On a convexity property of sections of the cross-polytope

Piotr Nayar * and Tomasz Tkocz ${ }^{\dagger}$

Abstract

We establish the log-concavity of the volume of central sections of dilations of the cross-polytope (the strong B-inequality for the cross-polytope and Lebesgue measure restricted to an arbitrary subspace).

2010 Mathematics Subject Classification. Primary 52A40; Secondary 52A20
Key words. cross-polytope, volume of sections, logarithmic Brunn-Minkowski inequality

1 Introduction

The conjectured logarithmic Brunn-Minkowski inequality posed by Böröczky, Lutwak, Yang and Zhang in [3] can be equivalently stated as the following property of sections of the cube $B_{\infty}^{n}=[-1,1]^{n}$: for every subspace H of \mathbb{R}^{n} the function

$$
\left(t_{1}, \ldots, t_{n}\right) \mapsto \operatorname{vol}_{H}\left(\operatorname{diag}\left(e^{t_{1}}, \ldots, e^{t_{n}}\right) B_{\infty}^{n} \cap H\right)
$$

is log-concave on \mathbb{R}^{n}. We explain this equivalence in Section 5. For a similar and other reformulations see the papers by Saroglou [8] and [9]. Here $\operatorname{diag}\left(e^{t_{1}}, \ldots, e^{t_{n}}\right)$ denotes as usual the $n \times n$ diagonal matrix with $e^{t_{i}}$ on the diagonal and vol ${ }_{H}$ denotes Lebesgue measure on H. In this note, we show that such a property holds for sections of the cross-polytope $B_{1}^{n}=\left\{x \in \mathbb{R}^{n}, \sum_{i=1}^{n}\left|x_{i}\right| \leq 1\right\}$.

Theorem 1. Let H be a subspace of \mathbb{R}^{n}. Then the function

$$
\left(t_{1}, \ldots, t_{n}\right) \mapsto \operatorname{vol}_{H}\left(\operatorname{diag}\left(e^{t_{1}}, \ldots, e^{t_{n}}\right) B_{1}^{n} \cap H\right)
$$

is log-concave on \mathbb{R}^{n}.
In other words, the so-called strong B-inequality holds for B_{1}^{n} and the (singular) measure being Lebesgue measure restricted to an arbitrary subspace of \mathbb{R}^{n} (see the pioneering work [4] and see [9] for connections to the logarithmic Brunn-Minkowski inequality). We shall present in the sequel a simple example of a symmetric log-concave measure for which the strong B-property fails. Further examples of such measures have been recenlty found by Cordero-Erausquin and Rotem who have analysed in detail the strong B-property for centred Gaussian measures (see [5]).

It can be checked directly (and will also be clear from our proof) that the same holds true when B_{1}^{n} is replaced with B_{2}^{n}. We conjecture that the above theorem in fact holds for any ball $B_{p}^{n}=\left\{x \in \mathbb{R}^{n}, \sum_{i=1}^{n}\left|x_{i}\right|^{p} \leq 1\right\}$ put in place of $B_{1}^{n}, p>1$.

[^0]
2 Proofs

2.1 Auxiliary results

The heart of our argument is the following probabilistic formula for volume of sections of dilations of the cross-polytope.

Lemma 2. Let H be a codimension k subspace of \mathbb{R}^{n}. Let u_{1}, \ldots, u_{k} be an orthonormal basis of the orthogonal complement of H and let v_{1}, \ldots, v_{n} be the column vectors of the $k \times n$ matrix formed by taking u_{1}, \ldots, u_{k} as its rows. Then for any positive numbers a_{1}, \ldots, a_{n} we have

$$
\operatorname{vol}_{H}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) B_{1}^{n} \cap H\right)=\frac{2^{n-k}}{(n-k)!\cdot \pi^{k / 2}}\left(\prod_{j=1}^{n} a_{j}\right) \mathbb{E}\left[\frac{1}{\sqrt{\operatorname{det}\left(\sum_{j=1}^{n} a_{j}^{2} Y_{j} v_{j} v_{j}^{T}\right)}}\right]
$$

where Y_{1}, \ldots, Y_{n} are i.i.d. standard one sided exponential random variables.
Proof. The starting point is a well-known integral representation for volumes of sections: for an even, homogeneous and continuous function $N: \mathbb{R}^{n} \rightarrow[0, \infty)$ vanishing only at the origin and $p>0$ we have

$$
\Gamma(1+(n-k) / p) \operatorname{vol}_{n-k}\left(\left\{x \in \mathbb{R}^{n}, N(x) \leq 1\right\} \cap H\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{k}} \int_{H(\epsilon)} e^{-N(x)^{p}} \operatorname{dvol}_{n}(x)
$$

where H is, as in the assumptions of the lemma, a codimension k subspace of \mathbb{R}^{n} whose orthogonal complement has an orthonormal basis u_{1}, \ldots, u_{k} and

$$
H(\epsilon)=\left\{x \in \mathbb{R}^{n},\left|\left\langle x, u_{j}\right\rangle\right| \leq \varepsilon / 2, j=1, \ldots, k\right\} .
$$

This fact was probably first used in [7] and in this generality appeared for instance in [2] (Lemma 21). Its proof is based on Fubini's and Lebesgue's dominated convergence theorems. Using it for $p=1$ and $N(x)=\sum a_{i}^{-1}\left|x_{i}\right|$, we get

$$
(n-k)!\cdot \operatorname{vol}_{H}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) B_{1}^{n} \cap H\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{k}} \int_{H(\varepsilon)} e^{-\sum a_{i}^{-1}\left|x_{i}\right|} \mathrm{d} x .
$$

Let X_{1}, \ldots, X_{n} be i.i.d. standard two-sided exponential random variables, that is with density $\frac{1}{2} e^{-|x|}$. Then the vector $\left(a_{1} X_{1}, \ldots, a_{n} X_{n}\right)$ has the density $\frac{1}{2^{n} \prod a_{i}} \exp \left(-\sum a_{i}^{-1}\left|x_{i}\right|\right)$, so

$$
\begin{aligned}
& (n-k)!\cdot \operatorname{vol}_{H}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) B_{1}^{n} \cap H\right) \\
& \quad=2^{n}\left(\prod a_{i}\right) \lim _{\varepsilon \rightarrow 0} \varepsilon^{-k} \mathbb{P}\left(\left(a_{1} X_{1}, \ldots, a_{n} X_{n}\right) \in H(\varepsilon)\right) \\
& \quad=2^{n}\left(\prod a_{i}\right) \lim _{\varepsilon \rightarrow 0} \varepsilon^{-k} \mathbb{P}\left(\left|\sum_{i=1}^{n} a_{i} X_{i} u_{j, i}\right| \leq \varepsilon / 2, j=1, \ldots, k\right) .
\end{aligned}
$$

Let us compute the probability above and then the limit. Recall the classical fact that the X_{i} are Gaussian mixtures (see also [6]). More preciesly, each X_{i} has the same distribution as the product $R_{i} \cdot G_{i}$ where the G_{i} are standard Gaussian random variables and R_{i} are i.i.d. positive random variables distributed as $\sqrt{2 Y_{i}}$ with Y_{i} being i.i.d. standard one-sided exponentials (see a remark following Lemma 23 in [6]). If we condition on the R_{i} and introduce vectors $\tilde{u}_{j}=\left[a_{i} R_{i} u_{j, i}\right]_{i=1}^{n}$ we thus get

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} a_{i} X_{i} u_{j, i}\right| \leq \varepsilon / 2, j=1, \ldots, k\right)=\mathbb{P}\left(\left|\left\langle G, \tilde{u}_{j}\right\rangle\right| \leq \varepsilon / 2, j=1, \ldots, k\right)
$$

where $G=\left(G_{1}, \ldots, G_{n}\right)$ is a standard Gaussian random vector. Let V be the subspace spanned by $\tilde{u}_{1}, \ldots, \tilde{u}_{k}$ and P_{V} the projection onto V. Then $G_{V}=P_{V} G$ is a standard Gaussian random vector on V. The above probability thus equals $\mathbb{P}\left(G_{V} \in \varepsilon K\right)$, where K is the subset of V given by $K=\left\{x \in \mathbb{R}^{n} \cap V,\left|\left\langle x, \tilde{u}_{j}\right\rangle\right| \leq 1 / 2, j=1, \ldots, k\right\}$, therefore it equals

$$
\mathbb{P}\left(\left|\left\langle G, \tilde{u}_{j}\right\rangle\right| \leq \varepsilon / 2, j=1, \ldots, k\right)=\mathbb{P}\left(G_{V} \in \varepsilon K\right)=\varepsilon^{k}(2 \pi)^{-k / 2} \operatorname{vol}_{k}(K)+o\left(\varepsilon^{k}\right)
$$

We plug this back, use Lebesgue's dominated convergence theorem (notice that the function $\varepsilon^{-k} \mathbb{P}\left(G_{V} \in \varepsilon K\right)$ is majorised by $\left.(2 \pi)^{-k / 2} \operatorname{vol}_{k}(K)\right)$ and obtain

$$
\begin{aligned}
(n-k)!\cdot \operatorname{vol}_{n-k}\left(\left\{x \in \mathbb{R}^{n}, \sum a_{i}\left|x_{i}\right| \leq 1\right\} \cap H\right) & =2^{n}\left(\prod a_{i}\right) \lim _{\varepsilon \rightarrow 0} \varepsilon^{-k} \mathbb{E}_{R} \mathbb{P}\left(G_{V} \in \varepsilon K\right) \\
& =2^{n}(2 \pi)^{-k / 2}\left(\prod a_{i}\right) \mathbb{E}_{R} \operatorname{vol}_{k}(K)
\end{aligned}
$$

We are almost done. It remains to recall an elementary fact that an intersection of exactly n strips in \mathbb{R}^{n}, say $\bigcap_{j=1}^{n}\left\{x \in \mathbb{R}^{n},\left|\left\langle x, v_{j}\right\rangle\right| \leq 1 / 2\right\}$ is an image of the cube $[-1 / 2,1 / 2]^{n}$ under the linear map $\left(V^{T}\right)^{-1}$, where V is the matrix whose columns are the v_{j} (that is V maps the e_{j} onto v_{j}). Therefore the n-volume of the intersection is $\frac{1}{\operatorname{det}(V)}$. In other words, the volume is the reciprocal of the volume of the parallelotope $\left\{\sum t_{i} v_{i}, t_{1}, \ldots, t_{n} \in[0,1]\right\}$. Hence, in our case, $\operatorname{vol}_{k}(K)$ equals the volume of $\left\{\sum t_{i} \tilde{u}_{i}, t_{1}, \ldots, t_{n} \in[0,1]\right\}$. Thus,

$$
\operatorname{vol}_{k}(K)=\frac{1}{\sqrt{\operatorname{det}\left(\tilde{U}^{T} \tilde{U}\right)}}
$$

where \tilde{U} is the $n \times k$ matrix whose columns are the \tilde{u}_{j}. Noticing that the rows of \tilde{U} are the vectors $a_{i} R_{i} v_{i}$ finishes the proof, since then

$$
\frac{1}{\sqrt{\operatorname{det}\left(\tilde{U}^{T} \tilde{U}\right)}}=\frac{1}{\left.\sqrt{\operatorname{det}\left(\sum a_{i} R_{i}^{2} v_{i} v_{i}^{T}\right.}\right)}
$$

and as mentioned earlier R_{i} has the same distribution as $\sqrt{2 Y_{i}}$.
We need the following standard lemma, whose proof can be found for example in [1] (see Lemma 1 and Lemma 2 (vi) therein).

Lemma 3. Let A_{1}, \ldots, A_{n} be $k \times k$ real symmetric positive semidefinite matrices. Then the function

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto \operatorname{det}\left(\sum_{i=1}^{n} x_{i} A_{i}\right)
$$

is of the form

$$
\sum_{1 \leq j_{1}, \ldots, j_{k} \leq n} b_{j_{1}, \ldots, j_{k}} x_{j_{1}} \cdot \ldots \cdot x_{j_{k}}
$$

where $b_{j_{1}, \ldots, j_{k}}=D\left(A_{j_{1}}, \ldots, A_{j_{k}}\right)$ is the mixed discriminant of $A_{j_{1}}, \ldots, A_{j_{k}}$. In particular, $b_{j_{1}, \ldots, j_{k}} \geq 0$.

Lemma 4. Let v_{1}, \ldots, v_{n} be vectors in \mathbb{R}^{k}. Then the function

$$
\left(t_{1}, \ldots, t_{n}\right) \mapsto \log \operatorname{det}\left(\sum e^{t_{i}} v_{i} v_{i}^{T}\right)
$$

is convex on \mathbb{R}^{n}.

Proof. By Lemma 3, the function $f\left(t_{1}, \ldots, t_{n}\right)=\operatorname{det}\left(\sum e^{t_{i}} v_{i} v_{i}^{T}\right)$ is of the form

$$
f\left(t_{1}, \ldots, t_{n}\right)=\sum_{1 \leq j_{1}, \ldots, j_{k} \leq n} b_{j_{1} \ldots, j_{k}} e^{t_{j_{1}}+\ldots+t_{j_{k}}}
$$

for some nonnegative $b_{j_{1} \ldots, j_{k}}$. By Hölder's inequality,

$$
f(\lambda s+(1-\lambda) t) \leq f(s)^{\lambda} f(t)^{1-\lambda}
$$

which finishes the proof.

2.2 Proof of Theorem 1

Thanks to Lemma 2, it suffices to show that the function

$$
\mathbb{E}\left[\operatorname{det}\left(\sum e^{t_{i}} Y_{i} v_{i} v_{i}^{T}\right)\right]^{-1 / 2}=\int_{(0, \infty)^{n}}\left[\operatorname{det}\left(\sum e^{t_{i}} y_{i} v_{i} v_{i}^{T}\right)\right]^{-1 / 2} e^{-\sum y_{i}} \mathrm{~d} y
$$

is log-concave. We do the same change of variables $y_{i}=e^{s_{i}}$ as in [6] in the proof of the B-inequality for the exponential measure (Theorem 14). This gives

$$
\int_{\mathbb{R}^{n}}\left[\operatorname{det}\left(\sum e^{t_{i}+s_{i}} v_{i} v_{i}^{T}\right)\right]^{-1 / 2} e^{-\sum\left(e^{s_{i}}-s_{i}\right)} \mathrm{d} y
$$

By Lemma 4 the integrand is a log-concave function of (s, t) on $\mathbb{R}^{2 n}$ and by virtue of the Prékopa-Leindler inequality its marginal is also log-concave.

2.3 Trouble with B_{p}^{n} for $1<p<2$

Let $1<p<2$. Since a random variable with the density proportional to $e^{-|x|^{p}}$ admits a representation as $R \cdot G$ for a standard Gaussian G and an independent positive random variable R (see [6]), repeating the same argument verbatim we can obtain an analogue of Lemma 2 for B_{p}^{n} in place of B_{1}^{n}. However, the final part of the proof of Theorem 1, where we change the variables $y_{i}=e^{s_{i}}$, will not lead to a log-concave integrand because $\log R$ is not log-concave for $1<p<2$ (see a discussion preceding Corollary 30 in [6]; see also [10]). (This is in contrast with the case when $R=\sqrt{2 Y}$ with Y being standard exponential.) Currently we do not know how to remedy this inefficiency of our argument, but believe the theorem remains true for all p. On the other hand, the same remarks yield that Theorem 1 holds true for B_{p}^{n} with $0<p<1$.

3 Strong B-property

We say that a Borel measure μ on \mathbb{R}^{n} satisfies the strong B-inequality if for every symmetric convex set K in \mathbb{R}^{n} the function

$$
\left(t_{1}, \ldots, t_{n}\right) \mapsto \mu\left(\operatorname{diag}\left(e^{t_{1}}, \ldots, e^{t_{n}}\right) K\right)
$$

is log-concave on \mathbb{R}^{n}. Nontrivial examples of such measures include standard Gaussian measure and the product symmetric exponential measure (see [4] and [6]). We remark that it is not true that every symmetric log-concave measure satisfies the strong B-inequality (see also [5]). Take a uniform measure μ on the parallelogram

$$
K=\operatorname{conv}\{(-1,-2),(-1,-1),(1,1),(1,2)\}
$$

in \mathbb{R}^{2}. Let $K_{t}=\operatorname{diag}\left(1, e^{t}\right) K$ and consider the function $f(t)=\log \mu\left(K_{t}\right)=\log \frac{\left|K_{t} \cap K\right|}{|K|}$. Clearly, $\max f=f(0)=0$. Moreover, $\lim _{t \rightarrow-\infty} f(t)=-\infty$ (since $K_{t} \cap K$ converges to the interval $\left.\left[-\frac{1}{3}, \frac{1}{3}\right] \times\{0\}\right)$ and $\lim _{t \rightarrow \infty} f(t)>-\infty\left(\right.$ since $K_{t} \cap K$ converges to the parallelogram $\left.\operatorname{conv}\left\{\left(-\frac{1}{3},-\frac{2}{3}\right),\left(-\frac{1}{3}, 0\right),\left(\frac{1}{3}, 0\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right\}\right)$. Such a function cannot be concave.

4 Another formula for volume of sections

Using the same probabilistic representation of the double-sided exponential distribution, we shall derive a complementary formula to the one from Lemma 2.

Lemma 5. Let H be a k-dimensional subspace of \mathbb{R}^{n} spanned by vectors u_{1}, \ldots, u_{k} in \mathbb{R}^{n} and let v_{1}, \ldots, v_{n} be the column vectors of the $k \times n$ matrix formed by taking u_{1}, \ldots, u_{k} as its rows. Then for any positive numbers a_{1}, \ldots, a_{n} we have

$$
\begin{aligned}
\operatorname{vol}_{H} & \left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) B_{1}^{n} \cap H\right) \\
& =\frac{2^{k}}{k!\cdot \pi^{(n-k) / 2}} \sqrt{\operatorname{det}\left(\sum_{i=1}^{n} v_{i} v_{i}^{T}\right)} \mathbb{E}\left[\frac{1}{\sqrt{\prod_{i=1}^{n} Y_{i}}} \frac{1}{\sqrt{\operatorname{det}\left(\sum_{i=1}^{n} \frac{1}{Y_{i} a_{i}^{2}} v_{i} v_{i}^{T}\right)}}\right.
\end{aligned}
$$

where Y_{1}, \ldots, Y_{n} are i.i.d. standard one sided exponential random variables.
Proof. Let

$$
K=\left\{y \in \mathbb{R}^{k}, \sum_{i=1}^{n} a_{i}^{-1}\left|\left\langle y, v_{i}\right\rangle\right| \leq 1\right\} .
$$

Note that the set $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) B_{1}^{n} \cap H$ is the image of K under the linear injection $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ given by $T y=\left[\left\langle y, v_{i}\right\rangle\right]_{i=1}^{n}, y \in \mathbb{R}^{k}$, whose image is H. Therefore,

$$
\begin{aligned}
\operatorname{vol}_{H}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) B_{1}^{n} \cap H\right) & =\sqrt{\operatorname{det}\left(T^{T} T\right)} \operatorname{vol}_{k}(K) \\
& =\sqrt{\operatorname{det}\left(\sum_{i=1}^{n} v_{i} v_{i}^{T}\right)} \operatorname{vol}_{k}(K) .
\end{aligned}
$$

Let us develop the formula for the volume of K. Plainly, $\|y\|_{K}=\sum_{i=1}^{n} a_{i}^{-1}\left|\left\langle y, v_{i}\right\rangle\right|$, thus

$$
\operatorname{vol}_{k}(K)=\frac{1}{k!} \int_{\mathbb{R}^{k}} e^{-\|y\|_{K}} \mathrm{~d} y=\frac{1}{k!} \int_{\mathbb{R}^{k}} \prod_{i=1}^{n} e^{-a_{i}^{-1}\left|\left\langle y, v_{i}\right\rangle\right|} \mathrm{d} y
$$

Using as in the proof of Lemma 2 that a standard symmetric exponential random variable with density $\frac{1}{2} e^{-|x|}$ has the same distribution as $\sqrt{2 Y} G$, where $Y \sim \operatorname{Exp}(1)$ and $G \sim N(0,1)$ are independent, we can write

$$
\frac{1}{2} e^{-|x|}=\mathbb{E} \frac{1}{\sqrt{2 \pi} \sqrt{2 Y}} e^{-\frac{x^{2}}{4 Y}}
$$

Taking i.i.d. copies Y_{1}, \ldots, Y_{n} of Y, we obtain

$$
\begin{aligned}
\operatorname{vol}_{k}(K) & =\frac{1}{k!} \int_{\mathbb{R}^{k}}\left(\mathbb{E}_{Y} \prod_{i=1}^{n} \frac{1}{\sqrt{\pi} \sqrt{Y_{i}}} e^{-\frac{\left\langle y, v_{i}\right\rangle^{2}}{4 Y_{i} a_{i}^{2}}}\right) \mathrm{d} y \\
& =\frac{2^{k / 2}}{k!\cdot \sqrt{\pi}^{n-k}} \mathbb{E}_{Y}\left[\frac{1}{\sqrt{\prod_{i=1}^{n} Y_{i}}} \int_{\mathbb{R}^{k}} \frac{1}{\sqrt{2 \pi}^{k}} e^{-\frac{1}{2}\left\langle\left(\sum_{i=1}^{n} \frac{1}{2 Y_{i} a_{i}^{2}} v_{i} v_{i}^{T}\right) y, y\right\rangle} \mathrm{d} y\right] \\
& =\frac{2^{k / 2}}{k!\cdot \pi^{(n-k) / 2}} \mathbb{E}_{Y}\left[\frac{1}{\sqrt{\prod_{i=1}^{n} Y_{i}}} \frac{1}{\sqrt{\operatorname{det}\left(\sum_{i=1}^{n} \frac{1}{2 Y_{i} a_{i}^{2}} v_{i} v_{i}^{T}\right)}}\right]
\end{aligned}
$$

Plugging this back to the formula for the volume of the section $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) B_{1}^{n} \cap H$ finishes the proof.

Note that Lemma 5 uses k dimensional vectors, whereas Lemma 2 uses $n-k$ dimensional vectors, where k is the dimension of the section (subspace).

5 Connection to the log-Brunn-Minkowski inequality

Recall that for two origin symmetric convex bodies K and L in \mathbb{R}^{n} and $\lambda \in[0,1]$, we define their geometric mean as

$$
K^{\lambda} L^{1-\lambda}=\left\{x \in \mathbb{R}^{n}, \forall \theta \in \partial B_{2}^{n}\langle x, \theta\rangle \leq h_{K}(\theta)^{\lambda} h_{L}(\theta)^{1-\lambda}\right\}
$$

where h_{K} is the support functional of $K, h_{K}(\theta)=\sup _{y \in K}\langle y, \theta\rangle$ and similarly for L. Fix the dimension $n \geq 1$ and consider two statements
(i) for every symmetric convex bodies K, L in \mathbb{R}^{n} and $\lambda \in[0,1]$, we have

$$
\operatorname{vol}_{n}\left(K^{\lambda} L^{1-\lambda}\right) \geq \operatorname{vol}_{n}(K)^{\lambda} \operatorname{vol}_{n}(L)^{1-\lambda}
$$

(ii) for every $N \geq n$ and every n-dimensional subspace H of \mathbb{R}^{N}, the function

$$
F_{H}\left(t_{1}, \ldots, t_{N}\right)=\operatorname{vol}_{H}\left(\operatorname{diag}\left(e^{t_{i}}\right)_{i=1}^{N} B_{\infty}^{n} \cap H\right)
$$

is log-concave on \mathbb{R}^{N}.
Statement (i) is the conjectured log-Brunn-Minkowski inequality from [3], whereas statement (ii) is the aforementioned property of sections of the cube motivating our main result, Theorem 1. We shall now prove that they are equivalent (for a fixed $n \geq 1$).

Proof that (i) implies (ii). Let H be an n-dimensional subspace of \mathbb{R}^{N}, say H is given by vectors $v_{1}, \ldots, v_{N} \in \mathbb{R}^{n}$ as the image of \mathbb{R}^{n} under the linear injection $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$, $T y=\left[\left\langle y, v_{i}\right\rangle\right]_{i=1}^{N}, y \in \mathbb{R}^{n}$. For $t \in \mathbb{R}^{N}$ define a convex symmetric set in \mathbb{R}^{n},

$$
\begin{equation*}
K_{t}=\left\{x \in \mathbb{R}^{n}, \forall i \leq N\left|\left\langle x, v_{i}\right\rangle\right| \leq e^{t_{i}}\right\} \tag{1}
\end{equation*}
$$

Note that the image of K_{t} under T is the set $\operatorname{diag}\left(e^{t_{i}}\right)_{i=1}^{N} B_{\infty}^{n} \cap H$. Therefore, we have $F_{H}(t)=\sqrt{\operatorname{det}\left(T^{T} T\right)} \operatorname{vol}_{n}\left(K_{t}\right)$. By the definition of the geometric mean, $K_{s}^{\lambda} K_{t}^{1-\lambda} \subset$ $K_{\lambda s+(1-\lambda) t}$, so (i) gives the log-concavity of $t \mapsto \operatorname{vol}_{n}\left(K_{t}\right)$, hence F_{H}.
Proof that (ii) implies (i). Let K and L be convex symmetric sets in \mathbb{R}^{n}. If we view their geometric mean $K^{\lambda} L^{1-\lambda}$ as the intersection over a countable dense subset of directions $v \in \partial B_{2}^{n}$ of the strips $\left\{x \in \mathbb{R}^{n},|\langle x, v\rangle| \leq h_{K}(v)^{\lambda} h_{L}(v)^{1-\lambda}\right\}$, it is clear from continuity of measure that for a fixed $\varepsilon>0$ there are directions v_{1}, \ldots, v_{N} such that

$$
\operatorname{vol}_{n}\left(K^{\lambda} L^{1-\lambda}\right) \geq \operatorname{vol}_{n}\left\{x \in \mathbb{R}^{n}, \forall i \leq N\left|\left\langle x, v_{i}\right\rangle\right| \leq h_{K}\left(v_{i}\right)^{\lambda} h_{L}\left(v_{i}\right)^{1-\lambda}\right\}-\varepsilon
$$

Let s_{i} and t_{i} be such that $e^{s_{i}}=h_{K}\left(v_{i}\right)$ and $e^{t_{i}}=h_{L}\left(v_{i}\right)$. Set H to be the image of \mathbb{R}^{n} under $y \mapsto\left[\left\langle y, v_{i}\right\rangle\right]_{i=1}^{N}$. Using the notation of (1) we see that

$$
\varepsilon+\operatorname{vol}_{n}\left(K^{\lambda} L^{1-\lambda}\right) \geq \operatorname{vol}_{n}\left(K_{\lambda s+(1-\lambda) t}\right) \geq \operatorname{vol}_{n}\left(K_{s}\right)^{\lambda} \operatorname{vol}_{n}\left(K_{t}\right)^{1-\lambda} \geq \operatorname{vol}_{n}(K)^{\lambda} \operatorname{vol}_{n}(L)^{1-\lambda}
$$

where the second inequality follows from (ii) and the last inequality from the inclusions $K \subseteq K_{s}$ and $L \subseteq K_{t}$. If suffices to take $\varepsilon \rightarrow 0^{+}$.

References

[1] Bapat, R. B., Mixed discriminants of positive semidefinite matrices. Linear Algebra Appl. 126 (1989), 107-124.
[2] Barthe, F., Extremal Properties of Central Half-Spaces for Product Measures. J. Funct. Anal. 182 (2001), 81-107
[3] Böröczky, K., Lutwak, E., Yang, D., Zhang, G., The log-Brunn-Minkowski inequality. Adv. Math. 231 (2012), 1974-1997.
[4] Cordero-Erausquin, D., Fradelizi, M., Maurey, B., The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214 (2004), no. 2, 410-427.
[5] Cordero-Erausquin, D., Rotem, L., personal communication (2017).
[6] Eskenazis, A., Nayar, P., Tkocz, T., Gaussian mixtures: entropy and geometric inequalities. Ann. of Prob. 46(5) 2018, 2908-2945.
[7] Meyer, M., Pajor, A., Sections of the unit ball of ℓ_{p}^{n}. J. Funct. Anal. 80 (1988) 109-123.
[8] Saroglou, Ch., Remarks on the conjectured log-Brunn-Minkowski inequality. Geom. Dedicata 177 (2015), 353-365.
[9] Saroglou, Ch., More on logarithmic sums of convex bodies. Mathematika 62 (2016), no. 3, 818-841.
[10] Simon, T., Multiplicative strong unimodality for positive stable laws. Proc. Amer. Math. Soc. 139 (2011) 2587-2595.

[^0]: *University of Warsaw; Banacha 2, 02-097 Warsaw, Poland; nayar@mimuw.edu.pl
 ${ }^{\dagger}$ Carnegie Mellon University; Pittsburgh, PA 15213, USA; ttkocz@math.cmu.edu

