A NOTE ON A BRUNN-MINKOWSKI INEQUALITY FOR THE GAUSSIAN MEASURE

PIOTR NAYAR AND TOMASZ TKOCZ

Abstract

We give the counter-examples related to a Gaussian BrunnMinkowski inequality and the (B) conjecture.

1. Introduction and notation

Let γ_{n} be the standard Gaussian distribution on \mathbb{R}^{n}, i.e. the measure with the density

$$
g_{n}(x)=\frac{1}{(2 \pi)^{n / 2}} e^{-|x|^{2} / 2}
$$

where $|\cdot|$ stands for the standard Euclidean norm. A powerful tool in convex geometry is the Brunn-Minkowski inequality for Lebesgue measure (see [Sch] for more information). Concerning the Gaussian measure, the following question has recently been posed.

Question (R. Gardner and A. Zvavitch, [GZ]). Let $0<\lambda<1$ and let A and B be closed convex sets in \mathbb{R}^{n} such that $o \in A \cap B$. Is it true that

$$
\begin{equation*}
\gamma_{n}(\lambda A+(1-\lambda) B)^{1 / n} \geq \lambda \gamma_{n}(A)^{1 / n}+(1-\lambda) \gamma_{n}(B)^{1 / n} ? \tag{GBM}
\end{equation*}
$$

A counter-example is given in this note. However, we believe that this question has an affirmative answer in the case of o-symmetric convex sets, i.e. the sets satisfying $K=-K$.

In $[\mathrm{CFM}]$ it is proved that for an o-symmetric convex set K in \mathbb{R}^{n} the function

$$
\begin{equation*}
\mathbb{R} \ni t \mapsto \gamma_{n}\left(e^{t} K\right) \tag{1}
\end{equation*}
$$

is log-concave. This was conjectured by W. Banaszczyk and popularized by R. Latała [Lat]. It turns out that the (B) conjecture cannot be extended to the class of sets which are not necessarily o-symmetric yet contain the origin, as one of the sets provided in our counter-example shows.

As for the notation, we frequently use the function

$$
T(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-t^{2} / 2} \mathrm{~d} t
$$

[^0]
2. Counter-examples

Now we construct the convex sets $A, B \subset \mathbb{R}^{2}$ containing the origin such that inequality (GBM) does not hold. Later on we show that for the set B the (B) conjecture is not true.

Fix $\alpha \in(0, \pi / 2)$ and $\varepsilon>0$. Take

$$
\begin{aligned}
A & =\left\{(x, y) \in \mathbb{R}^{2}|y \geq|x| \tan \alpha\}\right. \\
B=B_{\varepsilon} & =\left\{(x, y) \in \mathbb{R}^{2}|y \geq|x| \tan \alpha-\varepsilon\}=A-(0, \varepsilon)\right.
\end{aligned}
$$

Clearly, A, B are convex and $0 \in A \cap B$. Moreover, from convexity of A we have $\lambda A+(1-\lambda) A=A$ and therefore

$$
\lambda A+(1-\lambda) B=\lambda A+(1-\lambda)(A-(0, \varepsilon))=A-(1-\lambda)(0, \varepsilon)
$$

Observe that

$$
\begin{aligned}
\gamma_{2}(A) & =\frac{1}{2}-\frac{\alpha}{\pi} \\
\gamma_{2}(B) & =2 \int_{0}^{+\infty} T(x \tan \alpha-\varepsilon) \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x \\
\gamma_{2}(\lambda A+(1-\lambda) B) & =2 \int_{0}^{+\infty} T(x \tan \alpha-\varepsilon(1-\lambda)) \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x
\end{aligned}
$$

and that these expressions are analytic functions of ε. We will expand these functions in ε up to the order 2 . Let

$$
a_{k}=\int_{0}^{+\infty} T^{(k)}(x \tan \alpha) \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x
$$

for $k=0,1,2$, where $T^{(k)}$ is the k-th derivative of T (we adopt the standard notation $T^{(0)}=T$). We get

$$
\begin{aligned}
\gamma_{2}(A) & =2 a_{0} \\
\gamma_{2}(B) & =2 a_{0}-2 \varepsilon a_{1}+\varepsilon^{2} a_{2}+o\left(\varepsilon^{2}\right) \\
\gamma_{2}(\lambda A+(1-\lambda) B) & =2 a_{0}-2 \varepsilon(1-\lambda) a_{1}+\varepsilon^{2}(1-\lambda)^{2} a_{2}+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

Thus

$$
\sqrt{\gamma_{2}(B)}=\sqrt{2 a_{0}}-\frac{a_{1}}{\sqrt{2 a_{0}}} \varepsilon+\left(\frac{a_{2}}{2 \sqrt{2 a_{0}}}-\frac{a_{1}^{2}}{2\left(2 a_{0}\right)^{3 / 2}}\right) \varepsilon^{2}+o\left(\varepsilon^{2}\right)
$$

Taking $\varepsilon(1-\lambda)$ instead of ε we obtain

$$
\begin{aligned}
\sqrt{\gamma_{2}(\lambda A+(1-\lambda) B)}= & \sqrt{2 a_{0}}-\frac{a_{1}}{\sqrt{2 a_{0}}}(1-\lambda) \varepsilon \\
& +\left(\frac{a_{2}}{2 \sqrt{2 a_{0}}}-\frac{a_{1}^{2}}{2\left(2 a_{0}\right)^{3 / 2}}\right)(1-\lambda)^{2} \varepsilon^{2}+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sqrt{\gamma_{2}(\lambda A+(1-\lambda) B)}-\lambda \sqrt{\gamma_{2}(A)}-(1-\lambda) \sqrt{\gamma_{2}(B)} \\
& \quad=-\lambda(1-\lambda) \frac{1}{2\left(2 a_{0}\right)^{3 / 2}}\left(2 a_{0} a_{2}-a_{1}^{2}\right) \varepsilon^{2}+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

we will have a counter-example if we find $\alpha \in(0, \pi / 2)$ such that

$$
\underset{2}{2 a_{0} a_{2}-a_{1}^{2}>0 .}
$$

Recall that $a_{0}=\frac{1}{2} \gamma_{2}(A)=\frac{1}{2}\left(\frac{1}{2}-\frac{\alpha}{\pi}\right)$. The integrals that define the a_{k} 's can be calculated. Namely,

$$
\begin{aligned}
a_{1} & =\int_{0}^{\infty} T^{\prime}(x \tan \alpha) \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x=-\frac{1}{\sqrt{2 \pi}} \frac{1}{2} \int_{\mathbb{R}} e^{-\left(1+\tan ^{2} \alpha\right) x^{2} / 2} \frac{\mathrm{~d} x}{\sqrt{2 \pi}} \\
& =-\frac{1}{\sqrt{2 \pi}} \frac{1}{2 \sqrt{1+\tan ^{2} \alpha}}, \\
a_{2} & =\int_{0}^{\infty} T^{\prime \prime}(x \tan \alpha) \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty}(x \tan \alpha) e^{-\left(1+\tan ^{2} \alpha\right) x^{2} / 2} \frac{\mathrm{~d} x}{\sqrt{2 \pi}} \\
& =\frac{1}{2 \pi} \frac{\tan \alpha}{1+\tan ^{2} \alpha} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
2 a_{0} a_{2}-a_{1}^{2} & =2\left(\frac{1}{2}\left(\frac{1}{2}-\frac{\alpha}{\pi}\right) \cdot \frac{1}{2 \pi} \frac{\tan \alpha}{1+\tan ^{2} \alpha}\right)-\frac{1}{2 \pi} \cdot \frac{1}{4\left(1+\tan ^{2} \alpha\right)} \\
& =\frac{1}{8 \pi} \frac{1}{1+\tan ^{2} \alpha}\left(\tan \alpha\left(2-\frac{4 \alpha}{\pi}\right)-1\right)
\end{aligned}
$$

which is positive for α close to $\pi / 2$.
Now we turn our attention to the (B) conjecture. We are to check that for the set $B=B_{\varepsilon}$ the function $\mathbb{R} \ni t \mapsto \gamma_{n}\left(e^{t} B\right)$ is not log-concave, provided that ε is sufficiently small. Since

$$
e^{t} B=\left\{(x, y) \in \mathbb{R}^{2}|y \geq \tan \alpha| x \mid-\varepsilon e^{t}\right\}
$$

we get

$$
\begin{aligned}
\ln \gamma_{2}\left(e^{t} B\right) & =\ln \left(2 \int_{0}^{\infty} T\left(x \tan \alpha-e^{t} \varepsilon\right) \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x\right) \\
& =\ln \left(2 \int_{0}^{\infty} T(x \tan \alpha) \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x\right)-\varepsilon e^{t} \frac{\int_{0}^{\infty} T^{\prime}(x \tan \alpha) e^{-x^{2} / 2} \mathrm{~d} x}{\int_{0}^{\infty} T(x \tan \alpha) e^{-x^{2} / 2} \mathrm{~d} x}+o(\varepsilon)
\end{aligned}
$$

This produces the desired counter-example for sufficiently small ε as the function $t \mapsto \beta e^{t}$, where

$$
\beta=-\frac{\int_{0}^{\infty} T^{\prime}(x \tan \alpha) e^{-x^{2} / 2} \mathrm{~d} x}{\int_{0}^{\infty} T(x \tan \alpha) e^{-x^{2} / 2} \mathrm{~d} x}>0
$$

is convex.
Remark. The set B_{ε} which serves as a counter-example to the (B) conjecture in the nonsymmetric case works when the parameter $\alpha=0$ as well (and ε is sufficiently small). Since B_{ε} is simply a halfspace in this case, it shows that symmetry of K is required for log-concavity of (1) even in the onedimensional case.

Acknowledgements

The authors would like to thank Professors R. Gardner and A. Zvavitch for pointing out that the constructed set may also serve as a counter-example to the (B) conjecture in the non-symmetric case. An anonymous referee deserves thanks for the remark.

References

[CFM] D. Cordero-Erausquin, M. Fradelizi, and B. Maurey, The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal. 214 (2004), no. 2, 410-427. MR2083308 (2005g:60064)
[GZ] R. J. Gardner, A. Zvavitch, Gaussian Brunn-Minkowski-type inequalities, Trans. Amer. Math. Soc. 360 (2010), no. 10, 5333-5353. MR2657682 (Review)
[Lat] R. Latała, On some inequalities for Gaussian measures, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 813-822, Higher Ed. Press, Beijing, 2002. MR1957087 (2004b:60055)
[Sch] R. Schneider, Convex bodies: the Brunn-Minkowski theory. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993. MR1216521 (94d:52007)

Piotr Nayar, Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland.

E-mail address: nayar@mimuw.edu.pl
Tomasz Tkocz, Institute of Mathematics, University of Warsaw, Banacha
2, 02-097 Warszawa, Poland.
E-mail address: t.tkocz@mimuw.edu.pl

[^0]: 2010 Mathematics Subject Classification. Primary 52A40; Secondary 60G15.
 Key words and phrases. Convex body, Gauss measure, Brunn-Minkowski inequality, B-conjecture.

 Research of the first author partially supported by NCN Grant no. 2011/01/N/ST1/01839.

 Research of the second author partially supported by NCN Grant no. 2011/01/N/ST1/05960.

