3/2)

,

a0,m =
(

log
(
π(m+ 3/2)

))−1/2

,

ak,m =
πk

2

(
log
(
π(m+ 3/2)

))−1/2

, k = 1, 2, . . . ,m.

Then

Rm(p) = Am

(
ap0,m + 2

m∑
k=1

apk,m

)
,

which is a sum of convex functions, thus Rm(p) is convex.

Case m = 1. We have, R′1(p) 6 R′1(1) = A1(a0,1 log a0,1 + 2a1,1 log a1,1) < −0.019,
so R1 is decreasing on (0, 1). Thus for every p ∈ (0, 1), we have R1(p) > R1(1) =
A1(a0,1 + 2a1,1) > 1.006, as desired.

Case m > 2. We have,

R′m(0) = Am

(
log a0,m + 2

m∑
k=1

log ak,m

)
= Am log

(
a0,m

m∏
k=1

a2
k,m

)

and

bm = a0,m

m∏
k=1

a2
k,m =

(π
2

)2m

(m!)2
(

log
(
π(m+ 3/2)

))−1/2−m
.

We check directly that b2 > 2.7 and b3 > 17. For m > 4, we use the standard estimate
m! >

√
2πm

(
m
e

)m
and log

(
π(m+3/2)

)
= log 3π

2 +log(1+ 2
3m) < 2+ 2m

3 6
m
2 + 2m

3 = 7m
6

to obtain

bm >
2πm√

7m
6

(
π2

4e2

m2

7m
6

)m
>

(
6

7

π2

e2

)m
> 1.1m.
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Therefore, R′m(0) > 0 for every m > 2 and, by convexity, Rm(p) is increasing. Thus,

Rm(p) > Rm(0) = Am(1 + 2m) =
5

3π

√
2

π
log
(
π(m+ 3/2)

) 2m+ 1

m+ 3/2
.

For m > 2, the right hand side is lower bounded by its value at m = 2, which is greater
than 1.4.

The final lemma in this section lies at the heart of the base case of the inductive argument
from Step II (Section 5.3).

Lemma 12. For x ∈ [0, 1] and p ∈ [0, 2], let

h(p, x) =

(
1 + x

2

)2−p

−
(

1− x
2

)2−p

+ x

(
3− x2

2

)−p/2
.

Then for every x ∈ (0, 1), p 7→ h(p, x) is strictly concave and decreasing on [0, 2]. In
particular, h(p, x) 6 h(0, x) = 2x, for every x ∈ [0, 1], p ∈ [0, 2].

Proof. First we show concavity. Fix x ∈ (0, 1). We have,

∂2

∂p2
h(p, x) =

(
1 + x

2

)2−p

log2 1 + x

2
−
(

1− x
2

)2−p

log2 1− x
2

+
x

4

(
3− x2

2

)−p/2
log2 3− x2

2
.

Then ( 1−x
2 )p ∂

2

∂p2h(p, x) is a strictly convex function of p as being of the form Aap+Bbp−
C with positive a,A, b, B,C. Therefore, in order to show that ∂2

∂p2h(p, x) is negative for

p ∈ (0, 2), it suffices to check that it is nonpositive at the endpoints p = 0 and p = 2.

At p = 0, using 0 6 log(1 + t) 6 t, t > 0, we have

∂2

∂p2
h(p, x)|p=0 =

(
1 + x

2

)2

log2 1 + x

2
−
(

1− x
2

)2

log2 1− x
2

+
x

4
log2 3− x2

2

6

(
1 + x

2

)2

log2 1 + x

2
−
(

1− x
2

)2

log2 1− x
2

+
x

4

(
1− x2

2

)2

.

Let f(t) =
(

log t
1−t

)2

, t ∈ (0, 1). With a = 1−x
2 and b = 1+x

2 , then the right hand side

can be written as (ab)2
(
f(b) − f(a) + b − a

)
. Note that the power-series expansion of

f(1 − t) =
(

log(1−t)
t

)2

=
(∑∞

k=0
tk

k+1

)2

has all the coefficients positive. In particular,

f is convex on (0, 1). Moreover, a direct computation shows that limt→1− f
′(t) = −1.

Thus, f(b)− f(a) 6 f ′(b)(b− a) 6 −(b− a), which gives ∂2

∂p2h(p, x)|p=0 6 0, as desired.

At p = 2, using log2 3−x2

2 < 1 and 3− x2 > 2, we have

∂2

∂p2
h(p, x)|p=2 = log2 1 + x

2
− log2 1− x

2
+

x

2(3− x2)
log2 3− x2

2

< log2 1 + x

2
− log2 1− x

2
+
x

4
.
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Note that the right hand side at x = 0 is 0, so it suffices to show that it is decreasing in x.
The derivative of the right hand side equals 2

1+x log 1+x
2 + 2

1−x log 1−x
2 + 1

4 . With the aid

of log t 6 t− 1, t > 0, we upper bound this by 9
4 − 2

(
1

1+x + 1
1−x

)
= 4

(
9
16 −

1
1−x2

)
< 0.

Thus, ∂2

∂p2h(p, x)|p=2 < 0, as desired. This finishes the proof of the concavity of p 7→
h(p, x).

To show that p 7→ h(p, x) is decreasing on [0, 2], since it is concave, it suffices to show
that ∂

∂ph(p, x)|p=0 6 0. We let

g(x) =
∂

∂p
h(p, x)|p=0 = −

(
1 + x

2

)2

log
1 + x

2
+

(
1− x

2

)2

log
1− x

2
− x

2
log

3− x2

2
.

The rest of the argument is a tedious analysis of the derivatives of g, which we only

sketch. Since g′′′(x) = 2x2(x4−14x2+9)
(1−x2)(3−x2)3 and x4 − 14x2 + 9 on [0, 1] changes sign only

once from positive to negative, we get that g′′(x) on (0, 1) is first increasing and then
decreasing. Moreover, g′′(0+) = 0 and g′′(1−) = −∞. Thus g′′(x) on (0, 1) changes
sign only once from positive to negative. Therefore, g′(x) on (0, 1) is first increasing
and then decreasing. Since g′(0+) = − 1

2 + 1
2 log 8

3 < 0 and g′(1−) = 0, we infer that
g′(x) on (0, 1) changes sign only once from negative to positive. Thus g(x) on (0, 1) first
decreases and then increases. Since g(0+) = 0 = g(1−), we get that g(x) < 0 on (0, 1),
which finishes the proof.

5 Proofs

5.1 Fourier-analytic formula

The following important Fourier-analytic formula for negative moments is the starting
point of our proof. Such formulae for moments rely on Fourier-analytic integral identities
for power functions, integrated with respect to the probability measure, see e.g. Lemma
2.3 and 4.2 in [15], or Lemma 4 in [14] for analogues in the case of positive moments.

Lemma 13 (Lemma 3 in [14]). For a random vector X in Rd and p ∈ (0, d), we have

E‖X‖−p = bp,d

∫
Rd
φX(t)‖t‖p−ddt,

provided that the right hand side integral exists, where φX(t) = Eei〈t,X〉 is the character-

istic function of X, ‖ · ‖ is the Euclidean norm on Rd and bp,d = 2−pπ−d/2 Γ((d−p)/2)
Γ(p/2) .

If X has a smooth rapidly decaying density, this formula follows from the Fourier trans-
form identity for ‖t‖p−d. In general, some additional technical arguments are needed
to justify the application of Fubini’s theorem, see [14] for details. In the case of a sym-
metric bounded random variable X, to which we apply the formula, it follows directly
from the identity |x|−p = bp,1

∫
R cos(tx)|t|p−1dt, x ∈ R (easily justified by a change of

variables), by evaluating at x = X(ω) and taking the expectation.

9



Using Lemma 13, we have

E

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
−p

= bp,1

∫
R

(
n∏
k=1

sin(akt)

akt

)
|t|p−1dt = 2bp,1

∫ ∞
0

(
n∏
k=1

sin(akt)

akt

)
tp−1dt.

(10)

The proof proceeds using completely different arguments depending on whether there is
a large weight ak or not.

5.2 All weights are small

Our goal here is the following special case of Theorem 1.

Theorem 14. For every p ∈ (0, 1), every n > 1 and every reals a1, . . . , an such that
maxk6n |ak| 6 1√

2
(
∑n
k=1 a

2
k)1/2, the inequality (6) holds.

For the proof, we can assume that
∑n
k=1 a

2
k = 1 and by symmetry, additionally, that

each ak is positive. Thus in this case 0 < ak 6 1√
2

for every k. Recall (10). By Hölder’s

inequality, since
∑
a2
k = 1,

∫ ∞
0

(
n∏
k=1

sin(akt)

akt

)
tp−1dt 6

n∏
k=1

(∫ ∞
0

∣∣∣∣ sin(akt)

akt

∣∣∣∣1/a2k tp−1dt

)a2k

=

n∏
k=1

(
Ψp(1/a

2
k)
)a2k , (11)

where we define

Ψp(s) =

∫ ∞
0

∣∣∣∣ sin(t/
√
s)

t/
√
s

∣∣∣∣s tp−1dt. (12)

The next step is to maximize Ψp(s) over s > 2. The answer varies depending on the
value of p and is given by either s = 2 or s→∞.

Lemma 15. Let p ∈ (p0, 1). For every s > 2, we have Ψp(s) 6 Ψp(2). Moreover,
Ψp(2) = (2bp,1)−1c2(p).

Lemma 16. Let p ∈ (0, p0). For every s > 2, we have Ψp(s) 6 lims′→∞Ψp(s
′).

Moreover, lims′→∞Ψp(s
′) = (2bp,1)−1c∞(p).

Taking these lemmas for granted for a moment, we can finish the proof as follows.
Suppose that p ∈ (p0, 1). Then combining (10), (11) and Lemma 15, we have

E

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
−p

6 2bp,1

n∏
k=1

(
(2bp,1)−1c2(p)

)a2k
= c2(p),

obtaining “half” of (6), that is when Cp = c2(p). Of course, we proceed identically for
p ∈ (0, p0) using Lemma 16 to obtain the other half. Therefore, to finish the proof of
Theorem 14, it remains to prove Lemmas 15 and 16.
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Proof of Lemma 15. Recalling (12), the definition of Ψp, by a change of variables, the
inequality Ψp(s) 6 Ψp(2) is equivalent to∫ ∞

0

∣∣∣∣ sin tt
∣∣∣∣s tp−1dt 6 s−p/2Ψp(2),

which can be thought of as a Ball’s integral inequality with the weight tp−1 (Ball’s
inequality corresponds to the case p = 1, see [3, 34]). For the proof, we rewrite the right
hand side as

∫∞
0
gp(t)

ptp−1dt with a Gaussian function

gp(t) = exp(−σ2
pt

2)

for σp > 0 defined such that for every s,

s−p/2σ−pp
Γ(p/2)

2
=

∫ ∞
0

gp(t)
stp−1dt = s−p/2Ψp(2).

We emphasize that this identity holds for every s with σp depending only on p and that
this is why the Gaussian function gp is a good function to compare sin t

t with. Our goal
is then to show that∫ ∞

0

∣∣∣∣ sin tt
∣∣∣∣s tp−1dt 6

∫ ∞
0

gp(t)
stp−1dt, s > 2, (13)

and σp in the definition of gp is such that there is equality for s = 2 in (13). We remark
that the equality for s = 2 is equivalent to

E |U1 + U2|−p = E|2σpZ|−p,

where U1, U2 are i.i.d. uniform [−1, 1] random variables and Z is a standard Gaussian

random variable (because
(

sin t
t

)2
is the characteristic function of U1 + U2 and gp(t)

2 is
the characteristic function of 2σpZ). This allows to explicitly compute σp,

σpp = 2−p
E|Z|−p

E|U1 + U2|−p
= 2−1−p/2π−1/2(1− p)(2− p)Γ

(
1− p

2

)
.

To prove (13), we use the following “lemma on distribution functions” from [34]. Recall
that given a non-negative function h : X → [0,+∞) on a measure space (X,µ) its
distribution function is the non-increasing function H : (0,+∞)→ [0,∞) defined by

H(y) := µ({x ∈ X : h(x) > y}).

Lemma 17 ([34]). Let f and g be two non-negative measurable functions on a measure
space (X,µ) and F , G be the distribution functions of f and g respectively. If F (y) and
G(y) are finite for every y > 0 and there is some point y0 such that F (y) > G(y) for all
0 < y < y0 and F (y) 6 G(y) for all y > y0, then the function

s 7→ 1

sys0

∫
X

(fs − gs) dµ

is decreasing on the set S = {s > 0 : fs − gs ∈ L1(X,µ)}.

In particular, if
∫
X

(fs0−gs0) dµ = 0 for some s0 > 0, then
∫
X

(fs−gs) dµ 6 0 for every
s > s0.

11



Let µ be the Borel measure on (0,+∞) with dµ(t) = tp−1dt. Let F and Gp be the
distribution functions respectively of

f(t) =

∣∣∣∣ sin tt
∣∣∣∣ and gp(t) = exp(−σ2

pt
2).

By Lemma 17, to establish the validity of (13) it suffices to show that the difference
F −Gp changes sign on (0, 1) exactly once (since both f and gp are bounded by 1, both
F and Gp vanish on [1,+∞)). Notice that for t ∈ (0, π),

f(t) =

∞∏
k=1

(
1− t2

π2k2

)
6
∞∏
k=1

e−
t2

π2k2 = e−t
2/6.

Moreover, thanks to Lemma 7, our assumption p ∈ (p0, 1) is equivalent to E
∣∣∣ Z√

3

∣∣∣−p <
E
∣∣∣U1+U2√

2

∣∣∣−p which in turn by the definition of σp is equivalent to σ2
p < 1

6 . Thus,

f(t) 6 e−t
2/6 < e−σ

2
pt

2

= gp(t) for t ∈ (0, π). Consequently,

F (y) < Gp(y) for y ∈ (y1, 1), (14)

where ym = maxt∈[mπ,(m+1)π] f(t), m = 1, 2, . . . is the decreasing sequence of successive

maxima of f , as in [34]. Since
∫∞

0
2y(F (y) − Gp(y))dy =

∫∞
0

(f(t)2 − gp(t)2)dµ(t), we
have that F −Gp changes its sign at least once on (0, 1). Therefore, to prove that this
happens exactly once, it suffices to prove that Gp−F is strictly increasing on (0, y1), and
since G′p and F ′ are negative, equivalently that |F ′| > |G′p| on every interval (ym, ym+1),
m > 1.

To this end, fix an integer m > 1 and y ∈ (ym+1, ym). Note that there is one solution,
call it t0 = t0(y), to the equation f(t) = y on (0, π) and for every k = 1, . . . ,m, there
are two solutions t−k = t−k (y) and t+k = t+k (y) on (kπ, (k + 1)π). We can then write

F (y) =

∫ ∞
0

1[f(t)>y](t) t
p−1 dt

=

m∑
k=0

∫ (k+1)π

kπ

1[f(t)>y](t) t
p−1 dt =

∫ t0

0

tp−1 dt+

m∑
k=1

∫ t+k

t−k

tp−1 dt.

Differentiating with respect to y we get

F ′(y) = tp−1
0 t′0 +

m∑
k=1

(t+k )p−1(t+k )′ − (t−k )p−1(t−k )′,

so that

|F ′(y)| =
∑

{t>0:f(t)=y}

tp−1

|f ′(t)|
.

With the aid of Lemma 8 we then have

|F ′(y)| > 5

6

∑
{t>0:f(t)=y}

tp.

Since t±k > kπ for every k > 1 and, by Lemma 9, t0 > 2 it follows that

|F ′(y)| > 5

6

(
2p + 2πp

m∑
k=1

kp

)
.
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We remark that this estimate is valid for all p ∈ (0, 1).

For Gp, we have

Gp(y) = µ
((

0, σ−1
p

√
− log y

))
=

(− log y)p/2

pσpp
,

thus
1

|G′p(y)|
= 2σppy(− log y)1−p/2.

Since y(− log y)1−p/2 is increasing if y < ep/2−1 and y1 < π−1 < e−1 < ep/2−1, it is in

particular increasing on (0, y1), so using y > ym+1 >
∣∣∣ sin(π(m+3/2)

π(m+3/2)

∣∣∣ = 1
π(m+3/2) , we have

|F ′(y)|
|G′p(y)|

>
5

3
σpp

(
log
(
π(m+ 3/2)

))1−p/2

π(m+ 3/2)

(
2p + 2πp

m∑
k=1

kp

)
. (15)

Note that this estimate holds for all p ∈ (0, 1). Applying Lemma 10 to lower bound σpp
by π−1/221/2−p and then Lemma 11 to lower bound the whole expression by 1 finishes
the proof.

Proof of Lemma 16. Finding the limit

lim
s→∞

Ψp(s) = (2bp,1)−1c∞(p) (16)

is standard. For instance, if the limit is taken along integral even s, this follows from
Lemma 13 combined with the central limit theorem. In general, a simple analytic

argument goes as follows: letting Ks(t) =
∣∣∣ sin(t/

√
s)

t/
√
s

∣∣∣s, splitting the integration as

Ψp(s) =

∫ ∞
0

Ks(t)t
p−1dt =

∫ π
√
s

0

Ks(t)t
p−1dt+

∫ ∞
π
√
s

Ks(t)t
p−1dt

and using Ks(t) 6
∣∣∣√st ∣∣∣s, we see the second integral is bounded by ss/2

∫∞
π
√
s
tp−1−sdt =

πpsp/2

(s−p)πs which goes to 0 as s → ∞. Since Ks(t)1[0,π
√
s](t) 6 e−t

2/6 and in fact point-

wise lims→∞Ks(t) = lims→∞

∣∣∣1− t2

6s + o
(
t2

s

)∣∣∣s = e−t
2/6, we obtain (16) from the first

integral by Lebesgue’s dominated convergence theorem.

Fix s > 2. By a change of variables, Ψp(s) 6 (2bp,1)−1c∞(p) can be rewritten as∫ ∞
0

∣∣∣∣ sin tt
∣∣∣∣s tp−1dt 6

∫ ∞
0

exp(−st2/6)tp−1dt. (17)

From this point onwards, we repeat the proof of Lemma 15 with f(t) =
∣∣ sin t
t

∣∣ and g(t) =
exp(−t2/6), so g(t) = gp(t) with σp set to be constant, equal to 1√

6
. For s = 2 inequality

(17) is equivalent to c2(p) 6 c∞(p) which holds true and is in fact a strict inequality for
every p ∈ (0, p0) (Lemma 7). We next look at the sign changes of the difference F −G
of the distribution functions F , G of f and g, respectively. If there is no sign change, we
are immediately done (in view of the identity

∫
(fs−gs)dµ =

∫∞
0
sys−1(F (y)−G(y))dy).

Thus, in view of Lemma 17, it remains to check that F −G changes sign at most once.
Since (14) holds here as well (with Gp replaced by G), as in Lemma 15, it suffices to
check that |F ′| > |G′| on every interval (ym, ym+1), m > 1. As in the proof of Lemma
15, we have inequality (15) with σpp replaced by 6−p/2. Since 6−p/2 > π−1/221/2−p for
every p ∈ (0, 1), Lemma 11 allows to finish the proof.
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5.3 There is a large weight

We finish the proof of Theorem 1 by following the inductive approach from [34]. In
[3], this case is handled by a geometric argument whose analytic analogue for negative
moments is too weak (see Remark 21 below). The Nazarov-Podkorytov approach relies
on strengthening the right hand side of (6) to allow the induction on the number of
summands n to work. To this end, we define

φp(x) = (1 + x)−p/2

and

Φp(x) =

{
φp(x), x > 1,

2φp(1)− φp(2− x), 0 6 x 6 1.

By this construction, the graph of Φp(x) on [0, 1] is the graph of φp(x) on [1, 2] reflected
about the point (1, φp(1)). In particular, to the left of x = 1, Φp and φp share the com-
mon tangent line at x = 1. Consequently, Φp(x) 6 φp(x) for every x. By homogeneity,
(6) is equivalent to

E

∣∣∣∣∣U1 +

n∑
k=2

akUk

∣∣∣∣∣
−p

6 Cpφp

(
n∑
k=2

a2
k

)
.

We shall inductively show a strengthening. As it will be clear from the proof, it is
natural to run the inductive argument for spherically symmetric random vectors ξk.

Theorem 18. For every p ∈ (0, 1), every n > 2 and every vectors v2, . . . , vn in R3, we
have

E

∣∣∣∣∣〈e1, ξ1〉+
n∑
k=2

〈vk, ξk〉

∣∣∣∣∣
−p

6 CpΦp

(
n∑
k=2

‖vk‖2
)
. (18)

Since 〈vk, ξk〉has the same distribution as ‖vk‖Uk, (18) gives (6).

Proof of Theorem 18. We use induction on n. For n = 2, we have the following lemma,
the proof of which we defer for now.

Lemma 19. For every vector v in R3, we have

E|〈e1, ξ1〉+〈v, ξ2〉|−p 6 c2(p)Φp(‖v‖2). (19)

Let n > 3 and suppose (18) holds for every sequence of n − 1 vectors in R3. Let
v2, . . . , vn ∈ R3 and x = ‖v2‖2 + · · ·+ ‖vn‖2. We want to show (18). There are 3 cases.

Case (a): ‖vk‖ > 1 for some 2 6 k 6 n. Then x > 1, so (18) coincides with

E

∣∣∣∣∣
n∑
k=1

〈vk, ξk〉

∣∣∣∣∣
−p

6 Cp(‖v1‖2 + ‖v2‖2 + . . .+ ‖vn‖2)−p/2, (20)

where v1 = e1. Let v∗1 , . . . , v
∗
n be a rearrangement of v1, . . . , vn such that ‖v∗k‖ > ‖v∗k+1‖

for every k = 1, . . . , n − 1 and let v′k =
v∗k
‖v∗1‖

for every k = 1, . . . , n, so that ‖v′1‖ = 1
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and ‖v′k‖ 6 1 for k = 2, . . . , n. Then due to the homogeneity of (20) and the fact that
〈v′1, ξ1〉has the same distribution as 〈e1, ξ1〉, it is enough to prove

E

∣∣∣∣∣〈e1, ξ1〉+

n∑
k=2

〈v′kξk〉

∣∣∣∣∣
p

6 CpΦp(‖v′2‖2 + · · ·+ ‖v′n‖2),

which is handled by the next cases.

Case (b): ‖vk‖ 6 1 for every 2 6 k 6 n and x > 1. Then again (18) coincides with the
homogeneous estimate (6). Moreover, we have that

max
16k6n

‖vk‖2 = 1 6
1

2
(1 + x) =

1

2

n∑
k=1

‖vk‖2,

so this case reduces to Theorem 14 where all the ‖vk‖ are small.

Case (c): ‖vk‖ 6 1 for every 2 6 k 6 n and x < 1. Since the pair (ξn−1, ξn) has the
same distribution as (ξn−1, Qξn−1) for a random orthogonal matrix Q independent of
all the ξk, we have,

E

∣∣∣∣∣〈e1, ξ1〉+
n∑
k=2

〈vk, ξk〉

∣∣∣∣∣
p

= E
∣∣〈e1, ξ1〉+〈v2, ξ2〉+ · · ·+〈vn−1, ξn−1〉+

〈
Q>vn, ξn−1

〉∣∣p
= EQ

[
E(ξk)n−1

k=2

∣∣〈e1, ξ1〉+〈v2, ξ2〉+ · · ·+〈vn−2, ξn−2〉+
〈
vn−1 +Q>vn, ξn−1

〉∣∣p] .
By the inductive hypothesis applied to the sequence (v2, . . . , vn−2, vn−1 + Q>vn) (con-
ditioned on the value of Q), we get

E

∣∣∣∣∣〈e1, ξ1〉+
n∑
k=2

〈vk, ξk〉

∣∣∣∣∣
p

6 CpEQΦp(‖v2‖2 + · · ·+ ‖vn−2‖2 + ‖vn−1 +Q>vn‖2).

Note that

‖v2‖2 + · · ·+ ‖vn−2‖2 + ‖vn−1 +Q>vn‖2 = x+ 2
〈
vn−1, Q

>vn
〉
,

thus, by the symmetry of Q,

EQΦp(‖v2‖2 + · · ·+ ‖vn−2‖2 + ‖vn−1 +Q>vn‖2)

= EQ
Φp
(
x+ 2

〈
vn−1, Q

>vn
〉)

+ Φp
(
x− 2

〈
vn−1, Q

>vn
〉)

2
.

We shall now need a lemma about concavity of Φp, the proof of which we also defer.

Lemma 20. Let p ∈ (0, 1). For every a, b > 0 with a+b
2 6 1, we have

Φp(a) + Φp(b)

2
6 Φp

(
a+ b

2

)
.

This lemma applied to a = x+ 2
〈
vn−1, Q

>vn
〉

and b = x− 2
〈
vn−1, Q

>vn
〉

(which satisfy

a, b > 0 and a+b
2 = x < 1) finishes the proof of the inductive step.

It remains to show the lemmas we have used.
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Proof of Lemma 19. First note that if ‖v‖ > 1 then, due to rotational invariance,

E|〈e1, ξ1〉+ 〈v, ξ2〉|−p = ‖v‖−pE
∣∣∣∣〈 e1

‖v‖
, ξ1

〉
+

〈
v

‖v‖
, ξ2

〉∣∣∣∣−p
= ‖v‖−pE|〈v′, ξ1〉+ 〈e1, ξ2〉|−p

for any v′ ∈ R3 such that ‖v′‖ = 1
‖v‖ < 1, while at the same time

Φp(‖v‖2) = φp(‖v‖2) = ‖v‖−pφp(‖v′‖2).

This shows that the desired inequality is then equivalent to

E|〈e1, ξ1〉+ 〈v′, ξ2〉|−p 6 c2(p)φp(‖v′‖2), ‖v′‖ 6 1.

Since Φp(x) 6 φp(x) for x ∈ [0, 1], it is sufficient to prove the lemma in the case ‖v‖ 6 1.

Fix v ∈ R3 with x = ‖v‖ 6 1. To compute explicitly the left hand side of (19), recall
that for any w ∈ R3, 〈w, ξ〉 has the same distribution as ‖w‖U where ξ and U are
uniformly distributed on S2 and [−1, 1], respectively. Then, we have that

E|〈e1, ξ1〉+ 〈v, ξ2〉|−p = E|U1 + xU2|−p =
1

4

∫ 1

−1

∫ 1

−1

|u1 + xu2|−pdu1du2

=
(1 + x)2−p − (1− x)2−p

2(1− p)(2− p)x
.

Recalling the definition of c2(p) and Φp on [0, 1], we thus get that (19) becomes

(1 + x)2−p − (1− x)2−p

2x
6 21−p/2(21−p/2 − (3− x2)−p/2)

for every 0 < x 6 1. Note that we can write this as(
1 + x

2

)2−p

−
(

1− x
2

)2−p

+ x

(
3− x2

2

)−p/2
6 2x,

so Lemma 12 finishes the proof.

Proof of Lemma 20. We can assume without loss of generality that a < b. If b 6 1, the
desired inequality follows from the concavity of Φp on [0, 1]. So, assume that b > 1.
Then using the facts a < b and a+b

2 6 1, we can write

∂

∂a
Φp

(
a+ b

2

)
=

1

2

dΦp
dx

∣∣∣
x= a+b

2

6
1

2

dΦp
dx

∣∣∣
x=a

=
∂

∂a

Φp(a) + Φp(b)

2
,

using the fact that the derivative of Φ′p is decreasing on [0, 1]. This implies that

Φp

(
a+ b

2

)
− Φp(a) + Φp(b)

2

is a decreasing function of a, so to prove the desired inequality, it suffices to show that
the latter is nonnegative for the maximum value of a, that is a = a0 = 2−b. Since b > 1,
a0 < 1 and by the definition of Φp, Φp(a0) = 2φp(1)− φp(2− (2− b)) = 2φp(1)− φp(b)
and Φp(b) = φp(b), we get

Φp(a0) + Φp(b)

2
=

2φp(1)− φp(b) + φp(b)

2
= φp(1) = Φp

(
a0 + b

2

)
,

that is, the desired inequality is in fact an equality in this case.
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Remark 21. Let p ∈ (0, 1). Let X be a rotationally invariant random vector in R3. For
every nonzero vector y in R3, observing that ‖X + y‖2 has the same distribution as
‖X‖2 + ‖y‖2 + 2‖X‖‖y‖U , where U is uniform on [−1, 1], independent of X, we have

E‖X + y‖−p = E
(
‖X‖+ ‖y‖

)2−p − ∣∣‖X‖ − ‖y‖∣∣2−p
2(2− p)‖X‖‖y‖

.

In particular, by the concavity of t 7→ t1−p,

E‖X + y‖−p 6 E‖X‖−p.

This combined with independence gives

E

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
−p

6 min
16k6n

|ak|−p.

For p = 1, this immediately gives (2) in the case of a large weight, maxk6n |ak| >
1√
2

(∑n
k=1 a

2
k

)1/2
and Theorem 18 is not needed (this corresponds to the simple projec-

tion argument from [3] handling this case). For p < 1, this argument yields the nonsharp
constant 2p/2 instead of (1− p)Cp.

5.4 Proof of Corollary 4

Let G = (G1, G2, G3) be a standard Gaussian random vector in R3 (mean 0, co-
variance I), independent of the sequence (ξk)nk=1. Then for every vector x in R3,
since 〈x,G〉 has the same distribution as ‖x‖G1, we have ‖x‖−p = αpE|〈x,G〉|−p with
αp = (E|G1|−p)−1. Therefore,∥∥∥∥∥

n∑
k=1

Akξk

∥∥∥∥∥
−p

= αpEG

∣∣∣∣∣
n∑
k=1

〈
ξk, A

>
k G
〉∣∣∣∣∣
−p

. (21)

Using this and inequality (6), we obtain

E

∥∥∥∥∥
n∑
k=1

Akξk

∥∥∥∥∥
−p

= αpEGEξ

∣∣∣∣∣
n∑
k=1

〈
ξk, A

>
k G
〉∣∣∣∣∣
−p

6 CpαpEG

(
n∑
k=1

‖A>k G‖2
)−p/2

.

Rewriting the sum of squares using the second moment, applying Minkowski’s inequality
(with the negative exponent − 2

p ) and using (21) again, we get

CpαpEG

(
n∑
k=1

‖A>k G‖2
)−p/2

= CpαpEG

3Eξ

∣∣∣∣∣
n∑
k=1

〈
ξk, A

>
k G
〉∣∣∣∣∣

2
−p/2

6 3−p/2Cpαp

Eξ

EG

∣∣∣∣∣
n∑
k=1

〈
ξk, A

>
k G
〉∣∣∣∣∣
−p
−2/p


−p/2

= 3−p/2Cp

Eξ

∥∥∥∥∥
n∑
k=1

Akξk

∥∥∥∥∥
2
−p/2 .

Finally, 3Eξ ‖
∑n
k=1Akξk‖

2
=
∑n
k=1 ‖Ak‖2HS . �
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6 Conclusion

Continuing a long line of work and particularly addressing some questions raised in [2],
we have established a sharp Khinchin-type L−p − L2 moment comparison inequality
when p ∈ (0, 1) for weighted sums of independent random variables uniform on [−1, 1],
equivalently uniform vectors on the unit sphere S2 in R3. In this case, this provides a
sharp version of the very general results from [14].

We have not tried to optimise various technical numerical estimates which would cer-
tainly allow to extend our results to p ∈ (0, p1), p1 = 1.38 (the negative moments of order
−p for S2–uniform vectors exist for all p < 2). The arguments seem robust enough to
handle cases of Sr–uniform vectors for other values of r (most notably the case of r = 1
corresponding to Steinhaus random variables as well as the case of r = 3 which would
provide extensions of the polydisc slicing inequality of Oleszkiewicz and Pe lczyński from
[35], just as our result extends Ball’s cube slicing inequality from [3]). All this is the
topic of ongoing and future work. Some time after this manuscript was completed,
the question of a sharp Lp − L2, 0 < p < 1, moment comparison for

∑n
k=1 akUk was

addressed in [8] (see Question 5 and Proposition 15 in [12]).
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