Section 6.1

Exercise 10: Find a unit vector u in the direction of the given vector

—6
w = 4
-3

Solution. There are two solutions:

—6 —6/1/61
4 | ==x| 4/V61
-3 —3/4/61

+1 +1
= wW =
[|wl| V36 +164+9

u

Exercise 24: Verify the paralellograph law

[+ v + [ = v]* = 2[ul|* + 2]

Solution. Let u = (uy,...,u,) and v = (v1,...,v,). We have

n n

n
la+ VI + fu = VI[P =) (o) + ) (w —0i)? =) (207 +207) = 2[|ul|* + 2| v]*.
i=1

i=1 i=1

(Here we used the simple identity (a + b)? + (a — b)? = 2a? + 2b? valid for any scalars a,b.) I

Section 6.2

Exercise 30: Let U be orthonormal matrix, and construct V' by interchanging some of the rows of U.

Explain why V is orthonormal.

Solution 1. Let us recall some implications proved in the class. By definition, a matrix U is orthogonal

if and only if UTU = I. Since both U and U” are square matrices, the latter identity is equivalent
to UUT = I by the Invertible Matrix Theorem. But UUT = I is equivalent to the rows of U being

orthonormal.

In summary, U is othogonal if and only if its rows are orthonormal. The latter property is clearly

preserved by any row permutation.

Solution 2 (or rather a hint). Observe that the dot product x -y does not change if the entries of x are

permuted in the same way as the entries of y. 11



Section 6.3

Exercise 7: Let W = Span {ug,us}. Write y as the sum of a vector in W and a vector orthogonal to
W. Here

Solution. The vectors u; and uy are orthogonal to each other. First we compute y, the orthogonal

projection of y onto W:

14+9-10 5+3+420 10/3

v — _ :O - —
Y =T rora M T s e UM g® 2;3
8/3

Let v=y—y=(-7/3,7/3,7/3). Then y =y + v is the required sum. I

Exercise 8: Let W = Span {ug,us}. Write y as the sum of a vector in W and a vector orthogonal to
W. Here

-1 1 -1
y = s u; = 1 y Ug = 3
1 -2

Solution. The vectors u; and u, are orthogonal to each other. First we compute y, the orthogonal

projection of y onto W:

14443 1+12-6 1 3/2

. 144+ +12 —

= =2 — =

Y= Tyl M Trgpg T g 7/2
1

Let v=y —y=(-5/2,1/2,2). Then y =y + v is the required sum. 1

Section 6.4

Exercise 10: Find an orthogonal basis for the column space of

-1 6
3 -8
A = [Xl X9 Xg] = 1 2

1 -4 -3



Solution. We apply the Gram-Schmidt process. We let vi = x;. Also,

3

Vo —x, . 0224 ey =

2 — A2 1+9+1+1 1 — &2 1 —

~1
Finally, we should let

-1
g 649463 18+4346+3 1 5 | -1
P T I 9+141 Y 9414141 2 TP 2 2P| g
—1

A routine checking shows that the obtained vectors vy, vo, vy are indeed orthogonal. I

Section 6.5

Exercise 12: Find (a) the orthogonal projection of b into Col A and (b) a least-square solution of
Ax = b. Here

1 0 2
0 -1 5
A:[V1V2V3]= 5 b=
0 1 1 6
-1 1 -1 6

Solution. It is easy to check that the columns of A are orthogonal to each other. (In particular, they are
linearly independent.) Hence, we can use the standard formulas for finding the orthogonal projection of
b onto Col A:

24+5-6 24646 5466 1( 4 14vg — 5v3)
A v vy ==(v vy — bvy) =
T+1+1 " " 151 +1 2" 15141+ 3 2 3

B:

W N Ot

6

This answers (a). Since the columns of A are linearly independent, the least-square solution x is unique
and we already know the weights, namely x(= 1/3,14/3,-5/3).

As an check, one can compute b — b= (—3,3,3,0) and see that it is indeed orthogonal to each v;. 1

Section 6.6

Exercise 4: Find the equation y = By + (1« of the least-squares line that fits best the given data points:

(2,3), (3,2), (5,1), (6,0).



Solution. We construct the design matrix and the observation vector:

=

3
2
1
0

o Tt N
<
I

We want to find the least-squares solution to X3 = y. The normal equation is

XTXp=X"Ty.

4 1
XTx = 0 ., XTy = 0 )
16 74 17

It is probably easier to compute first the inverse

1 74 —16 1 74 —16 1 37 -8
(XTX)il = 2 T = :
4-74 —16 —-16 4 40 | —16 4

‘We have

Hence, the least-squares solution is

1 [ 37 -8 6
ﬁ:ml_g 2][17]=[43/10,7/10]

Thus the least-squares line is y = 4.3 — 0.7x. 1

Exercise 6: Let X be the design matrix corresponding to a least-squares fit of a parabola to data
(1,¥1), -+, (Tn,Yn). Suppose that x1,z2,xs are distinct. Explain why there is only one parabola that

fits the data best, in a least-square sence.

Solution. It is enough to prove that the columns of X are linearly independent, since then X7 X is

invertible and the unique least-squares solution is (X7 X)XTy.

Let us remove Row 1 from any other row of X:

1z 22 1 Ty x?

1 zo a3 0 z9—x1 35—}
X = ~

1 x3 23 0 z3—x1 x3—a}

Calculations show that the determinant

To — X1 (E%—QE%

Ir3 — T1 {Bg—l‘%

1
T2t = (29 — 1) (x3 — 21) (25 — X2).

= (zg —x1)(z3 —
’ (z2 — 1) (23 — 21) | m b

This is non-zero since x1, s, 3 are distinct by the assumption. Thus this 2 X 2-matrix is invertible and
has 2 pivot columns. This means that if we continue the row reduction of X, then we get 3 pivots. Thus

the columns of X are independent, as required. 1



Section 7.1

Exercise 14: Orthogonally diagonalize matrix

A:

15
5 1|

Solution. The characteristic equation is (1 — A)? — 25 = 0. The roots are —4 and 6. We have

A+4I:55~11 —55N1—1.
5 =95 0 0

5 5 0 0
The corresponding eigenvectors are vi = (—1,1) and vo = (1,1). They are orthogonal as we expected
them to be. Let us normalize them, by multiplying each by 1/v/2. We let

1 V2 ov2 40

, A—6I=

Since P is orthogonal, we have P~! = PT,
A=PDP ' =PDP"

is the required othogonal diagonalization. 1

Exercise 22: Orthogonally diagonalize matrix A, given that its eigenvalues are 0 and 2, where

0 0
10
0 2
10

o O O N
_ O = O

Solution. Let us find the eigenvectors corresponding to the eigenvalue A = 0, which amounts to finding
a basis for the Nul A. We have

0
0
1
0

o O = O

0
1
0
0

o o o =

We have one free variable x4, so Nul A is 1-dimensional and it spanned by v; = (0,—1,0,1). Let us
immediately normalize v; by replacing it with v, = (0, —1/v/2,0,1/v/2).

For A\ = 2, we obtain

0 0 0 0 01 0 -1
-1 1
A o] — 0 0 N 0 0 0
0 0 0 0 0 0 0
0 0 -1 0 0 O



Here x1, x3, x4 are free; the general solution to (A — 2I)x =0 is

+ 3 + 24

o O O =
o = O O
_ O = O

Luckily for us, the obtained 3 vectors are already orthogonal, so we just normalize them, having

1 0 0
0 0 1/v2
Vo = y V3= y Va=
0 1 0
0 0 1/vV2
Now we let
0 10 0 0000
-1/V2 0 0 1/V2 020 0
o | e V|
0 01 0 00 20
/2 0 0 1/V2 00 0 2

Since P is orthogonal, we have P~! = PT.
A=PDP ! =PDP”

is the required othogonal diagonalization. 1

Exercise 32: Suppose that A = PRP~!, where P is orthogonal and R is upper triangular. Show that

if A is symmetric, then R is symmetric and hence is actually a diagonal matrix.
Solution. By the assumptions we have P~! = PT and AT = A. This means that
PRPT = A= AT = (PRPT)T = (P")TRT PT = PRT PT.

But PT = P~! are inverses of each other. So if we multiply the obtained identity by P~! on left
and by P on right, we obtain R = R”. Thus R is symmetric. Since all entries of 7' below the main di-

agonal are zeros, by symmetry all entries above the main diagonals are zeros too. So R is also diagonal. I

Section 7.2

Exercise 10: Let Q(x1,22) = 922 — 82115 + 322, Classify the type of @ and make a change of variables

x = Py that eliminates all cross-product terms.

Solution. The matrix of @ is

9 —4
-4 3|



First, we find the eigenvalues of A. The characteristic polynomial is

PsA)=(9—-X(3—-)) —16.
Its roots are Ay = 1 and A2 = 11. Both are positive so @ is positive definite. (Of course, it is also
positive semidefinite but of all types of ) we usally mention the one which is most precise.)

Let us compute the corresponding unit eigenvectors. We have

A_I:[ 8_4]Nl1_1/2]'
4 2 0 0

We can take a vector (1,2). After normalizing it by 1/v/5, vi = (1/v/5,2/1/5). Next,

-2 -4 1 2
A—-111 = ~ .
-4 =8 0 0

Here we take vy = (2/v/5, —1/4/5). The vectors v; and vy are orthogonal as they should be (and each

of norm 1). Hence, we take

VB 2/ |10
P[Q/\/E 1/\/3]’ P lo 11]'

Then the transformation x = Py transforms @ into y7 + 11y3.

Now, it could be a good idea to check this by hand. We have x1 = 31 /v/5 + 2y2/v/5 and 5 = 2y, /5 —
yg/\/5 Then
Q = 9 /V5+2y2/V5)? = 8(y1/V5 + 2y2/V5)(2y1/V5 — y2/V5) + 3(201 /V5 — 2/ V5)?
1
= (901 + 4y1y2 + 43) — 8(21 + Byiye — 203) + 3(4yT — dyaye +43) = yT + 115,

So, everything is OK! 1

Section 7.3

Exercise 6: Let Q(x) = 7z? + 323 + 3x122. Find a) the maximum of Q(x) subject to the constraint

xT'x =1, b) a unit vector where this maximum is attained, and c) the maximum of Q(x) subject to the

Al 7 3/2]'
3/2 3

Its eigenvalues are Ay = 5/2 and A = 15/2 with eigenvectors vo = (—1,3) and vy = (3,1). Hence the
answer to a) is 15/2; the answer to b) is vi/||v1] = (3/v/10,1/4/10); the answer to c) is 5/2. 1

constraints xTx = 1 and xTu = 0.

Solution. The matrix of @) is



Section 7.4

Exercise 10: Find an SVD of

4 -2
A=12 -1
0 0
Solution. In Step 1 we orthogonally diagonalize
20 -10
ATA = .
—-10 5

Its eigenvalues are Ay = 25 and As = 0. (We list them in decreasing order.) The corresponding normalized
eigenvectors are v; = (—2/v/5,1/4/5) and vy = (1/v/5,2/1/5). By the way, although we are not required

to do this, we can immediately write an orthogonal diagonalization AT A = VDV”, where

—2/v/5 1/v/5 Do
V5 o2ME T T

At this point it is a good idea to check if ATAV =V D.

25 0
0 0

V:[v1v2]:[

In Step 2 we take the same matrix V' as above, but the middle matrix > should have dimensions 3 x 2,

the same as those of A, so we just add a row of zeros:

In Step 3 we construct U. We see that A (or equivalently ¥) has rank » = 1. So the first column of U

is

o A (210/V5,-5/v5,0) _ _i/ﬁ
A vRoTs ‘(/)

We choose the remaining columns uy and us of U so that U is orthogonal. This is the same as finding
an orthonormal basis of
Nul (u]) = {u € R?* | ufu =0}.

‘We have
ul ~ |1 1/2 0},

so a basis for Nul (uf) is wo = (1,-2,0) and w3 = (0,0,1). Luckily for us these vectors are already
orthogonal. (If they were not, then we would have to apply the Gram-Schmidt process to them.) So,
it remains only to normalize them, obtaining uy = (1/v/5,-2/v/5,0) and uz = (0,0,1). We take
U = [u; uy ug]. Thus the required SVD of A4 is

—2/V/5 1/V/5 0 25 0
—2/V5 1/V/5
A=| —-1/v/5 —2v5 0 0 [ ]
0 0 1 0 V52V



Finally, we are done! 1



