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Abstract

We study the minimum spanning tree problem on the complete graph where an edge e has a weight We

and a cost Ce, each of which is an independent uniform [0, 1] random variable. There is also a constraint
that the spanning tree T must satisfy C(T ) ≤ c0. We establish the asymptotic value of the optimum
weight via the consideration of a dual problem. The proof is therefore constructive i.e. can be thought
of as the analysis of a polynomial time algorithm.
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1 Introduction

We consider the minimum spanning tree problem in the context of the complete graph Kn where each edge
has an independent uniform [0, 1] weight We and an independent uniform [0, 1] cost Ce. Let T denote the set
of spanning trees of Kn. The weight of a spanning tree T is given by W (T ) =

∑
e∈T We and its cost C(T ) is

given by C(T ) =
∑

e∈T Ce. The problem we study is

Minimise W (T ) subject to T ∈ T , C(T ) ≤ c0, (1)

where c0 may depend on n. We let W ∗ = W ∗(c0) = W (T ∗) denote the optimum value to (1).

∗Research supported in part by NSF grant DMS1661063
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The unconstrained case of this question (c0 = ∞) has been well studied: Frieze [6], Steele [14], Janson [11],
Penrose [13], Frieze and McDiarmid [7], Frieze, Ruszinkó and Thoma [8], Beveridge, Frieze and McDiarmid
[2], Li and Zhang [12] and Cooper, Frieze, Ince, Janson and Spencer [5] and is well understood. For example,
[5] proves that if Ln denotes the expected minimum weight of a spanning tree then

Ln = ζ(3) +
c1
n

+
c2 + o(1)

n4/3

for explicitly defined c1, c2.

Equation (1) defines a natural problem that has been considered in the literature, in the worst-case rather
than the average case. See for example Aggarwal, Aneja and Nair [1] and Guignard and Rosenwein [10] (for
a directed version) and Goemans and Ravi [9].

We tackle (1) by considering the dual problem:

Maximise φ(λ) over λ ≥ 0, where φ(λ) = min {W (T ) + λ(C(T )− c0) : T ∈ T } . (2)

We note that
if λ ≥ 0 and T is feasible for (1) then φ(λ) ≤ W (T ). (3)

We will show that w.h.p.

that if λ∗ solves (2) and T ∗ solves (1) then φ(λ∗) ≈ W (T ∗). (4)

Here A ≈ B is an abbreviation for A = (1 + o(1))B as n→∞, assuming that A = A(n), B = B(n).

We need to make the following definitions:

c1 =
1√
2

∞∑
k=1

1

k3/2
Γ
(
k − 1

2

)
k!

. (5)

f(β) =
∞∑
k=1

kk−2

k!
fk(β) (6)

where

fk(β) = β1/2

∫ β

x=0

xk−3/2e−kxdx+

∫ ∞
x=β

xk−1e−kxdx. (7)

Theorem 1. The following hold w.h.p.:

(1) If

c0 ∈
[
c1(500 log n)1/2,

c1n

(8000 log n)1/2

]
(8)

then

W ∗ ≈ c21n

4c0
. (9)

(2) Suppose now that c0 = αn where α = O(1).

(i) If α > 1/2 then

W ∗ ≈ ζ(3) =
∞∑
k=1

1

k3
.
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(ii) If 0 < α ≤ 1/2 and if β∗ = β∗(α) is the solution to

f ′(β) = 2α, (10)

then
W ∗ ≈ f(β∗)− 2αβ∗. (11)

(3) Suppose now that c0 = α where α = O(1).

(i) If α < ζ(3) then there is no feasible solution to (1).

(ii) If α > ζ(3) and if β∗ = β∗(α) is the solution to

f(β)− βf ′(β) = α, (12)

then

W ∗ ≈ f(β∗)− α
2β∗

n. (13)

Before proceeding to the proof of Theorem 1, we will check that the claims in (2) and (3) are intuitively
reasonable. First consider Case (2). If α > 1/2 and if T ∗ is the tree minimising W (T ) then w.h.p. W (T ∗) ≈
ζ(3) and C(T ∗) ≤ (1 + o(1))n/2.

We observe next that f ′(β) > 0. This follows directly from

f ′(β) =
1

2

∞∑
k=1

kk−2

k!
β−1/2

∫ β

0

xk−3/2e−kxdx. (14)

It is shown in an appendix that

f ′(β) is a strictly monotone decreasing function. (15)

By inspection we see that f ′(∞) = 0.

Note also that f ′(0) = 1 (use L’Hôpital’s rule) and

f(0) =
∞∑
k=1

kk−2

k!

∫ ∞
x=0

xk−1e−kxdx =
∞∑
k=1

kk−2

k!
· (k − 1)!

kk
= ζ(3)

and so (10) and (11) are consistent with (i) when α = 1/2.

If α < 1/2 then from the above properties of f ′ we see that (10) has a unique positive solution. We derive
expression (11) below.

Now consider Case (3). If α < ζ(3) then w.h.p. there is no tree T with C(T ) < α. If g(β) = f(β)− βf ′(β),
then g(0) = ζ(3), g′(β) = −βf ′′(β) > 0 and

g(β) ≥ β1/2

2

∞∑
k=1

kk−2

k!

∫ β

x=0

xk−3/2e−kxdx→∞ as β →∞.

This implies that (12) has a unique positive solution. We derive expression (13) below.
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2 Outline Proof

We use a standard integral formula to compute φ(λ) in Section 3.1. This is straightforward, but lengthy. We
then prove conscentration around the mean in Section 3.2. We then use a result of [10] to show in Section 4
that in the cases discussed, the duality gap is negligible w.h.p.

3 Evaluation of the dual problem

3.1 Expectation

Lemma 2. Let λ ≥ 0 and let Ln be the total weight of a minimum spanning tree in the complete graph on n
vertices with each edge e having weight Ze = We +λCe, where We and Ce are i.i.d. random variables uniform
on [0, 1]. We have

1. If 2000 logn
n

≤ λ ≤ n
2000 logn

, then

ELn ≈ c1
√
λn. (16)

2. If λ < 2000 logn
n

, then

ELn ≈
∞∑
k=1

kk−2

k!

[√λn

2

∫ λn
2

0

xk−3/2e−kxdx+

∫ ∞
λn
2

xk−1e−kxdx
]
. (17)

3. If λ > n
2000 logn

, then

ELn ≈
∞∑
k=1

kk−2

k!
λ
[√ n

2λ

∫ n
2λ

0

xk−3/2e−kxdx+

∫ ∞
n
2λ

xk−1e−kxdx
]
. (18)

The implied o(1) terms in the above expressions can be taken to be independent of λ. Also, we have not
optimised all constants.

Proof. Let T be a minimum spanning tree. The starting point is Janson’s formula [11],

ELn = E
∑
e∈T

Ze = E
∑
e∈T

∫ ∞
0

1{Ze≥p}dp =

∫ ∞
0

E|{e ∈ T, Ze ≥ p}|dp =

∫ ∞
0

E
(
κ(G)− 1

)
dp, (19)

where κ(G) is the number of components in the graph G on n vertices with the edge set {e : Ze < p}. Since
the Ze are i.i.d., this is the random graph Gn,p̂, with p̂ = Pr (Ze < p). Since Ze ≤ 1 + λ, p̂ = 1 for p > 1 + λ,
so the last integral can be taken from 0 to 1 + λ and after a change of variables p← p

1+λ
, we get

ELn = (1 + λ)

∫ 1

0

E
(
κ(Gn,p̂(p))− 1

)
dp, (20)

where

p̂(p) = Pr(Ze < (1 + λ)p) = Pr

(
1

1 + λ
We +

1

1 + λ−1
Ce < p

)
=

∣∣∣∣{(u, v) ∈ [0, 1]2,
1

1 + λ
u+

1

1 + λ−1
v ≤ p

}∣∣∣∣
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where in the last expression |·| denotes Lebesgue measure. An elementary computation (given in an appendix)
yields

p̂(p) =


(1+λ)(1+λ−1)

2
p2, 0 ≤ p ≤ 1

1+max{λ,λ−1}

−1
2

min{λ, λ−1}+ p(1 + min{λ, λ−1}), 1
1+max{λ,λ−1} < p ≤ 1

1+min{λ,λ−1}

1− (1+λ)(1+λ−1)
2

(1− p)2, 1
1+min{λ,λ−1} < p ≤ 1

(21)

Now we can proceed with evaluating ELn given by (20). First observe that we have

Eκ(Gn,q) = 1 + o(n−200), when q ≥ 1000 log n

n
. (22)

This is because

1 ≤ Eκ(Gn,q) ≤ 1 + nPr(Gn,q is not connected)

≤ 1 + n

n/2∑
k=1

(
n

k

)
kk−2qk−1(1− q)k(n−k)

≤ 1 +
n

q

n/2∑
k=1

(en
k

)k
kke−qk(n−k)

≤ 1 +
n2

1000 log n

n/2∑
k=1

(
ene−

1000 logn
n

n
2

)k
≤ 1 +

n3

1000 log n

e

n499

= 1 + o(n−200). (23)

Therefore we can distinguish the following cases depending on the value of λ.

Case 1. 2000 logn
n

≤ λ ≤ n
2000 logn

. Note that then

p̂

(
1

1 + max{λ, λ−1}

)
=

1

2

1 + min{λ, λ−1}
1 + max{λ, λ−1}

=
1

2
min{λ, λ−1} ≥ 1000 log n

n
,

so by (22), the integration over the second and third range from (21) gives the contribution (1 + λ)o(n−100)
in (20). Consequently,

ELn = (1 + λ)

∫ 1
1+max{λ,λ−1}

0

E
(
κ(G

n,
(1+λ)(1+λ−1)

2
p2

)− 1
)
dp+ (1 + λ)o(n−200).

By the same reason, we also have

(1 + λ)

∫ √
2

(1+λ)(1+λ−1)

1
1+max{λ,λ−1}

E
(
κ(G

n,
(1+λ)(1+λ−1)

2
p2

)− 1
)
dp =

√
2λo(n−200).

Thus

ELn = (1 + λ)

∫ √
2

(1+λ)(1+λ−1)

0

E
(
κ(G

n,
(1+λ)(1+λ−1)

2
p2

)− 1
)
dp+ (1 +

√
2λ+ λ)o(n−200)

= (1 + λ)

∫ √
2

(1+λ)(1+λ−1)

0

E
(
κ(G

n,
(1+λ)(1+λ−1)

2
p2

)− 1
)
dp+ o(n−100).
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Changing the variables yields

ELn =

√
λ

2

∫ 1

0

E
(
κ(Gn,q)− 1

) dq
√
q

+ o(n−100). (24)

It remains to deal with the integral
∫ 1

0
E
(
κ(Gn,q)− 1

)
dq√
q
. As before, thanks to (22), we have∫ 1

0

E
(
κ(Gn,q)− 1

) dq
√
q

=

∫ 1000 logn
n

0

E
(
κ(Gn,q)− 1

) dq
√
q

+ o(n−100). (25)

Decompose

κ(Gn,q) =

k0∑
k=1

Ak +

k0∑
k=3

Bk +R, (26)

where Ak is the number of components which are k vertex trees, Bk is the number of non-tree components
on k vertices and R is the number of components on at least k0 vertices. Here we set k0 = log n.

For the tree components, we have

EAk =

(
n

k

)
kk−2qk−1(1− q)k(n−k)+(k2)−k+1. (27)

For q ≤ 1000 logn
n

and k ≤ log n, we have (1−q)−k2+(k2)−k+1 ≤ eqk
2 ≤ e

1000(logn)3

n = 1+o(1) and
(
n
k

)
= (1+o(1))n

k

k!
,

hence

EAk = (1 + o(1))
nk

k!
kk−2qk−1(1− q)kn.

Thus ∫ 1000 logn
n

0

E
( logn∑
k=1

Ak − 1
) dq
√
q

= (1 + o(1))

logn∑
k=1

∫ 1000 logn
n

0

nk

k!
kk−2qk−1(1− q)kn dq

√
q

+O

(√
log n

n

)
.

Setting q = x
n

gives∫ 1000 logn
n

0

nk

k!
kk−2qk−1(1− q)kn dq

√
q

=
√
n
kk−2

k!

∫ 2000 logn

0

xk−1
(

1− x

n

)kn dx√
x
.

Using 1 − t = e−t+O(t2) as t → 0, for x ≤ 1000 log n and k ≤ log n, we have
(
1− x

n

)kn
= e−kx+O(

(logn)3

n
) =

(1 + o(1))e−kx. Therefore∫ 1000 logn
n

0

E
( logn∑
k=1

Ak − 1
) dq
√
q

= (1 + o(1))
√
n

logn∑
k=1

kk−2

k!

∫ 1000 logn

0

xk−1e−kx
dx√
x

+O

(√
log n

n

)
.

If the integral was from 0 to ∞, we could express it using the gamma function. Since

√
n

logn∑
k=1

kk−2

k!

∫ ∞
1000 logn

xk−1e−kx
dx√
x
≤
√

1000n log n

logn∑
k=1

kk−2

k!

∫ ∞
1000 logn

xk−1e−kxdx
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and for k = 1 on the right hand side we get
√

1000n log ne−1000 logn = o(n−900), whereas for k ≥ 2 we get

√
1000n log n

logn∑
k=2

kk−2

k!

∫ ∞
1000 logn

xk−1e−xe−(k−1)·1000 logndx

≤ O(n1001)

logn∑
k=2

kk−2

k!
(k − 1)!n−1000k

≤ O(n1001)

logn∑
k=2

(
k

n1000

)k
= O(n−500).

We can conclude that∫ 1000 logn
n

0

E
( logn∑
k=1

Ak − 1
) dq
√
q

= (1 + o(1))
√
n

logn∑
k=1

kk−2

k!

∫ ∞
0

xk−3/2e−kxdx

+O

(√
log n

n

)
.

It remains to compute the sum over k. We have

logn∑
k=1

kk−2

k!

∫ ∞
0

xk−3/2e−kxdx =

logn∑
k=1

kk−2

k!

√
k

kk
Γ

(
k − 1

2

)
=

logn∑
k=1

1

k3/2
Γ
(
k − 1

2

)
k!

. (28)

Since for k ≥ 3, Γ(k − 1/2) ≤ Γ(k) = (k − 1)!, the series converges and we have∫ 100 logn
n

0

E
( logn∑
k=1

Ak − 1
) dq
√
q

= (1 + o(1))c0
√
n, (29)

where

c0 =
∞∑
k=1

1

k3/2
Γ
(
k − 1

2

)
k!

. (30)

To bound the contribution form non-tree components, note that

EBk ≤
(
n

k

)
kkqk(1− q)k(n−k) ≤

[
enqe−qn

]k
eqk

2

. (31)

Thus ∫ 1000 logn
n

0

E
( logn∑
k=3

Bk

) dq
√
q
≤ e

1000 logn
n

(logn)2
logn∑
k=3

∫ 1000 logn
n

0

[
enqe−qn

]k dq
√
q

≤ (1 + o(1))(log n)

∫ 1000 logn
n

0

[
enqe−qn

]3 dq
√
q

= O(log n)
1√
n

∫ 1000 logn

0

x5/2e−3xdx,

so ∫ 1000 logn
n

0

E
( logn∑
k=3

Bk

) dq
√
q

= O

(
log n√
n

)
. (32)
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Finally, for the large components, since

R ≤ n

k0
, (33)

we get R ≤ n
logn

, so we have

∫ 1000 logn
n

0

E
(
R
) dq
√
q
≤ 2

√
1000 log n

n

n

log n
= O

( √
n√

log n

)
. (34)

Combing (29), (32), (34) with (26) and plugging into (25), we obtain∫ 1

0

E
(
κ(Gn,q)− 1

) dq
√
q

= (1 + o(1))c0
√
n.

In view of (24) this gives (16).

Case 2. λ < 2000 logn
n

. Then plainly min{λ, λ−1} = λ and max{λ, λ−1} = λ−1. Since p̂(p) ≥ p̂( 1
1+λ

) =

1 − λ
2
, for p ≥ 1

1+λ
, in view of (22), the third range in (21), that is 1

1+λ
< p ≤ 1, gives the contribution

(1 + λ)o(n−200) = o(n−200) in (20). For the remaining two ranges, changing the variables q = p̂(p) in (20)
gives

ELn =

√
λ

2

∫ λ/2

0

E
[
κ(Gn,q)− 1

] dq
√
q

+

∫ 1−λ/2

λ/2

E
[
κ(Gn,q)− 1

]
dq + o(n−100).

By (22), for the second integral we get∫ 1−λ/2

λ/2

E
[
κ(Gn,q)− 1

]
dq =

∫ 1000 logn
n

λ/2

E
[
κ(Gn,q)− 1

]
dq + o(n−200),

so

ELn =

√
λ

2

∫ λ/2

0

E
[
κ(Gn,q)− 1

] dq
√
q

+

∫ 1000 logn
n

λ/2

E
[
κ(Gn,q)− 1

]
dq + o(n−100). (35)

We again decompose κ(Gn,q) as in (26). Here we set k0 = (log n)2. First we show that the Bk and R have
small contribution in the integrals above. By (31),√

λ

2

∫ λ/2

0

E
[ k0∑
k=3

Bk

] dq
√
q
≤

k0∑
k=3

√
λ

2

∫ λ/2

0

[
enqe−qn

]k
eqk

2 dq
√
q

≤ e
λ
2
k20

k0∑
k=3

√
λ

2

∫ ∞
0

[
enqe−qn

]k dq
√
q

≤ e
1000(logn)k20

n

√
λ

2

k0∑
k=3

1√
n

∫ ∞
0

[
exe−x

]k dx√
x

≤ e
1000(logn)k20

n

√
1000 log n

n

k0√
n

∫ ∞
0

[
exe−x

]3 dx√
x

= O

(
(log n)5/2

n

)
.
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and similarly ∫ 1000 logn
n

λ/2

E
[ k0∑
k=3

Bk

]
dq ≤

k0∑
k=3

∫ 1000 logn
n

λ/2

[
enqe−qn

]k
eqk

2

dq

≤ e
1000(logn)k20

n
k0
n

∫ ∞
0

[
exe−x

]3
dx

= O

(
(log n)2

n

)
.

By (33), √
λ

2

∫ λ/2

0

ER
dq
√
q

+

∫ 1000 logn
n

λ/2

ER dq ≤ n

k0

(√
λ

2

∫ λ/2

0

dq
√
q

+

∫ 1000 logn
n

λ/2

dq

)

≤ n

k0

(
λ+

1000 log n

n

)
= O

(
1

log n

)
.

Putting the last three estimates together with (35) yields

ELn =

√
λ

2

∫ λ/2

0

E
[ k0∑
k=1

Ak − 1
] dq
√
q

+

∫ 1000 logn
n

λ/2

E
[ k0∑
k=1

Ak − 1
]
dq +O

(
1

log n

)

=

√
λ

2

∫ λ/2

0

E
[ k0∑
k=1

Ak

] dq
√
q

+

∫ 1000 logn
n

λ/2

E
[ k0∑
k=1

Ak

]
dq +O

(
1

log n

)
. (36)

Using (27) and repeating verbatim the arguments following it to bound 1− q, to change the variables q = x
n

and to replace
(
1− x

n

)kn
with e−kx, we obtain

ELn = (1 + o(1))

k0∑
k=1

kk−2

k!

[√λn

2

∫ λn
2

0

xk−3/2e−kxdx+

∫ 1000 logn

λn
2

xk−1e−kxdx
]

+O

(
1

log n

)
.

As in Case 1,
∑k0

k=1
kk−2

k!

∫∞
1000 logn

xk−1e−kxdx = O(n−100), so we can replace the integral
∫ 1000 logn
λn
2

xk−1e−kxdx

with
∫∞
λn
2
xk−1e−kxdx. Moreover, crude estimates show that

∞∑
k=k0

kk−2

k!

[√λn

2

∫ λn
2

0

xk−3/2e−kxdx+

∫ ∞
λn
2

xk−1e−kxdx
]

≤
∞∑

k=k0

kk−2

k!

[√
1000 log n

∫ ∞
0

xk−3/2e−kxdx+

∫ ∞
0

xk−1e−kxdx
]

=
∞∑

k=k0

kk−2

k!

[√
1000 log n

Γ(k − 1
2
)

kk−1/2
+

Γ(k)

kk

]
≤
√

1000 log n
∞∑

k=k0

k−5/2 +
∞∑

k=k0

k−3 = O

(
1

(log n)5/2

)
.
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Thus finally

ELn = (1 + o(1))
∞∑
k=1

kk−2

k!

[√λn

2

∫ λn
2

0

xk−3/2e−kxdx+

∫ ∞
λn
2

xk−1e−kxdx
]

+O

(
1

log n

)
.

Note that in the first integral, we have
√

λn
2

1√
x
≥ 1, hence the main term (the sum over k) is lower-bounded

by
∑∞

k=1
kk−2

k!

∫∞
0
xk−1e−kxdx = ζ(3) and consequently, the O

(
1

logn

)
term can be incorporated into the o(1)

term, which gives (17).

Case 3. λ > n
2000 logn

. Then plainly min{λ, λ−1} = λ−1 and max{λ, λ−1} = λ. Changing the variables

q = p̂(p) in (20) yields

ELn =

√
λ

2

∫ 1
2λ

0

E
[
κ(Gn,q)− 1

] dq
√
q

+ λ

∫ 1− 1
2λ

1
2λ

E
[
κ(Gn,q)− 1

]
dq

+

√
λ

2

∫ 1

1− 1
2λ

E
[
κ(Gn,q)− 1

] dq√
1− q

.

Since 1− 1
2λ
≥ 1000 logn

n
, in view of (22), the third integral gives√

λ

2

∫ 1

1− 1
2λ

E
[
κ(Gn,q)− 1

] dq√
1− q

= o(n−200)

√
λ

2

∫ 1

1− 1
2λ

dq√
1− q

= o(n−200).

Similarly, for the second integral we have

λ

∫ 1− 1
2λ

1000 logn
n

E
[
κ(Gn,q)− 1

]
dq = λo(n−100)

∫ 1− 1
2λ

1000 logn
n

dq = λo(n−100).

Thus we can write (we incorporate the term o(n−200) in λo(n−200))

ELn = λ

(√
1

2λ

∫ 1
2λ

0

E
[
κ(Gn,q)− 1

] dq
√
q

+

∫ 1000 logn
n

1
2λ

E
[
κ(Gn,q)− 1

]
dq + o(n−200)

)
.

The expression in the bracket is exactly (35) with λ being replaced by λ−1. Therefore, from (17), we obtain
(18).

Lemma 3. With the notation of Lemma 2, if λ = O(n), we have

ELn =


Θ((λn)1/2) Case 1.

Θ(max
{

1, (λn)1/2
}

) Case 2.

Θ((λn)1/2) Case 3.

(37)

and with probability 1− o(n−200),

Zmax =


O
((

λ logn
n

)1/2)
Case 1.

O
(
logn
n

)
Case 2.

O(log n) Case 3.

(38)
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where Zmax = max {Ze : e ∈ T ∗} and T ∗ is the minimum spanning tree with weights Ze.

Also in Case 3 we have

Cmax = O

(
(log n)1/2

n1/2

)
, (39)

where Cmax = max {Ce : e ∈ T ∗}.

Proof. The claims concerning ELn follow directly from (16), (17), (18).

To justify (38), fix p0 and let X = |{e ∈ T ∗, Ze > (1+λ)p0}| be the number of edges on the minimum spanning
tree having weights Ze above (1+λ)p0. By Janson’s formula from [11], X = κ(Gn,p̂(p0))−1 with p̂ given by (21).

By the first moment, Pr(X > 0) ≤ EX = E[κ(Gn,p̂(p0))− 1]. By (23), choosing p0 such that p̂(p0) = 1000 logn
n

gives X = 0, equivalently Ze ≤ (1 + λ)p0, with probability 1 − o(n−200). It remains to bound (1 + λ)p0. In

Case 1, we see from (21) that (1+λ)(1+λ−1)
2

p20 = 1000 logn
n

, so (1 + λ)p0 =
√

2λ
√

1000 logn
n

= O(
√

λ logn
n

). In Case

2 we see that we have to use the second formula in (21) and p0(1 + λ) = 1000 logn
n

+ 1
2
λ = O( logn

n
). Similarly

in Case 3, p0(1 + λ−1) = 1000 logn
n

+ 1
2λ

, hence p0(1 + λ) = O(log n).

For (39), we note that Pr(We ≤ q, Ce ≤ q) = q2. Putting q = (1000 log n/n)1/2 we see that with the required
probability, the random graph Gn,q2 is connected. This implies that with the same probability there is a
spanning tree T with Ze ≤ (1 + λ)q ∀e ∈ T . It follows that a spanning tree that minimises Z will have
Zmax ≤ (1 + λ)q. (Applying the greedy algorithm will finish before needing an edge with Ze > (1 + λ)q.) So
Zmax ≤ (1 + λ)q and consequently Cmax ≤ 2q.

3.2 Concentration

The goal of this section is to prove that for any ε = 1
logn

,

Pr(|Ln − E(Ln)| ≥ εE(Ln)) = o(n−100).

And this immediately implies that

Pr(|φ(λ)− E(φ(λ))| ≥ ε(E(Ln))) = o(n−200) (40)

In our analysis we consider separately the contribution of long and short edges. Let L = n1/10E(Ln)/n and
let YL denote the total cost of the edges used on the minimum spanning tree with Ze ≤ L. Let N =

(
n
2

)
and

note that YL is a function of N i.i.d. random variables X1, . . . , XN .

We will show YL is concentrated using a variant of the Symmetric Logarithmic Sobolev Inequality from [3].
Let Y ′L,i denote the same quantity as YL, but with the variable Xi replaced by an independent copy X ′i. Then
a simplified form of the Symmetric Logarithmic Sobolev Inequality [3, Corollary 3] says that if

E

(
N∑
i=1

(YL − Y ′L,i)21YL>Y ′L,i
∣∣X1, . . . , XN

)
≤ c

then for all t > 0,
Pr[YL > EYL + t] ≤ e−t

2/4c,

11



and if

E

(
N∑
i=1

(Y ′L,i − YL)21Y ′L,i>YL
∣∣X1, . . . , XN

)
≤ c

then for all t > 0,
Pr(YL < EYL − t) ≤ e−t

2/4c.

Changing the value of one edge can change the value of YL by at most L, so (YL − Y ′L,i)2 < L2. Let I denote
the indices of the edges which contribute to YL. If i /∈ I then Y ′L,i < YL implies X ′i ≤ L. So

N∑
i=1

(YL − Y ′L,i)21YL>Y ′L,i ≤
∑
i∈I

L2 +
∑
i/∈I

L21X′i≤L.

Now Pr(X ′i < L) ≤ Pr(We ≤ L, λCe ≤ L) ≤ L/λ∗ where λ∗ = max {λ, 1}. Then, since there are less than n
terms in the first sum and less than n2 terms in the second sum, we have

E

(
N∑
i=1

(YL − Y ′L,i)21YL>Y ′L,i
∣∣X1, . . . , XN

)
≤ L2n+ L3n2/λ∗.

If i /∈ I then we also have that Y ′L,i > YL implies X ′i ≤ L. So we also have

E

(
N∑
i=1

(Y ′L,i − YL)21Y ′L,i<YL
∣∣X1, . . . , XN

)
≤ L2n+ L3n2/λ∗.

Therefore,

Pr [|YL − EYL| ≥ εE(Ln)] ≤ 2 exp

{
− ε2E(Ln)2

4(L2n+ L3n2/λ∗)

}
= 2 exp

{
− ε2

4(n2/10/n+ n3/10E(Ln)/(nλ∗)
)

}

≤ 2 exp

− ε2

4(n−4/5 + An−7/10 max{1,
√
λn}

max{1,λ} )

 ≤ 2 exp

{
−ε

2n1/5

A′

}
= o(n−200), (41)

where we have used E(Ln) ≤ Amax{1, (λn)1/2}, see Lemma 3 and A,A′ are universal constants.

Let Y ′L denote the total cost of the edges used with edge cost at least L. We have from Lemma 3 that for
some B > 0, with probability 1− o(n−200),

Zmax ≤



B
(
λ logn
n

)1/2 ≤ L = Θ
(
n1/10

n

√
λn
)

Case 1.

B logn
n
≤ L = Ω

(
n1/10

n

)
Case 2.

B log n ≤ L = Θ
(
n1/10

n

√
λn
)

= Ω(n1/20) Case 3.

(42)

And so Y ′L = 0 with probability 1− o(n−200).
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3.3 Optimising over λ

The first thing to observe is that φ is a concave function of λ, see for example Boyd and Vandenberghe
[4].This is because it is the minimum of a collection of linear functions. Ignoring the (1 + o(1)) factor, it will
be differentiable. It follows then that we can maximise φ(λ) by setting its (asymptotic) derivative to zero.

Case 1: (8) holds.

Suppose now that we divide the interval I =
[
2000 logn

n
, n
2000 logn

]
into n4 sub-intervals of equal length less than

n−3. Suppose that the ith interval is [λi, λi+1]. We observe that for any spanning tree T we have that for
λ ∈ [λi, λi+1],

|(W (T ) + λiC(T ))− (W (T ) + λC(T ))| ≤ 1

n3

and so

|φ(λi)− φ(λ)| ≤ 1

n3
+ c0|λi − λ| ≤

2

n3
. (43)

So, maximising φ over λ1, λ2, . . . , λn3 makes an error in maximising φ(λ) over I of at most 2n−3.

If λ ∈ I, then using the concentration result (40) of Section 3.2, we see that for a fixed λ = λi we have

φ(λ) = Eφ(λ) + εELn = (1 + ε)ELn − λc0 = (1 + o(1))c1
√
λn− λc0 with probability 1− o(n−200). (44)

We see therefore that w.h.p. the expression for λ = λi in (44) holds simultaneously for all i = 1, 2, . . . , n4.
Differentiating the expression φ(λ) and setting it to zero we see that φ is maximised at

λ∗ = (1 + o(1))
c21n

4c20
(45)

and that φ(λ∗) = (1 + o(1))
c21n

4c0
. We then note that λ∗ ∈ I for c0 as in (a) and then the fact that φ is concave

and is maximised where φ′(λ) = 0 now implies that in this case w.h.p.

max
λ

φ(λ) = (1 + o(1))
c21n

4c0
(46)

Case 2: c0 = αn where 0 < α < 1/2.
We proceed as in Case 1. We argue that if c0 = αn and we minimise the expression for ELn in (17) less λc0
then this is optimised at λ∗ = o(log n/n) and this is sufficient to imply that in this case w.h.p.

max
λ

φ(λ) = (1 + o(1))(f(β∗)− 2αβ∗), (47)

where β∗ is the unique solution to f ′(β) = 2α, see (10), (11).

Putting β = λn/2 and c0 = αn into the expression in (17) we get

φ(β) = (1 + o(1))
∞∑
k=1

kk−2

k!
β1/2

∫ β

0

xk−3/2e−kxdx+

∫ ∞
β

xk−1e−kxdx− 2αβ = (1 + o(1))f(β)− 2αβ.

Differentiating w.r.t. β we get
φ′(β) = (1 + o(1))f ′(β)− 2α (48)
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and hence the solution β∗ to φ′(β) = 0 asymptotically satisfies f ′(β) = 2α. Clearly β∗ = Θ(1) which implies
that λ∗ = O(1/n) and so λ∗ = o(log n/n) as claimed. It then follows that w.h.p.

max
λ

φ(λ) = (1 + o(1))(f(β∗)− 2αβ∗). (49)

Case 3: c0 = α where α > ζ(3).
In this case we put β = n/2λ and proceed as in Case 2. Putting β = λn/2 and c0 = α into the expression in
(18) we get

φ(β) = (n+ o(n))

(
1

2

∞∑
k=1

kk−2

k!
β−1/2

∫ β

0

xk−3/2e−kxdx+ β−1
∫ ∞
β

xk−1e−kxdx

)
− α

2β
= (n+ o(n))

f(β)

2β
− αn

2β
.

Differentiating w.r.t. β we get

φ′(β) = (n+ o(n))

(
f ′(β)

2β
− f(β)

2β2

)
− αn

2β2

and hence the solution to φ′(β) = 0 asymptotically satisfies f(β) − βf ′(β) = α. Clearly β∗ = Θ(1) which
implies that λ∗ = Ω(n). It then follows that w.h.p.

max
λ

φ(λ) = (n+ o(n))
f(β∗)− α

2β∗
. (50)

Note that in all cases, λ∗ = O(n) and so Lemma 3 applies to λ∗ in Section 3.2.

4 Proof of Theorem 1

We will use the following theorem from Goemans and Ravi [10]:

Theorem 4. There exists a spanning tree T̃ such that W (T̃ ) ≤ φ(λ∗) ≤ W ∗ and C(T̃ ) ≤ c∗+Cmax(T̃ ), where
Cmax(T̃ ) is the maximum cost of an edge of T̃ .

For Cases 1 and 2 from Lemma 2 we let ĉ0 = c0 − δ where δ = 2
λ∗
BR38 where B is a suitable hidden

constant for (38) and R38 is the RHS of (38). Suppose now that we replace c0 by ĉ0 and let Ŵ denote the
minimum weight of a tree with cost at most ĉ0. Applying Theorem 4 we obtain a spanning tree T̂ such that
W (T̂ ) ≤ φ(λ̂) ≤ Ŵ and c(T̂ ) ≤ ĉ0 + 1

λ∗
BR38 ≤ c0. It only remains to show that w.h.p. φ(λ̂) ≈ W ∗. This

follows from our expressions for φ(λ∗) in Section 3.3 and the fact that ĉ0 ≈ c0, which we verify now.

In Case 1 we have from (45) that,

δ

c0
≤ O

(√
log n

λ∗nc20

)
= O

(√
log n

n

)
= o(1).

In Case 2 we have δ = O
(
logn
λ∗n

)
, c0 = Ω(n), λ∗ = O( 1

n
) and so δ/c0 = O

(
logn
n

)
= o(1).

For Case 3 we let δ = 1/ log n and proceed as above. We find that once again φ(λ̂) ≈ W ∗ because of the
expression (50) for φ(λ∗) in Section 3.3 and the fact that ĉ0 ≈ c0. We then use Theorem 4 and (39) to show
that

C(T̂ ) ≤ ĉ0 +O

((
log n

n

)1/2
)

= c0 −
1

log n
+O

((
log n

n

)1/2
)
≤ c0.

This completes the proof of Theorem 1.
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5 Conclusion

We have determined the asymptotic optimum value to problem (1) w.h.p. The proof is constructive in that we
can w.h.p. get an asymptotically optimal solution (1) by computing T̂ of the previous section. Our theorem
covers almost all of the possibilities for c0, although there are some small gaps between the 3 cases.

The present result assumes that cost and weight are independent. It would be more reasonable to assume
some positive correlation. This could be the subject of future research. One could also consider more than
one constraint, but then we might lose Theorem 4.
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A Proof of (15)

We want to show that h is strictly decreasing on (0,+∞), where

h(β) =
∞∑
k=1

kk−2

k!
β−1/2

∫ β

0

xk−3/2e−kxdx. (51)

We have

−2β3/2h′(β) =
∞∑
k=1

kk−2

k!

[∫ β

0

xk−3/2e−kxdx− 2βk−1/2e−kβ

]
.

Call the right hand side H(β). We want to show that it is positive for every β > 0. We have H(0) = 0, so it
is enough to show that H ′(β) is positive for every β > 0. We have

H ′(β) = 2β−1/2
∞∑
k=1

kk−2

k!

[
kβk − (k − 1)βk−1

]
e−kβ

and want to show that the sum on the right hand side is positive for every β > 0. Note that for β ≥ 1, we
have kβk − (k − 1)βk−1 > 0 for every k ≥ 1, so the sum is positive in this case. Let 0 < β < 1. Separating
the first two terms, we rewrite the condition that the sum is positive as

βe−β +
1

2
(2β2 − β)e−2β >

∞∑
k=3

kk−2

k!

[
k − 1− kβ

]
βk−1e−kβ.

Equivalently, multiplying by β−1e2β, we want to show that for every 0 < β < 1,

eβ + β − 1

2
>
∞∑
k=3

kk−2

k!

[
k − 1− kβ

](
βe−β

)k−2
.

Let 0 < β ≤ 2
5
. Estimating crudely k−1−kβ < k−1, using k! >

√
2πkk+1/2e−k and then bounding k−1

k5/2
≤ 2

35/2

for k ≥ 3, we get

∞∑
k=3

kk−2

k!

[
k − 1− kβ

](
βe−β

)k−2
<

2e2

35/2
√

2π

∞∑
k=3

(
βe1−β

)k−2
=

2e2

35/2
√

2π

βe1−β

1− βe1−β
.

Moreover, we have
2e2

35/2
√

2π

βe1−β

1− βe1−β
< eβ + β − 1

2
, 0 < β ≤ 2

5
, (52)

(shown below) which finishes the proof in this case.

Let 2
5
< β < 1. Estimating crudely k − 1 − kβ < k − 1 − 2

5
k = 3

5
k − 1, using k! >

√
2πkk+1/2e−k and then

bounding
(
βe1−β

)k−2
< βe1−β for k ≥ 3, we get

∞∑
k=3

kk−2

k!

[
k − 1− kβ

](
βe−β

)k−2
<

(
∞∑
k=3

3
5
k − 1

k5/2

)
e2√
2π
βe1−β

<
3

5

e2√
2π
βe1−β,
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where it can be checked numerically that
∑∞

k=3

3
5
k−1
k5/2

< 3
5
. Moreover, we have

3e2

5
√

2π
βe1−β < eβ + β − 1

2
,

2

5
< β < 1, (53)

(shown below) which finishes the proof in this case.

It remains to prove (52) and (53).

Showing (52) is equivalent to showing that the function

u(β) =

(
eβ + β − 1

2

)
(1− βe1−β)− 2e3

35/2
√

2π
βe−β

is positive on (0, 2
5
). We numerically check that u(2

5
) > 0.1 and it suffices to show that u is decreasing on

(0, 2
5
). We find that

eβu′(β) = e2β + (1− e)eβ + eβ2 +

(
2e3

35/2
√

2π
− 5e

2

)
β +

e

2
− 2e3

35/2
√

2π
.

Call the right hand side ũ(β). We have ũ(0) < −0.3 and for 0 < β < 2
5
,

ũ′(β) = 2e2β + (1− e)eβ + 2eβ +
2e3

35/2
√

2π
− 5e

2

< 2e4/5 + 1− e+
4e

5
+

2e3

35/2
√

2π
− 5e

2
< −0.8

which shows that ũ decreases, hence ũ(β) is negative, hence u′(β) is negative, hence u decreases.

Showing (53) is equivalent to showing that the function

v(β) = eβ + β − 1

2
− 3e3

5
√

2π
βe−β

is positive on (2
5
, 1). For 2

5
< β < 1, we have

v′(β) = eβ + 1− 3e3

5
√

2π
(1− β)e−β

> e2/5 + 1− 3e3

5
√

2π

3

5
e−2/5 > 0.5

(we used that (1 − β)e−β decreases on (0, 2)). This shows that v increases on (2
5
, 1), hence v(β) > v(2

5
) > 0

for 2
5
< β < 1.

B Proof of (21)

We need to compute the surface area of the subset
{

(u, v) ∈ [0, 1]2, 1
1+λ

u+ 1
1+λ−1v ≤ p

}
of the unit square

[0, 1]2. The line 1
1+λ

u+ 1
1+λ−1v = p intersects the u and v axes respectively at u0 = p(1+λ) and v0 = p(1+λ−1).

Thus when both u0 and v0 are less than 1, the subset is a right triangle whose area is 1
2
u0v0. This gives the

formula in the first case of (21). When exactly one of u0 and v0 is less than 1 and the other one is greater
than 1, the subset is a trapezoid and computing its area gives the formula in the second case of (21). Finally,
if both u0 and v0 are greater than 1, the subset is the complement of a right triangle and the formula in the
third case of (21) follows from the first one by changing p to 1− p and taking the complement.
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