
Injective Tauberian operators on L1 and
operators with dense range on `∞

∗

William B. Johnson†, Amir Bahman Nasseri,
Gideon Schechtman‡, and Tomasz Tkocz§

Abstract

There exist injective Tauberian operators on L1(0, 1) that have
dense, non closed range. This gives injective, non surjective operators
on `∞ that have dense range. Consequently, there are two quasi-
complementary, non complementary subspaces of `∞ that are isomet-
ric to `∞.

1 Introduction

A (bounded, linear) operator T from a Banach space X into a Banach space
Y is called Tauberian provided T ∗∗−1Y = X. The structure of Tauberian
operators when the domain is an L1 space is well understood and exposed in
Gonzáles and Mart́ınez-Abejón’s book [5, Chapter 4]. (For convenience they
only consider L1(µ) when µ is finite and purely nonatomic, but their proofs
for the results we mention work for general L1 spaces.) In particular, [5,
Theorem 4.1.3] implies that when X is an L1 space, an operator T : X → Y
is Tauberian iff whenever (xn) is a sequence of disjoint unit vectors, there is an
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N so that the restriction of T to [xN ]∞n=N is an isomorphism (and, moreover,
the norm of the inverse of the restricted operator is bounded independently
of the disjoint sequence). From this it follows that an injective operator
T : X → Y is Tauberian iff it isomorphically preserves isometric copies of `1
in the sense that the restriction of T to any subspace of X that is isometrically
isomorphic to `1 is an isomorphism. (Recall that a subspace of an L1 space
is isometrically isomorphic to `1 iff it is the closed linear span of a sequence
of non zero disjoint vectors [11, Chapter 14.5].) Since Tu is Tauberian if T is
Tauberian and u is an isomorphism, one deduces that an injective Tauberian
operator from an L1 space isomorphically preserves isomorphic copies of `1
in the sense that the restriction of T to any subspace of X that is isomorphic
to `1 is an isomorphism. Thus injective Tauberian operators from an L1

space are opposite to `1-singular operators; i.e., operators whose restriction
to every subspace isomorphic to `1 is not an isomorphism.

The main result in this paper is a negative solution to [5, Problem 1]:
Suppose T is a Tauberian operator on an L1 space. Must T be upper semi-
Fredholm; i.e., must the range R(T ) of T be closed and the null space N (T )
of T be finite dimensional? The basic example is a Tauberian operator on
L1(0, 1) that has infinite dimensional null space. This is rather striking be-
cause the Tauberian condition is equivalent to the statement that there is
c > 0 so that the restriction of the operator to L1(A) is an isomorphism
whenever the subset A of [0, 1] has Lebesgue measure at most c.

In fact, we show that there is an injective, dense range, non surjective
Tauberian operator on L1(0, 1). Since T is Tauberian, T ∗∗ is also injective,
so R(T ∗) is dense and proper, and T ∗ is injective because R(T ) is dense.
This solves a problem [10] the second author raised on MathOverFlow.net
that led to the collaboration of the authors.

2 The examples

We begin with a lemma that is an easy consequence of characterizations of
Tauberian operators on L1 spaces.

Lemma 1 Let X be an L1 space and T an operator from X to a Banach
space Y . The operator T is Tauberian if and only if there is r > 0 and
a natural number N so that if (xn)Nn=1 are disjoint unit vectors in X, then
max1≤n≤N ‖Txn‖ ≥ r.
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Proof: The condition in the lemma clearly implies that if (xn) is a disjoint
sequence of unit vectors in X, then lim infn ‖Txn‖ > 0, which is one of the
equivalent conditions for T to be Tauberian [5, Theorem 4.1.3]. On the other
hand, suppose that there are disjoint collections (xnk)nk=1, n = 1, 2, . . . with
max1≤k≤n ‖Txnk‖ → 0 as n → ∞. Then the closed sublattice generated by
∪∞n=1(x

n
k)nk=1 is a separable abstract L1 space (meaning that it is a Banach

lattice such that ‖x + y‖ = ‖x‖ + ‖y‖ whenever |x| ∨ |y| = 0) and hence is
order isometric to L1(µ) for some probability µ by Kakutani’s theorem (see
e.g. [7, Theorem 1.b.2]). Choose 1 ≤ k(n) ≤ n so that the support of xnk(n)
in L1(µ) has measure at most 1/n. Since T is Tauberian, by [5, Proposition
4.1.8] necessarily lim infn ‖Txnk(n)‖ > 0, which is a contradiction.

The reason that Lemma 1 is useful for us is that the condition in the
Lemma is stable under ultraproducts. Call an operator that satisfies the
condition in Lemma 1 (r,N)-Tauberian. For background on ultraproducts of
Banach spaces and of operators, see [4, Chapter 8]. We use the fact that the
ultraproduct of L1 spaces is an abstract L1 space and hence is order isometric
to L1(µ) for some measure µ.

Lemma 2 Let (Xk) be a sequence of L1 spaces, and for each k let Tk be
a norm one linear operator from Xk into a Banach space Yk. Assume that
there is r > 0 and a natural number N so that each operator Tk is (r,N)-
Tauberian. Let U be a free ultrafilter on the natural numbers. Then (Tk)U :
(Xk)U → (Yk)U is (r,N)-Tauberian.

Here (Tk)U is the usual ultraproduct of the sequence (Tk), defined by

(Tk)U(xk) = (Tkxk).

Proof: The vectors (xk) and (yk) are disjoint in the abstract L1 space (Xk)U
iff limU ‖|xk| ∧ |yk|‖ = 0, so it is only a matter of proving that if T is (r,N)-
Tauberian from some L1 space X, then for each ε > 0 there is δ > 0 so that
if x1, . . . , xN are unit vectors in X and ‖|xn| ∧ |xm|‖ < δ for 1 ≤ n < m ≤ N ,
then max1≤n≤N ‖Txn‖ > r − ε. But if x1, . . . , xN are unit vectors that are
ε-disjoint as above, and y1, . . . , yn are defined by

yn := [|xn| − (|xn| ∧ (∨{|xm| : m 6= n})]sign(xn),
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then the yn are disjoint and all have norm at least 1−Nδ. Normalize the yn
and apply the (r,N)-Tauberian condition to this normalized disjoint sequence
to see that max1≤n≤N ‖Txn‖ > r − ε if δ = δ(ε,N) is sufficiently small.

An example that answers [5, Problem 1] is the restriction of an ultraprod-
uct of operators on finite dimensional L1 spaces constructed in [3].

Theorem 1 There is a Tauberian operator T on L1(0, 1) that has an infinite
dimensional null space. Consequently, T is not upper semi-Fredholm.

Proof: An immediate consequence of [3, Proposition 6 & Theorem 1] is
that there is r > 0 and a natural number N so that for all sufficiently large
n there is a norm one (r,N)-Tauberian operator Tn from `n1 into itself with
dimN (Tn) > rn. The ultraproduct T̃ := (Tn)U is then a norm one (r,N)-
Tauberian operator on the gigantic L1 space X1 := (`n1 )U , and the null space
of T̃ is infinite dimensional. Take any separable infinite dimensional subspace
X0 of N (T̃ ) and let X be the closed sublattice of X1 generated by X0. Let Y
be the sublattice of X1 generated by T̃X and let T be the restriction of T̃ to
X, considered as an operator into Y . So X and Y are separable L1 spaces and
by Lemmas 1 and 2 the operator T is Tauberian. Of course, by construction
N (T ) is infinite dimensional and reflexive (because T is Tauberian). Thus
X is not isomorphic to `1 and hence is isomorphic to L1(0, 1). So is Y , but
that does not matter: Y , being a separable L1 space, embeds isometrically
into L1(0, 1).

We want to “soup up” the operator T in Theorem 1 to get an injective,
non surjective, dense range Tauberian operator on L1(0, 1). We could quote
a general result [6, Theorem 3.4] of González and Onieva to shorten the
presentation, but we prefer to give a short direct proof.

We recall a simple known lemma:

Lemma 3 Let X and Y be separable infinite dimensional Banach spaces and
ε > 0. Let Y0 be a countable dimensional dense subspace of Y .Then there
is a nuclear operator u : X → Y so that u is injective and ‖u‖∧ < ε and
uX ⊃ Y0.

Proof: Recall that an M -basis for a Banach space X is a biorthogonal
system (xα, x

∗
α) ⊂ X × X∗ such that the linear span of (xα) is dense in

X and ∩αN (x∗α) = {0}. Every separable Banach space X has an M -basis
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[8]; moreover, the vectors (xα) in the M -basis can span any given countable
dimensional dense subspace of X.

Take M -bases (xn, x
∗
n) and (yn, y

∗
n) for X and Y , respectively, normalized

so that ‖x∗n‖ = 1 = ‖yn‖ and such that the linear span of (yn) is Y0. Choose
λn > 0 so that

∑
n λn < ε and set u(x) =

∑
n λn〈x∗n, x〉yn.

Theorem 2 There is an injective, non surjective, dense range Tauberian
operator on L1(0, 1).

Proof: By Theorem 1 there is a Tauberian operator T on L1(0, 1) that has
an infinite dimensional null space. By Lemma 3 there is a nuclear operator ṽ :
N (T )→ L1(0, 1) that is injective and has dense range, and we can extend ṽ to
a nuclear operator v on L1(0, 1). We can choose ṽ so that ṽ(N (T ))∩TL1(0, 1)
is infinite dimensional by the last statement in Lemma 3. This guarantees
that the Tauberian operator T1 := T + v has an infinite dimensional null
space (this allows us to avoid breaking the following argument into cases).

Now N (T1) ∩ N (T ) = {0}, so again by Lemma 3 and the extension
property of nuclear operators there is a nuclear operator u : L1(0, 1)/N (T )→
`1 so that the restriction of u to QN (T )N (T1) is injective and has dense range
(here for a subspace E of X, the operator QE is the quotient mapping from
X onto X/E). Finally, define T2 : L1(0, 1) → L1(0, 1) ⊕1 `1 by T2x :=
T1x⊕uQN (T )x. Then T2 is an injective Tauberian operator with dense range.
T2 is not surjective because P`1T2 is nuclear by construction, where P`1 is the
projection of L1(0, 1)⊕1 `1 onto {0} ⊕1 `1. Since L1(0, 1)⊕1 `1 is isomorphic
to L1(0, 1), this completes the proof.

Corollary 1 There is an injective, dense range, non surjective operator on
`∞. Consequently, there is a quasi-complementary, non complementary de-
composition of `∞ into two subspaces each of which is isometrically isomor-
phic to `∞.

Proof: Let T be an injective, dense range, non surjective Tauberian oper-
ator on L1(0, 1) (Theorem 2). Since T is Tauberian, T ∗∗ is also injective, so
T ∗ has dense range but T ∗ is not surjective because its range is not closed,
and T ∗ is injective because T has dense range. The operator T ∗ translates to
an operator on `∞ that has the same properties because L∞ is isomorphic to
`∞ by an old result due to Pe lczyński (see, e.g., [1, Theorem 4.3.10]) (notice
however that, unlike T ∗, the operator on `∞ cannot be weak∗ continuous).
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For the “consequently” statement, let S be any norm one injective, dense
range, non surjective operator on `∞. In the space `∞ ⊕∞ `∞, which is iso-
metric to `∞, define X := `∞ ⊕ {0} and Y := {(x, Sx) : x ∈ `∞}. Obviously
X and Y are isometric to `∞ and X+Y = `∞⊕S`∞, which is a dense proper
subspace of `∞ ⊕∞ `∞. Finally, X ∩ Y = {0} since S is injective, so X and
Y are quasi-complementary, non complementary subspaces of `∞ ⊕∞ `∞.

Theorem 2 and the MathOverFlow question [10] suggest the following
problem: Suppose X is a separable Banach space (so that X∗ is isometric
to a weak∗ closed subspace of `∞) and X∗ is non separable. Is there a dense
range operator on X∗ that is not surjective? The answer is “no”: Argyros,
Arvanitakis, and Tolias [2] constructed a separable space X so that X∗ is
non separable, hereditarily indecomposable (HI), and every strictly singular
operator on X∗ is weakly compact. Since X∗ is HI, every operator on X∗

is of the form λI + S with S strictly singular. If λ 6= 0, then λI + S is
Fredholm of index zero by Kato’s classical perturbation theory. On the other
hand, since every weakly compact subset of the dual to a separable space is
norm separable, every strictly singular operator on X∗ has separable range.
(Thanks to Spiros Argyros for bringing this example to our attention.)

Any operator T on l∞ that has dense range but is not surjective has the
property that 0 is an interior point of σ(T ). This follows from Thm 2.6 in
[9], where it is shown that ∂σ(T ) ⊂ σp(T

∗) for any operator T acting on a
C(K) space which has the Grothendieck property.
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[6] González, Manuel; Onieva, Victor M. On the instability of non-semi-
Fredholm operators under compact perturbations. J. Math. Anal. Appl.
114 (1986), no. 2, 450–457.

[7] Lindenstrauss, Joram; Tzafriri, Lior Classical Banach spaces. II. Func-
tion spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 97.
Springer-Verlag, Berlin-New York, 1979.

[8] Mackey, George W. Note on a theorem of Murray. Bull. Amer. Math.
Soc. 52, (1946), 322–325.

[9] A. B. Nasseri, The spectrum of operators on C(K) with the
Grothendieck property and characterization of J-Class Operators which
are adjoints.

[10] Nasseri, Amir Bahman. http://mathoverflow.net/questions/101253

[11] Royden, H. L. Real analysis. Third edition. Macmillan Publishing Com-
pany, New York, 1988.

W. B. Johnson
Department of Mathematics
Texas A&M University
College Station, TX 77843 U.S.A.
johnson@math.tamu.edu

A. B. Nasseri
Fakultät für Mathematik
Technische Universität Dortmund
D-44221 Dortmund, Germany
amirbahman@hotmail.de

7



G. Schechtman
Department of Mathematics
Weizmann Institute of Science
Rehovot, Israel
gideon@weizmann.ac.il

T. Tkocz
Mathematics Institute
University of Warwick
Coventry CV4 7AL, UK
ttkocz@gmail.com

8


