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Abstract

We study the minimum spanning arborescence problem on the complete digraph ~Kn

where an edge e has a weight We and a cost Ce, each of which is an independent uniform
[0, 1] random variable. There is also a constraint that the spanning arborescence T must
satisfy C(T ) ≤ c0. We establish the asymptotic value of the optimum weight via the
consideration of a dual problem. The proof is via the analysis of a polynomial time
algorithm.
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1 Introduction

We consider the minimum spanning arborescence problem in the context of the complete di-
graph ~Kn where each edge has an independent uniform [0, 1] weight We and an independent

uniform [0, 1] cost Ce. Let A denote the set of spanning arborescences of ~Kn. An arborescence
is a rooted tree in which every edge is directed away from the root. The weight of a spanning
arborescence A is given by W (A) =

∑
e∈AWe and its cost C(A) is given by C(A) =

∑
e∈ACe.

The problem we study is

Minimise W (A) subject to A ∈ A, C(A) ≤ c0, (1)

where c0 may depend on n.

Without the constraint C(A) ≤ c0, we have a weighted matroid intersection problem and as
such it is solvable in polynomial time, see for example Lawler [6]. Furthermore Edmonds [2]
gave a particularly elegant algorithm for solving this problem. With the constraint C(A) ≤ c0,
the problem becomes NP-hard, since the knapsack probelm can be easily reduced to it. On the
other hand, equation (1) defines a natural problem that has been considered in the literature,
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in the worst-case rather than the average case. See for example Guignard and Rosenwein [5]
and Aggarwal, Aneja and Nair [1] and Goemans and Ravi [4] (for an undirected version). This
paper is a follow up to the analysis of the cost constrained minimum weight spanning tree
problem considered in [3].

The addition of a cost contraint makes the problem NP-hard and reflects the fact that in many
practical situations there may be more than one objective for an optimization problem. Here
the goal is to lower weight and cost.

Theorem 1. Let Dn be the complete digraph ~Kn on n vertices with each edge e having assigned a
random weight We and a random cost Ce, where {We, Ce} is a family of i.i.d. random variables
uniform on [0, 1]. Given c0 > 0, let W ∗

arb be the optimum value for the problem (1). The
following hold w.h.p.

Case 1: If c0 ∈
√

π
8
[
√

log n, n
(logn)2

], then

W ∗
arb ≈

πn

8c0

.

Case 2: Suppose now that c0 = αn, where α = O(1) is a positive constant.

(i) If α > 1/2 then
W ∗
arb ≈ 1.

(ii) If α < 1/2 then
W ∗
arb ≈ f(β∗)− αβ∗

where β∗ is the unique positive solution to f ′(β) = α and where

f(β) = β1/2

∫ β1/2

t=0

e−t
2/2dt+ e−β/2, β > 0.

Case 3: Suppose now that c0 = α, where α = O(1) is a positive constant.

(i) If α < 1 then there is no solution to (1).

(ii) If α > 1 then
W ∗
arb ≈ (g(β)− αβ)n

where β is the unique positive solution to g′(β) = α and where

g(β) = β1/2

∫ β−1/2

t=0

e−t
2/2dt+ βe−1/2β

= βf(1/β), β > 0.

We note that Lemma 2 of Section 2.1 shows that the claims in Case 2 are reasonable and
Lemma 3 shows that the claims in Case 3 are reasonable (that is, the stated equations possses
unique solutions).
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2 Auxiliary results

2.1 Properties of the functions f and g

Lemma 2. f(0) = 1, f(∞) =∞, f ′(0) = 1/2, f ′(∞) = 0 and f ′ is strictly monotone decreas-
ing. These imply that f ′ > 0, f is concave increasing and for every 0 < α < 1

2
, there is a

unique β > 0 such that f ′(β) = α.

Proof. This follows by inspection of f and

f ′(β) =
1

2β1/2

∫ β1/2

t=0

e−t
2/2dt.

f ′′(β) =
1

4β3/2

∫ β1/2

t=0

(
e−β/2 − e−t2/2

)
dt < 0.

Lemma 3. g′(0) = ∞, g′(∞) = 1 and g′ is strictly monotone decreasing. This implies that g
is concave and for every α > 1, there is a unique β > 0 such that g′(β) = α.

Proof. We have g(β) = βf(1/β) and

g′(β) = f(1/β)− 1

β
f ′(1/β) =

1

2β1/2

∫ β−1/2

t=0

e−t
2/2dt+ e−1/2β.

g′′(β) =
1

β3
f ′′(1/β) < 0.

By inspection, g′(0) =∞ and g′(∞) = 1.

2.2 Expectation

Our strategy will be to prove results about mappings f : [n] → [n], where f(i) 6= i, i ∈ [n].
Given f , we have a digraph Df with vertex set [n] and edge set Af = {(i, f(i)) : i ∈ [n]}. Most
of the analysis concerns the problem
Minimum Weight Constrained Mapping (MWCM):

Minimise Wmap(f) =
∑
i∈[n]

W(i,f(i)) subject to C(f) =
∑
i∈[n]

C(i,f(i)) ≤ c0.

Let f ∗ solve MWCM. We will argue that w.h.p. Df∗ is close to being an arborescence and
that a small change will result in a near optimum arborescence that will verify the claims of
Theorem 1. The following lemma begins our analysis of optimal mappings. We have expressed
the following calculations with n replacing n− 1, but this does not affect the final results.

Lemma 4. Let X1, X2, . . . and Y1, Y2, . . . be i.i.d. random variables uniform on [0, 1]. Then
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E1: For λ ≤ 1
n logn

, we have

Emin
i≤n
{Xi + λYi} = (1 + o(1))

1

n
. (2)

E2: For 1
n logn

≤ λ ≤ logn
n

, we have

Emin
i≤n
{Xi + λYi} = (1 + o(1))

1

n

(
√
λn

∫ √λn
0

e−
t2

2 dt+ e−λn/2

)
. (3)

E3: For logn
n
≤ λ ≤ n

logn
, we have

Emin
i≤n
{Xi + λYi} = (1 + o(1))

√
π

2

√
λ

n
. (4)

E4: For n
logn
≤ λ ≤ n log n, we have

Emin
i≤n
{Xi + λYi} = (1 + o(1))

λ

n

(√
n

λ

∫ √n
λ

0

e−
t2

2 dt+ e−
1
2
n
λ

)
. (5)

E5: For λ ≥ n log n, we have

Emin
i≤n
{Xi + λYi} = (1 + o(1))

λ

n
. (6)

Proof. Thanks to independence

Emin
i≤n
{Xi + λYi} =

∫ ∞
0

P
(

min
i≤n
{Xi + λYi} > t

)
dt

=

∫ ∞
0

[
P (X1 + λY1 > t)

]n
dt.

Case 1. λ ≥ 1.
It follows from an elementary computation that (for details see e.g. the appendix in [3])

P (X1 + λY1 > t) =


1− t2

2λ
, 0 < t < 1,

1 + 1
2λ
− t

λ
, 1 ≤ t < λ,

(1+λ−t)2
2λ

, λ ≤ t < 1 + λ,

0, t ≥ 1 + λ.

Thus,

Emin
i≤n
{Xi + λYi} =

∫ 1

0

(
1− t2

2λ

)n
dt

+

∫ λ

1

(
1 +

1

2λ
− t

λ

)n
dt

+

∫ 1+λ

λ

(
(1 + λ− t)2

2λ

)n
dt

=

∫ 1

0

(
1− t2

2λ

)n
dt (7)

+
λ

n+ 1

[(
1− 1

2λ

)n+1

−
(

1

2λ

)n+1
]

+
1

2n+ 1

(
1

2λ

)2n

.
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Case 1.1. 1 ≤ λ ≤ n
logn

A change of variables gives∫ 1

0

(
1− t2

2λ

)n
dt =

√
λ

∫ 1√
λ

0

(
1− t2

2

)n
dt. (8)

We have
√

log n/n < 1√
λ
< 1 and∫ ∞

√
logn/n

(
1− t2

2

)n
dt ≤

∫ ∞
√

logn/n

e−
nt2

2 dt =
1√
n

∫ ∞
√

logn

e−
t2

2 dt = o(n−1/2).

Therefore

√
λ

∫ 1√
λ

0

(
1− t2

2

)n
dt =

√
λ

∫ √logn/n

0

(
1− t2

2

)n
dt+

√
λo(n−1/2).

Using 1 + x = ex+O(x2) as x→ 0, we get∫ √logn/n

0

(
1− t2

2

)n
dt =

∫ √logn/n

0

e−
nt2

2
+O(nt4)dt

= (1 + o(1))

∫ √logn/n

0

e−
nt2

2 dt

= (1 + o(1))
1√
n

∫ √logn

0

e−
t2

2 dt

= (1 + o(1))
1√
n

∫ ∞
0

e−
t2

2 dt+ o(n−1/2)

= (1 + o(1))
1√
n

√
π

2
+ o(n−1/2).

Putting these together back into (8) yields∫ 1

0

(
1− t2

2λ

)n
dt = (1 + o(1))

√
π

2

√
λ

n
+
√
λo(n−1/2) = (1 + o(1))

√
π

2

√
λ

n
.

Since

λ

n+ 1

[(
1− 1

2λ

)n+1

−
(

1

2λ

)n+1
]

+
1

2n+ 1

(
1

2λ

)2n

= O

(
λ

n

)

=

√
λ

n
O

(√
1

log n

)
,

from (7) we can finally obtain (4).

Case 1.2. n
logn
≤ λ ≤ n log n

Since for t ≤ 1√
λ
, (1− t2

2
)n = e−

nt2

2 eO(nt4) = e−
nt2

2 eO( log2 n
n

), directly from (8), we get∫ 1

0

(
1− t2

2λ

)n
dt = (1 + o(1))

√
λ

∫ 1√
λ

0

e−
nt2

2 dt = (1 + o(1))

√
λ

n

∫ √n
λ

0

e−
t2

2 dt.
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Moreover,

λ

n+ 1

[(
1− 1

2λ

)n+1

−
(

1

2λ

)n+1
]

+
1

2n+ 1

(
1

2λ

)2n

= (1 + o(1))
λ

n
e−

n
2λ

+O( n
λ2

) +O

((
log n

n

)n)
=
λ

n
e−

n
2λ

(
1 + o(1) +

n

λ
e
n
2λO

((
log n

n

)n))
=
λ

n
e−

n
2λ (1 + o(1)) .

Plugging these back in (7) yields (5).

Case 1.3. λ ≥ n log n
Plainly, ∫ 1

0

(
1− t2

2λ

)n
dt = O(1) =

λ

n
o(1).

Since
(
1− 1

2λ

)n+1
= eO(n

λ
) = 1 + o(1), we have

λ

n+ 1

[(
1− 1

2λ

)n+1

−
(

1

2λ

)n+1
]

+
1

2n+ 1

(
1

2λ

)2n

=
λ

n
(1 + o(1)) .

Putting these in (7) gives (6).

Case 2. λ ≤ 1
We write

Emin
i≤n
{Xi + λYi} = λEmin

i≤n
{Xi + λ−1Yi}

and then apply (4), (5) and (6) to λ−1, multiply the answers by λ to get (2), (3) and the
missing range logn

n
≤ λ ≤ 1 of (4).

Corollary 5. Under the assumptions of Lemma 4, we have

nEmin
i≤n
{Xi + λYi} = Ω(max{1,

√
λn}).

Proof. This follows directly from (2) - (6) and the fact that f(β) ≥ 1 (Lemma 2) as well as the
lower bound

f(β) ≥ max{
√
β

∫ √β
0

e−t
2/2dt, e−β/2} ≥ max

{√
β

∫ √β
0

e−t
2/2dt,

√
β1{β≤ 1

2
}

}
≥ 1

2

√
β.
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2.3 Concentration

Again n replaces n− 1 in the calculations.

Lemma 6. Let W(i,j) and C(i,j), i, j ≤ n, be i.i.d. random variables uniform on [0, 1]. Let
λ ∈ [0, n log n]. For Xi = minj{W(i,j) + λC(i,j)}, S =

∑
i≤nXi and ε = Ω(n−1/5), we have

P (|S − ES| > εES) = O(n−99). (9)

Moreover,

P
(
∃i : Xi > 10(1 + λ)

√
log n/n

)
≤ n−99. (10)

Proof. Let M = 10(1 + λ)
√

log n/n and B be the event that for some i, Xi ≥M . We have,

P (|S − ES| > εES) ≤ P (B) + P ((|S − ES| > εES) ∧Bc) . (11)

First we bound P (B). By the union bound and independence,

P (B) ≤ nP (X1 ≥M) = n
[
P
(
W(1,1) + λC(1,1) ≥M

)]n
.

We use W(1,1) + λC(1,1) ≤ (1 + λ) max{W(1,1), C(1,1)} and note that since these variables are
uniform, we have P

(
max{W(1,1), C(1,1)} ≥ u

)
= 1− u2 for u < 1. We thus get

P (B) ≤ n

[
1− 100

log n

n

]n
≤ ne−100 logn = n−99,

which establishes (10).

The second term in (11) can be bounded using Chernoff’s inequality because on Bc, Xi =
Xi1Xi≤M , that is S can be treated as a sum of n independent random variables X̃i = Xi1Xi≤M
with X̃i ∈ [0,M ]. Clearly X̃i ≤ Xi and S̃ =

∑
X̃i ≤ S, so

P ((|S − ES| > εES) ∧Bc) = P
(

(|S̃ − ES| > εES) ∧Bc
)
≤ P

(
|S̃ − ES| > εES

)
.

By the Chernoff bound

P
(
|S̃ − ES̃| > εES̃

)
≤ 2 exp

{
−ε

2ES̃
3M

}
.

Note that
|S̃ − ES| ≤ |S̃ − ES̃|+ |ES − ES̃|.

and

|ES − ES̃| =
∣∣∣E∑Xi1Xi>M

∣∣∣ ≤ (1 + λ)E
∑

1Xi>M ≤ (1 + λ)nP (X1 > M)

= O(n−90),

thanks to (10). Moreover, by Corollary 5,

ES = Ω(max{1,
√
λn}),
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thus

|ES − ES̃| ≤ 1

2
εES

and we get

P
(
|S̃ − ES| > εES

)
≤ P

(
|S̃ − ES̃| > 1

2
εES

)
≤ P

(
|S̃ − ES̃| > 1

2
εES̃

)
≤ 2 exp

{
−ε

2ES̃
12M

}
.

Finally, observe that

ES̃
M
≥ ES

2M
=

Ω(max
{

1,
√
λn
}

)

20(1 + λ)
√

log n

√
n

and for λ ≤ n log n, we have max{1,
√
λn}

1+λ
≥ 1

2

√
1

logn
. Consequently,

ε2ES̃
12M

= Ω

(
ε2
√
n

log n

)
= Ω(n1/10),

so
P (|S − ES| > εES,Bc) = O(e−n

1/10

).

In view of (11), this combined with (10) finishes the proof of (9).

Corollary 7. Let Mn denote the minimum weight of a mapping with weights We + λCe, e ∈
E( ~Kn). Then with probability 1−O(n−90),

Mn ≈


(πλn/2)1/2 E3.

f(λn) E2.

ng(λ/n) E4.

Wmax ≤


O
(

(1 + λ)
√

log n/n
)

E3.

O
(√

log n/n
)

E2.

1 E4.

(12)

Cmax ≤


O
(

1
λ

+ 1
)√

log n/n E3.

1 E2.

O(log n/n) E4.

(13)

Proof. The claim about Mn follows directly from Lemma 4 and Lemma 6. For Cases 1 and
2 the claim about Wmax follows from (10). For Case 1 the claim about Cmax follows from
(10). For Case 3, we let p = K log n/n and argue that w.h.p. for each v ∈ [n], there exists
w 6= v such that C(v,w) ≤ p (the probability of the contrary is at most n(1 − p)n−1 = o(1)).
If Cmax = C(v1,w1) > 2p then replacing (v1, w1) by (v1, w2) where C(v1,w2) ≤ p we reduce the

value W (F ) + λC(F ) of the supposed mapping F , by at least λp − 1 ≥ n
logn

K logn
n
− 1 > 0,

contradicting the optimality of F .
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2.4 Properties of optimal dual solutions

Let

I =
{

(i, j) ∈ [n]2 : i 6= j and Wi,j, Ci,j are bounded by (12), (13) respectively
}
.

For i ∈ [n] we let Ji = {j : (i, j) ∈ I}.

We can express the problem MWCM as the following integer program:
IPmap

Minimize
∑

(i,j)∈I

Wi,jxi,j subject to

∑
j∈Ji

xi,j = 1, i ∈ [n] (14)∑
(i,j)∈[I]

Ci,jxi,j ≤ c0 (15)

xi,j = 0 or 1, for all i 6= j. (16)

We obtain the relaxation LPmap by replacing (16) by

0 ≤ xi,j ≤ 1 for all (i, j) ∈ I. (17)

We will consider the dual problem: we will say that a map f is feasible if f(i) ∈ Ji for i ∈ [n].
We let Ω∗ denote the set of feasible f .

Dualmap(W,C, c0):

Compute max
λ≥0

φ(λ, c0) where φ(λ, c0) = min
f∈Ω∗

∑
i∈[n]

(Wi,f(i) + λCi,f(i))− λc0

 .

Now it is well known (see for example [7]) that

max
λ≥0

φ(λ, c0) = min

 ∑
(i,j)∈I

Wi,jxi,j subject to (14), (15), (17)

 .

I.e. maximising φ solves the linear program LPmap. The basic feasible solutions to the linear
program LPmap have a rather simple structure. A basis matrix is obtained by replacing a single
row of the n× n identity matrix In with coefficients from the LHS of (15) (or it is In). Thus,
if the associated basic feasible solution is non-integral, then there is a single i∗ such that (i)
i 6= i∗ implies that there is a unique j(i) such that xi,j(i) = 1 and xi,j = 0 for j 6= j(i) and (ii)
there are two indices j1, j2 such that xi∗,j` 6= 0, ` = 1, 2.

We are using Corollary 7 to restrict ourselves to feasible f , so that we may use the upper
bounds in (12), (13).

Consider the unique (with probability one) basic feasible solution that solves LPmax. The
optimal shadow price λ∗ is also the optimal solution to the dual problem DUALmap(W,C, c0).
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Let the map f ∗ = f ∗(c0) be obtained from an optimal basic feasible solution to LPmap by (i)
putting xi∗,j1 = xi∗,j2 = 0 and then (ii) choosing j∗ to minimise Ci∗,j +λ∗Wi∗,j and then putting
xi∗,j∗ = 1. This yields the map f ∗, where f ∗(i) = j(i), i 6= i∗ and f ∗(i∗) = j∗.

Let Wmax = max
{
Wi,f∗(i) : i ∈ [n]

}
and define Cmax similarly. Let W ∗

LP denote the optimal
objective value to LPmap. Then we clearly have

W (f ∗) ≤ W ∗
LP +Wmax and C(f ∗) ≤ c0 + Cmax. (18)

Lemma 8. Let W(i,j) and C(i,j), i, j ≤ n, be i.i.d. random variables uniform on [0, 1]. Then
f ∗ is distributed as a random mapping.

Proof. Fix f0 ∈ [n][n] and a permutation π of [n]. The distribution of f ∗ is invariant with respect
to relabelling (permuting) the domain [n], that is π ◦ f ∗ and f ∗ have the same distribution.
Therefore,

P (f ∗ = f0) = P (π ◦ f ∗ = π ◦ f0) = P (f ∗ = π ◦ f0) .

2.5 Discretisation

We divide the interval [0, n log n] into n10 intervals [λi, λi+1] of equal length. Then |λi+1 −
λi| ≤ n−9. By standard arguments we have the following claim about the maximum after the
discretisation.

Lemma 9. Almost surely, we have

max
λ

φmap(λ, c0) = max
i≤n10

φmap(λi, c0) +O(redn−8). (19)

Proof. This follows from a standard argument: we have

|max
λ

φmap(λ, c0)− max
i≤n10

φmap(λi, c0)| ≤ max
i≤n10

max
λ∈[λi,λi+1]

|φmap(λ, c0)− φmap(λi, c0)|

and for any λ, λ′

|φmap(λ, c0)− φmap(λ′, c0)| ≤ |min
T

∑
e∈T

(We + λCe)−min
F ′

∑
e∈F ′

(We + λ′Ce)|+ |λ− λ′|c0.

If we take T̃ to be an optimal mapping for λ and T̃ ′ for λ′, we can conclude that

min
T

∑
e∈T

(We + λCe) ≤
∑
e∈T̃ ′

(We + λCe) = min
F ′

∑
e∈F ′

(We + λ′Ce) +
∑
e∈T̃ ′

(λ− λ′)Ce

which easily gives (by estimating each Ce by 1 and exchanging the roles of λ and λ′)

|min
T

∑
e∈T

(We + λCe)−min
F ′

∑
e∈F ′

(We + λ′Ce)| ≤ |λ− λ′|n.

Since c0 = O(n) and |λ− λi| ≤ n−9, we finish the argument.
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The function φmap(λ, c0) is concave and will be strictly concave with probability one. Let λ∗

denote the value of λ maximising φ and let λ∗∗ be the closest discretised value to λ∗. Let f ∗∗

be the mapping that minimises W (f) + λ∗∗C(f). We will see in the following that

λ∗ ≥ 1

n2
w.h.p. (20)

Lemma 10. Assuming (20), then
f ∗ = f ∗∗ w.h.p.

Proof. Consider the dual linear program to LPmap. This can be expressed

Maximise
n∑
i=1

ui − λc0 subject to λ ≥ 0, ui − λCi,j ≤ Wi,j, for all i, j.

with solution u∗1, . . . , u
∗
n, λ

∗.

In an optimal basic feasible solution LPmap, λ
∗ will be the optimal shadow price and for a fixed

i 6= i∗, the reduced cost of the variable xi,j will be Z∗i,j = Wi,j + λ∗Ci,j − u∗i . Because we are
considering an optimal basic feasible solution we will have Z∗i,j ≥ 0 for all i, j and the basic
xi,j’s will satisfy Z∗i,j = 0. It follows from the fact that there is only a single i for which there
is no basic xi,j, that f ∗(i) is chosen to minimise Z∗i,j for at least n− 1 indices i 6= i∗. We have
already defined f ∗(i∗) to minimise Zi∗,j. It only remains to argue that if we replace λ∗ by λ∗∗

to obtain Z∗∗i,j then w.h.p. the minimising index does not change for any i.

Now |Z∗∗i,j − Z∗i,j| ≤ |λ∗∗ − λ∗| ≤ n−9. Also, if X, Y are independent uniform [0, 1] random
variables that Pr(X + λY ∈ [a, a+ δ]) ≤ δ/λ for any choice of a, δ, λ. So,

Pr(∃i : minimiser changes)

≤ Pr

(
∃i, j1, j2, k : Z∗i,j,1, Z

∗∗
i,j2
∈
[
k

n9
,
k + 2

n9

])
≤ n3n9 ·

(
2

λ∗n9

)2

= o(1),

under the assumption that (λ∗)2n6 →∞.

2.6 Cycles

A mapping f gives rise to a digraph DF = ([n], {(v, f(v)) : v ∈ [n]}. The digraph DF splits
into components consisting of directed cycles plus arborescences attached to these cycles.

Lemma 11. There is a universal constant K such that a uniform random mapping F : [n]→
[n] has at most K log n cycles with probability at least 1−O(n−50).

Proof. If we condition on the set C of vertices on cycles, then the cycles define a random
permutation of the elements of C. One can see this by observing that if we remove the edges
from these cycles and replace them with another collection of cycles that cover C then we get
another digraph of a mapping. This explains that each set of cycles that covers C has the same
set of extensions to a mapping digraph i.e. arises in the same number of mappings.
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Let C = [m]. Let π be a random permutation of [m]. Let X denote the size of the cycle
containing 1. Then

P (X = i) =
(m− 1)(m− 2) · · · (m− i+ 1)× (m− i)!

m!
=

1

m
.

Explanation: The factor (m− 1)(m− 2) · · · (m− i+ 1) is the number of ways of completing
the cycle containing 1 and (m− i)! is the number of ways of computing the vertices not on C.

Now let Y denote the number of cycles in π. From this we can argue that

P (Y ≥ t) ≤ P (Bin(t, 1/2) ≤ dlog2me) .

Explanation: We flip a sequence of fair coins. If we get a head in the first one, then we
interpret this as vertex 1 being on a cycle C1 of size at least m/2 and then we continue the
experiment with [m] \ C1. If we get a tail, then we continue the experiment with [m].

So, by the Chernoff bounds, if Z is the number of cycles in a random mapping, then for K ≥ 2,

P (Z ≥ K log2 n)) ≤ P (Bin(K log2 n, 1/2) ≤ dlog2 ne)

≤ exp

{
−(K − 2)2

2K2
· A log2 n

}
= n−(K−2)2/2K .

3 Proof of Theorem 1

It will be convenient to first argue about the cost of an optimal mapping and then amend it
to obtain an almost optimal arborescence with the (asymptotically) correct cost. Namely, we
define W ∗

map(c0) to be the optimal value of the integer program IPmap of Section 2.4.

First, we show that with high probability

W ∗
map(c0) ≈


πn
8c0
. Case 1.

f(β)− αβ where f ′(β) = α Case 2.

(g(β)− αβ)n where g′(β) = α Case 3.

(21)

and then we modify an almost optimal mapping (with the slightly more restricted budget c0−δ
for the cost) to obtain an arborescence A which with high probability will satisfy W (A) ≈
W ∗
map(c0) as well as the cost constraint C(A) =

∑
e∈ACe ≤ c0. Since

W ∗
arb(c0) ≥ W ∗

map(c0) ≈ W (A) ≥ W ∗
arb(c0),

this will show that W ∗
arb(c0) ≈ πn

8c0
in Case 1., etc., as desired.

3.1 A near optimal mapping

Our goal is to show (21). By weak duality or the fact that LPmap relaxes IPmap we have

W ∗
map(c0) ≥ max

λ
φmap(λ, c0). (22)

12



To handle φmap, note that the minimum over the mappings is of course attained by choosing
the best edge for each vertex, that is

φmap(λ, c0) =
∑
i≤n

min
j 6=i
{W(i,j) + λC(i,j)} − λc0. (23)

Now the analysis splits into three cases according to the value of c0.

Case 1: c0 ∈
√

π
8
[
√

log n, n/(log n)2].

First we take the maximum over i. The function (1+o(1))
√

π
2

√
λn−λc0 is strictly concave and

has a global maximum at λ∗ = (1 + o(1)) πn
8c20

, satisfying (20). Note that with our assumption

on c0, this value of λ is in the third range of Lemma 4.

By (4) and the concentration result of Lemma 6 applied to ε = n−1/5, we have

Lemma 12.

φmap(λi, c0) = (1 + o(1))

√
π

2

√
λin− λic0,

for every i ≤ n5 with probability at least 1−O(n−99).

Thus the optimal value over λ = λi, i ≤ n5, is

max
i≤n5

φmap(λi, c0) = (1 + o(1))

√
π

2

√
(λ∗ +O(n−4))n− (λ∗ +O(n−4))c0

= (1 + o(1))
π

8

n

c0

which together with Claim 1 gives that with probability at least 1−O(n−99)

max
λ

φmap(λ, c0) = (1 + o(1))
π

8

n

c0

+O(n−3) = (1 + o(1))
π

8

n

c0

. (24)

The last step is to tighten the cost constraint a little bit and consider c′0 = c0−1. Since c′0 ≈ c0,
by using (24) twice and recalling (22), we obtain

W ∗
map(c0) ≥ max

λ
φmap(λ, c0) = (1 + o(1))

π

8

n

c0

= (1 + o(1))
π

8

n

c′0
= (1 + o(1)) max

λ
φmap(λ, c

′
0) ≥ W (f ∗)−Wmax, (25)

where f ∗ = f ∗(c′0) is as in (18) and

C(f ∗) ≤ c′0 + Cmax(f ∗) ≤ c′0 + 1 ≤ c0.

This means that the solution f ∗ is feasible and thusW (f ∗) ≥ W ∗
map(c0). We have from Corollary

7 and our expressions for the optimal value of λ that

Wmax = O

(
1 +

n

c2
0

)√
log n/n = o

(
n

c0

)
= o(W (f ∗)).

13



Going back to (25) we see that W ∗
map(c0) ≈ π

8
n
c0

, thus showing (21) holds with probability at

least 1−O(n−90). Moreover,

W ∗
map(c0) ≈ max

λ
φmap(λ, c0). (26)

Case 2: c0 = αn, α = O(1).

If α > 1/2 then w.h.p. we can take the mapping f(v) where W(v,f(v)) = min
{
W(v,w) : w 6= v

}
.

Then the sum
∑

v C(v,f(v)) being the sum of n independent uniform [0, 1] random variables is
asymptotically equall to n/2 w.h.p. This implies that f defines a feasible mapping w.h.p.

Assume then that α < 1/2. We use the argument of Case 1 and we omit details common to
both cases. We first check that the optimal value λ∗ is in the second range of Lemma 4. To see

this observe that if λ = β
n

where β ∈
[

1
logn

, log n
]

then φmap(λ, c0) ≈ f(β)−αβ. Now Lemma 2

affirms that f(β)− αβ is concave and that there is a unique positive solution β∗ to f ′(β) = α.
It follows that maxλ φmap(λ, c0) ≈ f(β∗)− αβ∗.

We let c′0 = c0 − 1 ≈ c0. Using the continuity of f and Wmax = o(1) from (12), we have
W ∗
map(c0) ≥ (1 + o(1))W (f ∗) in (25) and by (18) we have C(f ∗) ≤ c′0 + 1 = c0. Again, (20) is

satisfied.

Case 3: c0 = α, α = O(1).

If α < 1 then w.h.p. the problem is infeasible. This is because the sum S =
∑

v minwW(v,w)

is the sum of n i.i.d. random variables and this sum has mean n
n+1

and Lemma 6 with λ = 0
shows that S is concentrated around its mean.

Assume then that α > 1. We use the argument of Case 1 and as in Case 2, we omit details
common to both cases. We first check that the optimal value λ∗ is in the second range of Lemma

4. To see this observe that if λ = βn where β ∈
[

1
logn

, log n
]

then φmap(λ, c0) ≈ n(g(β)− αβ).

Now Lemma 3 affirms that g(β) − αβ is concave and that there is a unique positive solution
β∗ to g′(β) = α. It follows that maxλ φmap(λ, c0) ≈ n(g(β∗) − αβ∗). It only remains to check
that Cmax(f ∗) = o(1) so that we can apply (18). Again, (20) is satisfied.

We now let c′0 = c0 − 1/n1/2 ≈ c0. Using the continuity of g and Wmax ≤ 1 we have W ∗
map ≥

(1 + o(1))W (f ∗) in (25) and we have C(f ∗) ≤ c′0 +K logn
n
≤ c0.

3.2 From a mapping to an arborescence

Case 1:
Fix c0 and let c′0 = c0(1− ε) with ε = n−1/4 log n. Since c′0 ≈ c0, by (21) and (26), we have

W ∗
arb(c0) ≥ W ∗

map(c0) ≈ πn

8c0

≈ πn

8c′0
≈ W ∗

map(c
′
0) ≈ max

λ
φmap(λ, c

′
0).

Let the maximum on the right hand side be attained at some λ∗ and let λ∗∗ be the closest
discretized value. Let f ∗ be as defined in Section 2.4 and f ∗∗ minimise W (f) +λ∗∗C(f). Then,
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we have from Claim 1 and (18) that

W (f ∗) ≤ W ∗
map(c0) +Wmax +O(n−3)

C(f ∗) ≤ c′0 + Cmax.
(27)

We now argue that with high probability it is possible to modify f ∗ to obtain a feasible
arborescence A, that is of cost at most c0, having weight very close to W ∗

map.

By Lemmas 8 and 11, with probability at least 1−O(n−10), f ∗ has at most K log n cycles for
some universal constant K. Then the largest component, call it U , has at least n

K logn
vertices.

We consider two cases:

Case 1a: c0 ≥ n1/2:
For each cycle, choose arbitrarily one vertex belonging to it, say v, remove its out-edge, breaking
the cycle and put instead an out-edge connecting it to U . This way f ∗is transformed into an
arborescence, call it A. We have W ∗

map = Ω(n/c0) = Ω((log n)2) and then from (27) and
Wmax, Cmax ≤ 1 that

W (A) ≤ W (f ∗) +K log n =

(
1 +O

(
1

log n

))
W ∗
map.

C(A) ≤ c′0 + 1 +O(n−3) +K log n ≤ c0.

Case 1b: c0 ≤ n1/2:
It follows from λ∗ = Θ(n/c2

0) that λ∗ = Ω(1). It then follows from (10) and Lemma 10 that

Cmax(f ∗) = O(
√

log n/n). If therefore we delete every edge e for which Ce ≥ n−1/4 from ~Kn

and compute an optimal mapping, then w.h.p. we will get the same mapping f ∗ as without
doing the deletion. Now w.h.p., for any vertex v, there are at most 2n1/4 edges e incident with
Ce < n−1/4.

Now put back every edge that was deleted and consider the conditional distribution of Ce of
a deleted edge e. The distribution of Ce will be uniform [0, 1], conditional on Ce ≥ n−1/4 and
this is uniform [n−1/4, 1]. Applying the same transformation from mapping to arborescence as
in Case 1, but doing this as cheaply as possible, we see that

P
(
6 ∃ out-edge e ∈ E(v : U) such that Ce ∈ [n−1/4, 2n−1/4]

)
≤
(

1− n−1/4

1− n−1/4

)n/K logn−2n1/4

≤ e−Ω(n3/4/ logn).

Taking the union bound over the cycles, we see that with high probability for each cycle there
is a choice of an edge with We ≤ 1, Ce ≤ 2n−1/4. Thus, the difference of weight between f ∗

and A is at most 2K log n and the difference of cost is at most 2K log n×n−1/4. Consequently,
C(A) ≤ c0(1− ε) + 2Kn−1/4 log n ≤ c0 and therefore A is feasible and we get

W ∗
arb(c0) ≤ W (A) ≤ πn

8c0

+ 2K log n ≈ πn

8c0

.

This finishes the proof of Case 1.

Case 2:
We have c0 = Ω(n) here and λ∗∗ = β∗∗ = Θ(1). We can therefore use (10) to argue that w.h.p.
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max {Wmax(f ∗), Cmax(f ∗)} = O(
√

log n/n). We then can proceed as in Case 1b and use edges
e such that We, Ce ∈ [n−1/4, 2n−1/4] to transform f ∗ into an arborescence and w.h.p. change
weight and cost by o(1) only.

Case 3:
We have λ∗∗ = β∗∗n = Θ(n). We can therefore use (10) to argue that w.h.p. Cmax(f ∗) =
O(
√

log n/n). We proceed as in Case 1b and use edges e such that We ≤ 1, Ce ∈ [n−1/4, 2n−1/4]
to transform f ∗ into an arborescence. The extra cost in going from mapping f ∗ to an arbores-
cence is O(n−1/4 log n) = o(1). The extra weight is O(log n) which is much smaller than the
optimal weight which is Ω(n) w.h.p.

4 Conclusion

We have determined the asymptotic optimum value to Problem (1) w.h.p. The proof is con-
structive in that we can w.h.p. get an asymptotically optimal solution (1) by computing
arborescence A of the previous section. Our theorem covers almost all of the possibilities for
c0, although there are some small gaps between the 3 cases.

The present result assumes that cost and weight are independent. It would be more reasonable
to assume some positive correlation. This could be the subject of future research. One could
also consider more than one constraint.
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