
Section 6.1

Exercise 10: Find a unit vector u in the direction of the given vector

w =


−6

4

−3

 .

Solution. There are two solutions:

u =
±1
‖w‖

w =
±1√

36 + 16 + 9


−6

4

−3

 = ±


−6/

√
61

4/
√

61

−3/
√

61

 .

Exercise 24: Verify the paralellograph law

‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.

Solution. Let u = (u1, . . . , un) and v = (v1, . . . , vn). We have

‖u + v‖2 + ‖u− v‖2 =
n∑

i=1

(ui + vi)2 +
n∑

i=1

(ui − vi)2 =
n∑

i=1

(2u2
i + 2v2

i ) = 2‖u‖2 + 2‖v‖2.

(Here we used the simple identity (a + b)2 + (a− b)2 = 2a2 + 2b2 valid for any scalars a, b.)

Section 6.2

Exercise 30: Let U be orthonormal matrix, and construct V by interchanging some of the rows of U .

Explain why V is orthonormal.

Solution 1. Let us recall some implications proved in the class. By definition, a matrix U is orthogonal

if and only if UT U = I. Since both U and UT are square matrices, the latter identity is equivalent

to UUT = I by the Invertible Matrix Theorem. But UUT = I is equivalent to the rows of U being

orthonormal.

In summary, U is othogonal if and only if its rows are orthonormal. The latter property is clearly

preserved by any row permutation.

Solution 2 (or rather a hint). Observe that the dot product x · y does not change if the entries of x are

permuted in the same way as the entries of y.



Section 6.3

Exercise 7: Let W = Span {u2,u2}. Write y as the sum of a vector in W and a vector orthogonal to

W . Here

y =


1

3

5

 , u1 =


1

3

−2

 , u2 =


5

1

4

 .

Solution. The vectors u1 and u2 are orthogonal to each other. First we compute ŷ, the orthogonal

projection of y onto W :

ŷ =
1 + 9− 10
1 + 9 + 4

u1 +
5 + 3 + 20
25 + 1 + 16

u2 = 0u1 +
2
3

u2 =


10/3

2/3

8/3

 .

Let v = y − ŷ = (−7/3, 7/3, 7/3). Then y = ŷ + v is the required sum.

Exercise 8: Let W = Span {u2,u2}. Write y as the sum of a vector in W and a vector orthogonal to

W . Here

y =


−1

4

3

 , u1 =


1

1

1

 , u2 =


−1

3

−2

 .

Solution. The vectors u1 and u2 are orthogonal to each other. First we compute ŷ, the orthogonal

projection of y onto W :

ŷ =
−1 + 4 + 3
1 + 1 + 1

u1 +
1 + 12− 6
1 + 9 + 4

u2 = 2u1 +
1
2

u2 =


3/2

7/2

1

 .

Let v = y − ŷ = (−5/2, 1/2, 2). Then y = ŷ + v is the required sum.

Section 6.4

Exercise 10: Find an orthogonal basis for the column space of

A = [x1 x2 x3] =


−1 6 6

3 −8 3

1 −2 6

1 −4 −3

 .



Solution. We apply the Gram-Schmidt process. We let v1 = x1. Also,

v2 = x2 −
−6− 24− 2− 4
1 + 9 + 1 + 1

v1 = x2 + 3v1 =


3

1

1

−1

 .

Finally, we should let

v3 = x3 −
−6 + 9 + 6− 3
1 + 9 + 1 + 1

v1 −
18 + 3 + 6 + 3
9 + 1 + 1 + 1

v2 = x3 −
1
2

v1 −
5
2

v2 =


−1

−1

3

−1

 .

A routine checking shows that the obtained vectors v1,v2,v3 are indeed orthogonal.

Section 6.5

Exercise 12: Find (a) the orthogonal projection of b into Col A and (b) a least-square solution of

Ax = b. Here

A = [v1 v2 v3] =


1 1 0

1 0 −1

0 1 1

−1 1 −1

 , b =


2

5

6

6

 .

Solution. It is easy to check that the columns of A are orthogonal to each other. (In particular, they are

linearly independent.) Hence, we can use the standard formulas for finding the orthogonal projection of

b onto Col A:

b̂ =
2 + 5− 6
1 + 1 + 1

v1 +
2 + 6 + 6
1 + 1 + 1

v2 +
−5 + 6− 6
1 + 1 + 1

v1 =
1
3
(v1 + 14v2 − 5v3) =


5

2

3

6

 .

This answers (a). Since the columns of A are linearly independent, the least-square solution x is unique

and we already know the weights, namely x(= 1/3, 14/3,−5/3).

As an check, one can compute b− b̂ = (−3, 3, 3, 0) and see that it is indeed orthogonal to each vi.

Section 6.6

Exercise 4: Find the equation y = β0 +β1x of the least-squares line that fits best the given data points:

(2, 3), (3, 2), (5, 1), (6, 0).



Solution. We construct the design matrix and the observation vector:

X =


1 2

1 3

1 5

1 6

 , y =


3

2

1

0

 .

We want to find the least-squares solution to Xβ̄ = y. The normal equation is

XT Xβ̄ = XT y.

We have

XT X =

[
4 16

16 74

]
, XT y =

[
6

17

]
.

It is probably easier to compute first the inverse

(XT X)−1 =
1

4 · 74− 162

[
74 −16

−16 4

]
=

1
40

[
74 −16

−16 4

]
=

1
20

[
37 −8

−8 2

]
.

Hence, the least-squares solution is

β̄ =
1
20

[
37 −8

−8 2

] [
6

17

]
=

[
43/10,−7/10

]
.

Thus the least-squares line is y = 4.3− 0.7x.

Exercise 6: Let X be the design matrix corresponding to a least-squares fit of a parabola to data

(x1, y1), . . . , (xn, yn). Suppose that x1, x2, x3 are distinct. Explain why there is only one parabola that

fits the data best, in a least-square sence.

Solution. It is enough to prove that the columns of X are linearly independent, since then XT X is

invertible and the unique least-squares solution is (XT X)XT y.

Let us remove Row 1 from any other row of X:

X =


1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

. . .

 ∼


1 x1 x2

1

0 x2 − x1 x2
2 − x2

1

0 x3 − x1 x2
3 − x2

1

. . .


Calculations show that the determinant∣∣∣∣∣ x2 − x1 x2

2 − x2
1

x3 − x1 x2
3 − x2

1

∣∣∣∣∣ = (x2 − x1)(x3 − x1)

∣∣∣∣∣ 1 x2 + x1

1 x3 + x1

∣∣∣∣∣ = (x2 − x1)(x3 − x1)(x3 − x2).

This is non-zero since x1, x2, x3 are distinct by the assumption. Thus this 2× 2-matrix is invertible and

has 2 pivot columns. This means that if we continue the row reduction of X, then we get 3 pivots. Thus

the columns of X are independent, as required.



Section 7.1

Exercise 14: Orthogonally diagonalize matrix

A =

[
1 5

5 1

]
.

Solution. The characteristic equation is (1− λ)2 − 25 = 0. The roots are −4 and 6. We have

A + 4I =

[
5 5

5 5

]
∼

[
1 1

0 0

]
, A− 6I =

[
−5 5

5 −5

]
∼

[
1 −1

0 0

]
.

The corresponding eigenvectors are v1 = (−1, 1) and v2 = (1, 1). They are orthogonal as we expected

them to be. Let us normalize them, by multiplying each by 1/
√

2. We let

P =
1√
2

[v1 v2] =

[
−1/

√
2 1/

√
2

1/
√

2 1/
√

2

]
, D =

[
−4 0

0 6

]
.

Since P is orthogonal, we have P−1 = PT .

A = PDP−1 = PDPT

is the required othogonal diagonalization.

Exercise 22: Orthogonally diagonalize matrix A, given that its eigenvalues are 0 and 2, where

A =


2 0 0 0

0 1 0 1

0 0 2 0

0 1 0 1

 .

Solution. Let us find the eigenvectors corresponding to the eigenvalue λ = 0, which amounts to finding

a basis for the NulA. We have

A ∼


1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 0

 .

We have one free variable x4, so NulA is 1-dimensional and it spanned by v1 = (0,−1, 0, 1). Let us

immediately normalize v1 by replacing it with v1 = (0,−1/
√

2, 0, 1/
√

2).

For λ = 2, we obtain

A− 2I =


0 0 0 0

0 −1 0 1

0 0 0 0

0 1 0 −1

 ∼


0 1 0 −1

0 0 0 0

0 0 0 0

0 0 0 0

 .



Here x1, x3, x4 are free; the general solution to (A− 2I)x = 0 is

x = x1


1

0

0

0

 + x3


0

0

1

0

 + x4


0

1

0

1

 .

Luckily for us, the obtained 3 vectors are already orthogonal, so we just normalize them, having

v2 =


1

0

0

0

 , v3 =


0

0

1

0

 , v4 =


0

1/
√

2

0

1/
√

2

 .

Now we let

P =


0 1 0 0

−1/
√

2 0 0 1/
√

2

0 0 1 0

1/
√

2 0 0 1/
√

2

 , D =


0 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 .

Since P is orthogonal, we have P−1 = PT .

A = PDP−1 = PDPT

is the required othogonal diagonalization.

Exercise 32: Suppose that A = PRP−1, where P is orthogonal and R is upper triangular. Show that

if A is symmetric, then R is symmetric and hence is actually a diagonal matrix.

Solution. By the assumptions we have P−1 = PT and AT = A. This means that

PRPT = A = AT = (PRPT )T = (PT )T RT PT = PRT PT .

But PT = P−1 are inverses of each other. So if we multiply the obtained identity by P−1 on left

and by P on right, we obtain R = RT . Thus R is symmetric. Since all entries of T below the main di-

agonal are zeros, by symmetry all entries above the main diagonals are zeros too. So R is also diagonal.

Section 7.2

Exercise 10: Let Q(x1, x2) = 9x2
1−8x1x2 +3x2. Classify the type of Q and make a change of variables

x = Py that eliminates all cross-product terms.

Solution. The matrix of Q is

A =

[
9 −4

−4 3

]
.



First, we find the eigenvalues of A. The characteristic polynomial is

PA(λ) = (9− λ)(3− λ)− 16.

Its roots are λ1 = 1 and λ2 = 11. Both are positive so Q is positive definite. (Of course, it is also

positive semidefinite but of all types of Q we usally mention the one which is most precise.)

Let us compute the corresponding unit eigenvectors. We have

A− I =

[
8 −4

−4 2

]
∼

[
1 −1/2

0 0

]
.

We can take a vector (1, 2). After normalizing it by 1/
√

5, v1 = (1/
√

5, 2/
√

5). Next,

A− 11I =

[
−2 −4

−4 −8

]
∼

[
1 2

0 0

]
.

Here we take v2 = (2/
√

5,−1/
√

5). The vectors v1 and v2 are orthogonal as they should be (and each

of norm 1). Hence, we take

P =

[
1/
√

5 2/
√

5

2/
√

5 −1/
√

5

]
, D =

[
1 0

0 11

]
.

Then the transformation x = Py transforms Q into y2
1 + 11y2

2 .

Now, it could be a good idea to check this by hand. We have x1 = y1/
√

5 + 2y2/
√

5 and x2 = 2y1/
√

5−
y2/

√
5. Then

Q = 9(y1/
√

5 + 2y2/
√

5)2 − 8(y1/
√

5 + 2y2/
√

5)(2y1/
√

5− y2/
√

5) + 3(2y1/
√

5− y2/
√

5)2

=
1
5
(9(y2

1 + 4y1y2 + 4y2
2)− 8(2y2

1 + 3y1y2 − 2y2
2) + 3(4y2

1 − 4y1y2 + y2
2) = y2

1 + 11y2
2 .

So, everything is OK!

Section 7.3

Exercise 6: Let Q(x) = 7x2
1 + 3x2

2 + 3x1x2. Find a) the maximum of Q(x) subject to the constraint

xT x = 1, b) a unit vector where this maximum is attained, and c) the maximum of Q(x) subject to the

constraints xT x = 1 and xT u = 0.

Solution. The matrix of Q is

A =

[
7 3/2

3/2 3

]
.

Its eigenvalues are λ1 = 5/2 and λ2 = 15/2 with eigenvectors v2 = (−1, 3) and v1 = (3, 1). Hence the

answer to a) is 15/2; the answer to b) is v1/‖v1‖ = (3/
√

10, 1/
√

10); the answer to c) is 5/2.



Section 7.4

Exercise 10: Find an SVD of

A =


4 −2

2 −1

0 0

 .

Solution. In Step 1 we orthogonally diagonalize

AT A =

[
20 −10

−10 5

]
.

Its eigenvalues are λ1 = 25 and λ2 = 0. (We list them in decreasing order.) The corresponding normalized

eigenvectors are v1 = (−2/
√

5, 1/
√

5) and v2 = (1/
√

5, 2/
√

5). By the way, although we are not required

to do this, we can immediately write an orthogonal diagonalization AT A = V DV T , where

V = [v1 v2] =

[
−2/

√
5 1/

√
5

1/
√

5 2/
√

5

]
, D =

[
25 0

0 0

]
.

At this point it is a good idea to check if AT AV = V D.

In Step 2 we take the same matrix V as above, but the middle matrix Σ should have dimensions 3× 2,

the same as those of A, so we just add a row of zeros:

Σ =


25 0

0 0

0 0

 .

In Step 3 we construct U . We see that A (or equivalently Σ) has rank r = 1. So the first column of U

is

u1 =
Av1

‖Av1‖
=

(−10/
√

5,−5/
√

5, 0)√
20 + 5

=


−2/

√
5

−1/
√

5

0

 .

We choose the remaining columns u2 and u3 of U so that U is orthogonal. This is the same as finding

an orthonormal basis of

Nul (uT
1 ) = {u ∈ R3 | uT

1 u = 0}.

We have

uT
1 ∼

[
1 1/2 0

]
,

so a basis for Nul (uT
1 ) is w2 = (1,−2, 0) and w3 = (0, 0, 1). Luckily for us these vectors are already

orthogonal. (If they were not, then we would have to apply the Gram-Schmidt process to them.) So,

it remains only to normalize them, obtaining u2 = (1/
√

5,−2/
√

5, 0) and u3 = (0, 0, 1). We take

U = [u1 u2 u3]. Thus the required SVD of A is

A =


−2/

√
5 1/

√
5 0

−1/
√

5 −2
√

5 0

0 0 1




25 0

0 0

0 0


[
−2/

√
5 1/

√
5

1/
√

5 2/
√

5

]
.



Finally, we are done!


