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Extremal spacings between eigenphases of random unitary matrices of size N pertaining to circular
ensembles are investigated. Explicit probability distributions for the minimal spacing for various
ensembles are derived for N = 4. We study ensembles of tensor product of k random unitary
matrices of size n which describe independent evolution of a composite quantum system consisting
of k subsystems. In the asymptotic case, as the total dimension N = nk becomes large, the
nearest neighbor distribution P (s) becomes Poissonian, but statistics of extreme spacings P (smin)
and P (smax) reveal certain deviations from the Poissonian behavior.
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I. INTRODUCTION

Random unitary matrices are useful to describe spec-
tra of periodic quantum systems, the classical analogues
of which are chaotic [1, 2]. The choice of a specific en-
semble of matrices is dictated by symmetry properties of
the investigated physical system. If the system possesses
no time-reversal symmetry the circular unitary ensem-

ble (CUE) of matrices distributed according to the Haar
measure of the unitary group is appropriate [3]. For
systems with a generalized time reversal symmetry the
circular orthogonal ensemble (COE) describes properly
statistical properties of spectra if we neglect additional
subtleties caused by specific rotational symmetry features
of systems with half-integer spin, which are of no concern
for investigations reported in this paper. In the case of
classically regular dynamics the spectrum of the evolu-
tion operator displays level clustering characteristic to
the circular Poissonian ensemble (CPE) of diagonal ran-
dom unitary matrices. To describe intermediate statis-
tics one uses interpolating ensembles of unitary matrices
[4–6] or composed ensembles of unitary matrices [7]. In
the case of emerging chaos, in which the chaotic layer
covers only a fraction of the phase space of the classi-
cal system one may apply the distribution of Berry and
Robnik, originally used for autonomous systems [8].
To characterize statistical properties of spectra of a

random matrix one often uses the nearest neighbor spac-
ings distribution P (s) [3, 9]. The random variable s is the
distance between adjacent eigenphases (phases of eigen-
values) normalized by assuming that the mean spacing is

equal to unity.

In this work we investigate the distribution of yet an-
other random variable – the minimal spacing smin be-
tween two eigenphases. In similarity to the standard
statistics of nearest level spacings, also the distribu-
tion P (smin) encodes information about properties of the
spectrum. Observe that for any unitary matrix U the size
of its minimal spacing smin provides an information, to
which extent the investigated matrix U is close to be de-
generated. For completeness we are also going to study
the size of the largest spacing smax defined analogously.

Statistics of the minimal spacings in spectra of ran-
dom Hermitian matrices was analyzed by Caër et al. [10]
and also discussed in the book by Forrester [9]. Our cur-
rent approach is somewhat similar but different, as we
investigate extremal gaps between eigenvalues of unitary
matrices distributed along the unit circle and study ten-
sor products of unitary matrices. After a part of our
project was completed we learned about a relevant work
of Arous and Bourgade [11] in which the distribution of
extremal spacings was studied for random matrices of
circular unitary ensemble.

The paper is organized as follows. For exemplary en-
sembles of random matrices of size N = 4 we derive in
Section II exact forms of the distributions of minimal
spacings. The chosen dimension allows exact calcula-
tions, which become rather complicated for larger ma-
trices. Moreover, this is the minimal dimension in which
results for CUE and CPE can be compared with those for
the ensemble consisting of tensor products of two CUE
random matrices of size N = 2. Such an ensemble cor-
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responds to a generic local dynamics in a two-qubit sys-
tem [12].

The case of large matrices is studied in Section III. We
recall the heuristic argument put forward e.g. in [9] (see
Exercise 14.6.5, p. 697) justifying that for a random uni-
tary matrix of size N the size of the minimal gap scales as

smin ≈ N− 1
1+β where β = 0, 1 and 2 for the Poissonian,

orthogonal and unitary circular ensemble, respectively.
Analogously, we approach the asymptotic scaling of the
maximal gap smax. We also provide some numerical re-
sults confirming our non-rigorous predictions concerning
the order of the mean values of the extremal spacings
〈smin〉, 〈smax〉, and the distribution of the minimal spac-
ing smin. Recently, the latter has been rigourously stud-
ied in [11] and [13]. It was considered for the first time
in [14].

Furthermore, we analyze extremal spacings for prod-
ucts of k independent random unitary matrices, each of
them of size n. If the total dimension of the matrix,
N = nk, is large the level spacing distribution P (s) be-
comes Poissonian [12]. This property holds also for a
tensor product of two random unitary matrices of a dif-
ferent size [15]. However, in the case of a large number
of one-qubit systems, (n = 2 and k large), statistics of
the minimal spacing smin displays significant deviations
from the predictions for the Poisson ensemble, reviewed
in the Appendix.

We use the following notation. For a single unitary or
orthogonal matrix A of size N we consider its spectrum
{exp(iϕj)}

N
j=1, where (ϕ1, . . . , ϕN ) represents the vector

of the eigenphases ordered non-decreasingly, 0 ≤ ϕ1 ≤
. . . ≤ ϕN < 2π. We order non-decreasingly the spacings
ϕ2−ϕ1, . . . , ϕN−ϕN−1, 2π+ϕ1−ϕN between neighboring
eigenphases, divide them by the average spacing 2π/N
and denote the obtained sequence by

smin := s1 ≤ . . . ≤ sN =: smax. (1)

The standard level spacing distribution P (s) is given by

the average 1
N

∑N
m=1 Pm(sm), where Pm is the density of

the rescaled m-th spacing sm = (ϕm+1 − ϕm)N/2π.

II. CASE STUDY: MINIMAL SPACINGS FOR

TWO–QUBIT SYSTEM

Our first goal is to derive exact probability distribu-
tions of the minimal spacing Pmin for exemplary ensem-
bles of random unitary matrices of size N = 4. Besides
the Poissonian and the unitary ensemble we analyze also
the tensor product of two independent random matrices
of size N = 2. This ensemble, denoted for brevity as
CUE2⊗2, describes dynamics of two independent quan-
tum sub-systems [12]. In the quantum information liter-
ature such a case is called a two–qubit system.

To derive the desired distribution we calculate the tail
distribution T (t) = P (smin > t) and take the derivative

of T . We have

T (t) = P (smin > t)

= P (ϕ2 − ϕ1, ϕ3 − ϕ2, ϕ4 − ϕ3, 2π + ϕ1 − ϕ4 > πt/2)

=

∫

{ϕ2−ϕ1,ϕ3−ϕ2,ϕ4−ϕ3,2π+ϕ1−ϕ4>πt/2}

P ord (ϕ1, ϕ2, ϕ3, ϕ4) d (ϕ1, ϕ2, ϕ3, ϕ4) ,
(2)

where P ord is the joint probability distribution of ordered
eigenphases, which can be obtained from the joint prob-
ability distribution for a given ensemble. After chang-
ing variables, ψ1 = ϕ1, ψ2 = ϕ2 − ϕ1, ψ3 = ϕ3 − ϕ2

and ψ4 = ϕ4 − ϕ3, the integration domain splits into
two tetrahedrons. Standard but tedious calculations
yield in each case the tail distribution function T (t),
which leads to the corresponding probability density,
P (smin) = − d

dtT (t)|t=smin .

(a) for CUE2⊗2,

PU
2⊗2(smin) =

1

4π

(

2π(1− smin)
(

4− cos(πsmin/2)
)

− 3 sin(πsmin/2) + 8 sin(πsmin)

− 3 sin(3πsmin/2)
)

,

(3)

(b) for CUE4

PU
4 (smin) =

1

72π2
sin2(πsmin/4)

(

666 + 720π2(1− smin)
2

+ 36
(

11 + 16π2(1− smin)
2
)

cos(πsmin/2)

+ 18
(

8π2(1− smin)
2 − 13

)

cos(πsmin)

− 100 cos(3πsmin/2)− 608 cos(2πsmin)

− 380 cos(5πsmin/2) + 234 cos(3πsmin)

+ 74 cos(7πsmin/2)− 58 cos(4πsmin)

+ 10 cos(9πsmin/2)

+ 24π(1− smin)
[

60 sin(πsmin/2)

+ 63 sin(πsmin) + 22 sin(3πsmin/2)

+ 2 sin(2πsmin)− 4 sin(5πsmin/2)
]

)

,

(4)

(c) for CPE4

PP
4 (smin) = 3(1− smin)

2. (5)

These three distributions are presented in Fig. 1. The
behavior of the densities around zero encodes some in-
formation concerning level repulsion and level cluster-
ing. The variable smin is the smallest distance between
two neighboring eigenphases. Therefore, the fact that its
density is separated from zero, say P (smin) > 1 for smin

close to zero, means that for a small ǫ > 0 the probability
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FIG. 1: Probability densities of the minimal spacing smin

for random matrices of size N = 4 pertaining to CUE4 (▽),
CUE2⊗2 (�), and CPE4 (◦). Symbols denote numerical re-
sults obtained for 214 independent matrices, while the curves
represent distributions (3), (4) and (5), respectively.

that some two phases are at the distance closer than ǫ
equals P (smin < ǫ) =

∫ ǫ

0
P (smin)ds > ǫ. In the cases of

CPE4 and CUE4 these features are consistent with level
clustering and level repulsion observed in the distribution
of spacings P (s). Fig. 1 shows that the eigenphases of
the tensor product CUE2⊗2 tend to accumulate in a spec-
tacular contrast to the case of a single random unitary
matrix form CUE [12].

Numerical results show that for large N the distribu-
tions of the m–th spacing P (sm) are close to the level
spacing distribution P (s) form ≈ N/2. However, for any
N the distributions of the smallest spacing smin = s1 and
of the largest spacing smax = sN differ considerably. We
shall then analyze these distributions of extremal spac-
ings, which can be used as auxiliary statistical tools to
characterize ensembles of random matrices.

III. EXTREMAL STATISTICS FOR LARGE

MATRICES

In this section we analyze extremal gaps in the spectra
of circular ensembles of random matrices of a large size,
N ≫ 1, giving the numerical evidence to support some
simple heuristic arguments (the subject for CUE ensem-
ble has been rigorously studied though, see e.g. [11]). As
usual, we parameterize canonical ensembles by the level
repulsion parameter β, equal to 0, 1 and 2 for Poissonian,
orthogonal and unitary ensembles respectively. The rel-
evant quantities are labeled by the index β = 0, 1, 2. For
instance Pβ(s) represents the level spacing distribution
for the corresponding ensemble of random unitary ma-
trices. We shall start with the Poissonian ensemble de-
scribed by the case β = 0. Some basic properties of the
Poissonian process are reviewed in the Appendix A.

A. Asymptotics of the extreme spacings for

Poisson process

We are interested in asymptotic properties of spectra of
diagonal random unitary matrices. We choose at random
N points from the unit circle {z ∈ C, |z| = 1}, each in-
dependently according to the uniform distribution. The
arguments of these points ordered non-decreasingly will
be called 0 ≤ θ1 ≤ . . . ≤ θN < 2π. We define a point pro-
cess ΞN of the rescaled eigenphases of a diagonal random
unitary matrix DN = diag (eiθ1 , . . . , eiθN ) pertaining to
CPEN ,

ΞN = {(N/2π)θ1, . . . , (N/2π)θN}. (6)

Moreover, we define the spacings si, smin, and smax ac-
cording to (1). Note that the scaling is chosen so that
the mean spacing 〈s〉 is fixed to unity.
For the standard Poisson process Π = {X1, X2, . . .}

(see Appendix A), where its points are labeled in the
nondecreasing order 0 ≤ X1 ≤ X2 ≤ . . ., we also define
the spacings

Y1 = X1, Y2 = X2 −X1, Y3 = X3 −X2, . . . . (7)

It is known that for large N the process ΞN becomes
Poissonian, as the correlation functions converge to the
constant functions equal to unity characteristic of the
Poisson process Π.
We would like to address the question of the asymp-

totic behavior of the variables smin and smax. Since for a
diagonal unitary matrix of CPE the process (6) becomes
Poissonian, the variables minj≤N Yj and maxj≤N Yj sat-
isfy

sup
t∈R

∣

∣

∣

∣

P (smin ≤ t)− P

(

min
j≤N

Yj ≤ t

)∣

∣

∣

∣

−−−−→
N→∞

0,

sup
t∈R

∣

∣

∣

∣

P (smax ≤ t)− P

(

max
j≤N

Yj ≤ t

)
∣

∣

∣

∣

−−−−→
N→∞

0.

(8)

In view of (8) we arrive at the desired conclusions re-
garding smin and smax. These quantities are of order

〈smin〉CPE ∼ 1/N, 〈smax〉CPE ∼ lnN. (9)

After rescaling smin converges to a random variable y
with exponential density,

Nsmin
d

−→ e−y
1{y>0}, (10)

where by 1Y we denote the characteristic function of the
set Y . The maximal spacing smax converges to a con-
stant,

smax/ lnN
d

−→ 1, (11)

where
d

−→ denotes the convergence in distribution.
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The fluctuations of the rescaled variable smax/ lnN
around 1 are of order 1/ lnN and they are described by
the Gumbel distribution,

smax − 〈smax〉
d

−→ P (x) ∼ e−(x+γ)−e−(x+γ)

. (12)

Here and throughout, we denote by γ ≈ 0.5772 Euler’s
constant.

B. Mean minimal spacing

For the sake of convenience, we recall here the
heurisitic reasoning leading to the estimate of mean of
the minimal gap (Exercise 14.6.5 in [9]). In the next
subsection we follow this idea to deal with the maximal
gap.
To get an estimation of the behavior of the mean min-

imal spacing of a random unitary matrix of size N let us
assume that spacings sj , j = 1, . . . , N are independent
random variables. For small spacing one has Pβ(s) ∼ sβ,
so the integrated distribution Iβ(s) =

∫ s

0 Pβ(s
′)ds′ be-

haves as Iβ(s) ∼ s1+β . A matrix U of size N yields
N spacings sj . Thus the minimal spacing smin oc-
curs on average for such an argument of the integrated
distribution that Iβ(smin) ≈ 1/N . This implies that
(smin)

1+β ≈ 1/N, which allows us to estimate the av-
erage minimal spacing

〈smin〉 ≈ N− 1
1+β . (13)

In the case β = 2 corresponding to CUE this state-
ment is consistent with the rigorous results [11] of Arous
and Bourgade. As shown in Fig. 2 the above heuristic
reasoning provides the correct value of the exponent in
dependence of the mean minimal spacing 〈smin〉 on the
matrix size N for CPE (β = 0), COE (β = 1) and CUE
(β = 2).

10
0

10
1

10
2

10
−2

10
−1

10
0

N

〈 s
min

 〉

FIG. 2: Mean minimal spacing 〈smin〉 as a function of the
matrix size N = 2m for (▽) CPE, (�) COE and (◦) CUE and
m = 1, ..., 7. Symbols denote numerical results obtained for
214 independent random matrices. Solid, dashed and dash-
dot lines are plotted with slopes implied by the estimation
(13) and equal to −1, −1/2 and −1/3, respectively. Linear fit
to numerical data yields slopes -0.98, -0.48, -0.33, respectively.

C. Mean maximal spacing

We study the average maximal spacing 〈smax〉 for ran-
dom unitary matrices of the circular orthogonal ensem-
ble. Matrix of size N yields N spacings sj . In analogy
to the previous reasoning we shall assume that all spac-
ings are independent random variables described by the
Wigner surmise

P (s) =
π

2
se−πs2/4. (14)

Thus the integrated distribution I(s) =
∫ s

0
P (s′)ds′ reads

I(s) = 1− e−πs2/4. The maximal spacing smax occurs on
average for such an argument of the integrated distribu-
tion function that 1 − I(smax) ≈ 1/N. This implies that

e−πs2max/4 ≈ 1/N , which allows us to estimate the average
maximal spacing,

〈smax〉
2
COE ≈

4

π
lnN. (15)

This implies that 〈smax〉
2 grows with the matrix size N

proportionally to 4
π lnN what is demonstrated in Fig.

(3).

Let us deal now with the circular unitary ensemble.
We employ here the Wigner formula for the level spacing

distribution of a large CUE matrix, P2(s) =
32
π2 s

2e−4s2/π.
By the same reasoning as above we obtain an estimate
that the maximal spacing smax occurs on average for
such an argument of the integrated distribution function
I(s) =

∫ s

0
P (s′)ds′ that 1− I(smax) ≈ 1/N . Thus

1

N
≈

∫ ∞

smax

32

π2
s2e−4s2/πds. (16)

We change the variable setting u = 4s2/π and obtain
1
N ≈

∫∞
4s2max/π

2√
π
u1/2e−udu. Therefore, supposing smax

is large we get

1

N
≈

4

π
smaxe

−4s2max/π. (17)

Now we take the logarithm of both sides, neglect ln smax

as it is of lower order than s2max for large smax, and arrive
at

〈smax〉
2
CUE ≈

π

4
lnN. (18)

In the case of a Poissonian spectrum the level spac-
ing distribution displays an exponential tail, P (s) ∼
e−s. Thus the integrated distribution function I(s) =
∫ s

0
P (s′)ds′ behaves as I(s) = 1 − e−s. For a matrix of

size N the maximal spacing smax occurs on average for
such an argument that 1− I(smax) ≈ 1/N . This implies
that e−smax ≈ 1/N and enables us to estimate the av-
erage maximal spacing for the circular Poisson ensemble
as

〈smax〉CPE ≈ lnN. (19)
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FIG. 3: Mean maximal spacing 〈smax〉 as a function of the
matrix size N = 2k with k = 1, ..., 10 plotted for a) CUE (◦),
β = 2; COE (�), β = 1; and b) CPE (▽), β = 0. Symbols
denote numerical results obtained for 214 independent random
matrices. Solid, dashed (panel a) and dash-dot (panel b) lines
are plotted with slopes implied by estimations (15), (18) and
(19), respectively.

Analyzing estimations following from eqn. (15), (18) and
(19) one obtains slopes ACOE = 4

π ≈ 1.27, ACUE =
π
4 ≈ 0.77 and ACPE = 1, which are comparable with
numerical results ACOE ≈ 1.33, ACUE ≈ 0.84 and
ACPE ≈ 0.97, presented in Fig. 3.

D. Distribution of extremal spacings

To study the distributions of the minimal spacing smin

we introduce a rescaled variable suggested by (13),

x
(β)
min := A(β)N

1
1+β smin, (20)

where A(β) is a constant, in general different for CPE,
COE and CUE.
The case of the unitary ensemble was recently studied

by Arous and Bourgade [11], who derived the following
expression for the asymptotic distribution of the minimal
spacing,

P (xmin) = 3x2mine
−x3

min, (21)

in the rescaled variable xmin = (π/3)2/3N1/3smin. This
result suggests the following general form of the distribu-
tion of minimal spacing for all three ensembles considered
labeled by the level repulsion parameter β,

P (β)(xmin) := (β + 1)xβmine
−xβ+1

min , (22)

which agrees with the numerical data – see Fig. 4.

The above formula has a structure F (x) := df(x)
dx e−f(x),

which helps to determine the normalization. Numerical
results suggest that constants read: A(0) = 1 for CPE,

A(1) = 〈s〉 for COE, and A(2) = (π/3)2/3 for CUE.
Returning to the original variable smin we obtain the

distributions P (β)(smin),

P (0)(smin) = A(0)Ne
−Nsmin, (23)

P (1)(smin) = 2A2
(1)Nsmine

−A2
(1)Ns2min , (24)

P (2)(smin) = 3A3
(2)Ns

2
mine

−A3
(2)Ns3min . (25)

The distributions of the minimal spacing obtained nu-
merically for Poisson, orthogonal and unitary circular
ensembles of random matrices of the size N = 100 are
presented in Fig. 4.
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FIG. 4: Probability distributions a) P (smin) for random uni-
tary matrices of CUE (▽), β = 2; COE (�), β = 1; and CPE
(◦), β = 0. The same data shown for variable xmin rescaled
according to (20) for b) CUE, c) COE and d) CPE. Symbols
denote numerical results obtained for 217 independent matri-
ces of size N = 100, while solid curves represent asymptotic
predictions (22).

IV. EXTREMAL SPACINGS FOR TENSOR

PRODUCTS OF RANDOM UNITARY MATRICES

In this section we study eigenphases of tensor products
of random unitary matrices. We shall need the following
easy observation

Lemma. Let A1, . . . , Ak be unitary matrices of size

n1, . . . , nk with eigenphases

{ψ1,j}
n1

j=1, . . . , {ψk,j}
nk

j=1. Then the eigenphases of the

tensor product A1 ⊗ . . .⊗Ak read

k
∑

i=1

ψi,ji mod 2π, j1 ≤ n1, . . . , jk ≤ nk.

Proof. It is obvious as the eigenvalues of tensor products
are the products of the eigenvalues of its factors (see The-
orem 4.2.12 in [16]).
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We are interested in two cases

A) Two–qunit system: Given two independent CUE ma-
trices UA, UB of size n with eigenphases {ψj}

n
j=1,

{φj}
n
j=1, respectively, define the point process Ξn

of the rescaled eigenphases of the tensor product
UA ⊗ UB

Ξn = (n2/2π) {(ψi + φj) mod 2π, i, j = 1, . . . , n} .
(26)

B) k–qubit system: Given k independent CUE ma-
trices of order two, V1, . . . , Vk with eigenphases
{ψm,1, ψm,2}, m = 1, . . . , k respectively, define the
point process Ψk of the rescaled eigenphases of the
tensor product V1 ⊗ . . .⊗ Vk

Ψk = (2k/2π)

{

k
∑

m=1

ψm,ǫm mod 2π, ǫk, . . . , ǫk ∈ {1, 2}

}

.

(27)

It has been recently shown that both the process Ξn and
Ψk asymptotically behave as the standard Poisson point
process Π – see [12] and Appendix A. Therefore, one
might expect that the extremal spacings of the processes
Ξn and Ψk also exhibit the asymptotic of the extremal
spacings of the Poisson process Π.
We have studied the problem numerically. To investi-

gate the asymptotic regime we analyzed large matrices,
which cannot be diagonalized directly. In case B), for
instance, to deal with a 20–qubit system one has to work
with matrices of size N = 220 > 106. To obtain eigen-
phases and, in consequence, the desired distribution of
level spacings, we adopted another strategy summarized
in the following algorithm.
1. Take an ensemble of k random unitary matrices Uj

of size two distributed according to the Haar measure
[6, 17].
2. Diagonalize them to obtain their spectra, {eiϕjm},

where j = 1, . . . , k labels the number of the matrix, while
m = 1, 2 labels eigenvalues of the j-th matrix.
3. ConstructN = 2k eigenphases of the tensor product

U = U1⊗· · ·⊗Uk, by summing all combinations of phases

from different matrices, ψm1,...mk
=

∑k
j=1 ϕjmj

|mod2π,
where mj = 1, 2.
4. Order nondecreasingly the spectrum of U containing

N = 2k eigenphases, 0 ≤ ψ1 ≤ . . . ≤ ψN ≤ 2π.
5. Compute spacings between neighboring eigen-

phases, s1 = (ψ2 − ψ1)N/2π, . . . , sN−1 = (ψN −
ψN−1)N/2π, sN = (2π+ψ1−ψN )N/2π, order them non-
decreasingly, find the minimal spacing smin and the max-
imal spacing smax.
Note that the lemma stated above justifies point 3 of

this algorithm.
Such a procedure allowed us to achieve N above 106

with a minor numerical effort - see Fig. 5. A similar
procedure was be used in case A) corresponding to the
two–qunit system. Taking two independent random uni-
tary matrices U1 and U2 of size n = 1000 diagonalizing

them and adding the phases modulo 2π we constructing
the spectrum of the tensor product, U = U1 ⊗ U2 of size
n2. In this way we computed averages taken over the
ensemble of tensor product matrices of order N = 106.

Dependence of the mean extremal spacings on the ma-
trix size N for tensor products of case A) (two-qunits)
and case B) (k–qubits) are shown in Fig.5. Panel a)
shows the average minimal spacing 〈smin〉. Note that the
scaling of the minimal spacing for the two subsystems of
size n (�) agrees with the Poissonian predictions. On
the other hand, in the case of the system consisting of
k qubits, the scaling exponent is close to −0.6 and dif-
fers considerably from the value −1 characteristic to the
Poissonian ensemble. As shown in Fig. 5b, behavior of
the average maximal spacing for the tensor products cor-
responding to N = n×n and N = 2k systems is closer to
the prediction of the Poisson ensemble, 〈smax〉 ∼ lnN .
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FIG. 5: Dependence of the mean extremal spacing on the
matrix size N . a) Mean minimal spacing 〈smin〉, assumed
to behave as Nη is plotted in log–log scale, and the fitted
exponents read η(P ) = −0.98 for CPEN (◦) , η(2) = −1.09

for CUEn⊗n (�) , η(k) = −0.58 for CUE⊗k
2 (▽). b) Mean

maximal spacing 〈smax〉 assumed to behave as κ logN and
plotted in log–linear scale, with fitted prefactors κ(P ) = 0.98
for CPEN (◦) , κ(2) = 0.85 for CUEn⊗n (�) , κ(k) = 0.95 for

CUE⊗k
2 (▽). Symbols denote numerical results obtained for

214 independent random matrices. Solid, dashed and dash-
dot represent the fitted lines.



7

A. Minimal spacings for tensor products

To analyze the distribution of the minimal spacing
P (smin) for the tensor products of random unitary ma-
trices it is convenient to introduce an auxiliary variable
ymin = smin/〈smin〉. Probability distribution P (ymin) is
presented in Fig. 6 for the n × n systems with n = 2, 3
and 8. Numerical results for n = 2 agree with an ex-
plicit analytical prediction (3). Due to the tensor prod-
uct structure of the ensemble the effect of level repulsion,
characteristic of CUE, is washed out.

0 2 4
0

0.5

1

 

 

y
min

P

FIG. 6: Probability densities P (ymin) of the rescaled minimal
spacing ymin = smin/〈smin〉 for tensor products of CUE ran-
dom unitary matrices CUEn ⊗CUEn for n = 2 (◦), n = 3
(�), and n = 8 (▽). The symbols denote numerical results
obtained for 214 independent matrices, solid curve represents
the Poissonian distribution, while dashed line corresponds to
eq. (3).

For larger n the opposite effect of level clustering (large
probability at small values of the minimal spacing) be-
comes stronger and already for n = 8 probability distri-
bution can be approximated by the exponential distri-
bution, P (ymin) = exp(−ymin), typical of the Poissonian
distribution. A similar transition from distribution (3)
to the Poisson distribution occurs in the case of k-qubit
systems, as shown in Fig. 7.

0 2 4
0

0.5

1

P

y
min

FIG. 7: As in Fig. 6 for tensor products of k independent Haar
random unitary matrices of order two, CUE2

⊗k for k = 2 (◦),
k = 3 (�), and k = 8 (▽).

B. Maximal spacings for tensor products

As in section IIID we rescale the maximal spacing smax

and analyze the rescaled deviation from the expectation
value

zmax =
π

√

6Var(smax)

(

smax − 〈smax〉
)

. (28)

The normalization factor is adjusted to predictions for
the Poissonian process, for which the distribution of the
variable z is asymptotically described by the Gumbel dis-
tribution,

P (z) = e−(z+γ)−e−(z+γ)

. (29)

Recall that γ ≈ 0.5772 denotes Euler’s constant, while
the variance of the Gumbel distribution equal to π2/6
suggests the convenient prefactor in the definition (28).
Numerical results on the distributions of the variable
zmax characterizing the distribution of the maximal spac-
ings for the tensor products corresponding to two qunits
and several qubits are presented in Fig. 6 and Fig. 8, re-
spectively. In the asymptotic limit of a large matrix size
numerical data seem to agree with predictions (29) of the
Poisson ensemble.

−4 −2 0 2 4 6
0

0.2

0.4

P

z
max

FIG. 8: Distribution P (zmax) of the deviations of the rescaled
maximal spacing from the expected value, zmax = α

(

smax −

〈smax〉
)

with α = π/
√

6Var(smax) for ensemble of CUE26⊗26

matrices (◦). Numerical data obtained out of 216 realizations
while solid line denotes the Gumbel distribution (29).

V. CONCLUDING REMARKS

A significant and spectacular difference between the
Poissonian ensemble on one side and COE and CUE on
the other, concerning the degree of “repulsion” between
adjacent levels can be effectively analyzed in terms of
distributions of the extremal spacings. We analyzed the
average minimal spacing for several ensembles of random
unitary matrices. Basing on numerical results we propose
a general form of the probability distribution P (smin) of
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−4 −2 0 2 4 6
0

0.2

0.4

P

z
max

FIG. 9: As in Fig. 8 for a sample of 105 realizations of tensor
products of k = 22 random unitary matrices of order two.

the minimal spacing for the standard ensembles of ran-
dom unitary matrices. For CUE this distribution coin-
cides with the recent result derived by Arous and Bour-
gade [11], while for COE it corresponds to the distribu-
tions analyzed for real symmetric matrices in [9, 10].
The key part of this work concerned tensor products of

random unitary matrices. In the case of k independent
random matrices of order n distributed according to the
Haar measure the tensor product leads asymptotically to
a spectrum with Poissonian level spacing distribution [12,
15]. However, we report here a different behavior for the
statistics of the extreme spacings. Even though the mean
largest spacing 〈smax〉 can be described by predictions
obtained for the Poisson ensemble of diagonal random
unitary matrices of size N = nk, this is not the case for
the mean minimal spacings.
In particular, in the case of k non-interacting qubits,

described by the tensor product CUE⊗k, the mean min-
imal spacing 〈smin〉 displays significant deviations with
respect to the predictions of the Poisson ensemble. In the
simplest case of a two qubit system we have shown that
the eigenphases of the tensor product, CUE2⊗2, show
weaker repulsion than in the case of random CUE matri-
ces of order N = 4.
Our study leaves several questions open. In particular,

numerical results encourage one to derive an unknown
scaling law of the average minimal spacing 〈smin〉 in the
case of k-qubit system. Furthermore, our observations
suggesting that the distributions of the extremal spacing
for ensembles of random matrices corresponding to two–
qunit or k–qubit systems are asymptotically governed by
the Poisson and the Gumbel distributions, respectively,
should be confirmed by an analytical proof.
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Appendix A: Basic properties of the Poisson process

By a point process Ξ on the real half-line R+ =
[0,∞) we mean a countable collection of random
nonnegative numbers. For instance, a set ΞU =
{(N/2π)θ1, . . . , (N/2π)θN} of the rescaled eigenvalues of
a random unitary matrix U can be viewed as a point
process on R+.
A key example is a homogeneous Poisson point process

Π on R+ with a parameter λ > 0 which is characterized
by

(i) for any pairwise disjoint and measurable subsets
B1, . . . , Bn of R+ the number of points in these sub-
sets form independent random variables,

(ii) for any measurable subset B of R+ the number of
points contained inside is described by the Poisson
distribution with parameter λ|B|, where |B| denotes
the Lebesgue measure of B.

A detailed treatment of this process can be found in a
classical monograph [18]. In this work we set the param-
eter λ to 1 and call it the standard Poisson point process.
One of the fundamental property of the Poisson process

is that its spacings are independent and are described by
exponential distributions. We read in [18]

Theorem 1. Let Π = {X1, X2, . . .} be the standard Pois-

son point process, where the points are labeled so that

they do not decrease. Define its spacings Y1, Y2, . . . by
(7). Then the variables Y1, Y2, . . . are independent and

identically distributed with density e−y, y > 0.

Knowing this we are able to examine the asymptotics
of the extreme gaps Ymin = minj≤N Yj and Ymax =
maxj≤N Yj .

Theorem 2. Let Y1, Y2, . . . be a sequence of random vari-

ables which are independent identically distributed with

density P (y) = e−y for y > 0. Then,

〈Ymin〉 = 〈min
j≤N

Yj〉 = 1/N,

〈Ymax〉 = 〈max
j≤N

Yj〉 =

N
∑

k=1

1/k ∼ lnN.
(A1)

If we rescale the variables to set the mean to unity,

y = NY , asymptotically they behave exponentially and

concentrate respectively,

NYmin
d

−→ e−y
1{y>0}, (A2)

Y/〈Ymin〉
d

−→ 1, (A3)
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where
d

−→ denotes the convergence in distribution.

Furthermore, the fluctuations of Y/〈Ymin〉 around 1 are

governed at the scale 〈maxj≤N Yj〉 ∼ lnN by the Gumbel

distribution,

Y − 〈Ymin〉
d

−→ P (z) = e−(z+γ)−e−(z+γ)

, (A4)

where γ := limn→∞ (
∑n

k=1 1/k − lnn) ≈ 0.5772 is Eu-

ler’s constant.

Given the fact that the distribution functions are easily

calculable,

P

(

min
j≤N

Yj > t

)

= e−Nt, t > 0,

P

(

max
j≤N

Yj ≤ t

)

= (1− e−t)N , t > 0,

theorem 2 can be proved by a direct computation.
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