
Section 2.1

Exercise 6: We have to compute the product AB in two ways, where

A =


4 −2

−3 0

3 5

 , B =

[
1 3

2 −1

]
.

Solution 1. Let b1 = (1, 2) and b2 = (3,−1) be the columns of B. Then Ab1 = (0,−3, 13) and

Ab2 = (14,−9, 4). Thus

AB = [Ab1 Ab2] =


0 14

−3 −9

8 4

 .

Solution 2.

AB =


4 · 1 + (−2) · 2 4 · 3 + (−2) · (−1)

(−3) · 1 + 0 · 2 (−3) · 3 + 0 · (−1)

3 · 1 + 5 · 2 3 · 3 + 5 · (−1)

 =


0 14

−3 −9

13 4

 .

Both answers are the same, which is reassuring!

Exercise 18: Suppose the first two columns, b1 and b2 of B are equal. What can you say about the

columns of AB (if AB is defined)?

Solution. If B has m columns b1, . . . ,bm, then

AB = [Ab1 Ab2 . . . Abm].

We conclude that the first two columns of AB are equal too.

Section 2.2

Exercise 18: Suppose that P is ivertible and A = PBP−1. Solve for B in terms of A.

Solution. Multiply both sides of the equation by P−1 from left and by P from right to obtain

P−1AP = P−1(PBP−1)P = (P−1P )B(P−1P ) = IBI = B.

Thus B = P−1AP . (Note that A and P−1AP are in general two different matrices.)

Exercise 24: Suppose A is n × n and the equation Ax = b has a solution for each b ∈ Rn. Explain

why A must be invertible.



Solution. The assumption means that the columns of A span Rn. This is equivalent to having a pivot

in every row (by Theorem 4 in Section 1.4). But the number of rows is equal the number of columns,

so each column has a pivot. Thus we have n pivots on the main diagonal, which means that A is row

equivalent to In. We conclude that A is invertible by Theorem 7 of Section 2.2.

Exercise 30: To find the inverse of A, we row reduce the augmented matrix [A I]:[
5 10 1 0

4 7 0 1

]
∼

[
5 10 1 0

0 −1 −4/5 1

]
∼

[
5 0 −7 10

0 1 4/5 −1

]
∼

[
1 0 −7/5 2

0 1 4/5 −1

]

Thus A is invertible and A−1 =

[
−7/5 2

4/5 −1

]
.

Section 2.3

Exercise 36: Let T be a linear transformation that maps Rn onto Rn. Show that T−1 exists and maps

Rn onto Rn. Is T−1 also one-to-one?

Solution. Let A be the stardard n × n-matrix for T . By the assumption on T , the columns of A span

Rn. Hence, by the Invertible Matrix Theorem A is an invertible matrix. The linear trasformation

S : Rn → Rn defined by S(x) = A−1x is the inverse of T .

The linear transformation S is onto because any x ∈ Rn is the image under S of T (x): x = S(T (x)). It

is also one-to-one because if S(y) = 0, then y = T (S(y)) = T (0) = 0. Alternatively, the last two claims

can be proved by applying the Invertible Matrix Theorem to A−1.

Section 2.7

Exercise 4: Write in homogeneous coordinates the matrix of the 2D transformation which first translates

by (−2, 3) and then scales the x-coordinate by .8 and the y-coordinate by 1.2.

Solution. These two operations are given by the corresponding matrices:

A =


1 0 −2

0 1 3

0 0 1

 , B =


.8 0 0

0 1.2 0

0 0 1

 .

Hence, their composition is given by

BA =


0.8 0 −1.6

0 1.2 3.6

0 0 1

 .



Section 2.8

Exercise 30: Suppose the columns of a matrix A = [a1, . . . ,ap] are linearly independent. Explain why

{a1, . . . ,ap} is a basis for ColA.

Solution. The pivot columns of A form a basis for ColA. Since the columns of A are linearly independent,

every column has a pivot, that is, is a pivot column.

Section 2.9

Exercise 10: We are given a matrix A and its echelon form:
1 −2 9 5 4

1 −1 6 5 −3

−2 0 −6 1 −2

4 1 9 1 −9

 ∼


1 −2 9 5 4

0 1 −3 0 −7

0 0 0 1 −2

0 0 0 0 0

 .

We see that Columns 1, 2, and 4 are pivot columns. Hence ColA has a basis made of vectors (1, 1,−2, 4),

(−2,−1, 0, 1), and (5, 5, 1, 1). Its dimension is 3.

To find a basis for NulA, we have to bring A to the reduced echelon form:

A ∼


1 −2 9 0 14

0 1 −3 0 −7

0 0 0 1 −2

0 0 0 0 0

 ∼


1 0 3 0 0

0 1 −3 0 −7

0 0 0 1 −2

0 0 0 0 0

 .

The free variables are x3 and x5 and we can write the general solution to Ax = 0 as

x = x3



−3

3

1

0

0


+ x5



0

7

0

2

1


.

Hence, a basis for NulA consists of the vectors (−3, 3, 1, 0, 0) and (0, 7, 0, 2, 1). Its dimension is 2.

Section 3.1

Exercise 32: What is the determinant of an elementary scaling n× n-matrix with k on the diagonal?



Solution We know that for a diagonal matrix, the determinant is the product of all diagonal entries.

Hence, the answer here is k × · · · × k = kn.



October 20: Xiaohui Luo’s office hours will be 6:30-8:00pm on
this day.

October 28: Exam #2 (Chapters 2 & 3, and Sections 5.1 & 5.2)

A Complete Proof that PA(λ) is a Polynomial

Let me give here a carefull proof by induction that det(A−λI) is a polynomial in λ. (I did not complete

it on the last lecture.)

First, we prove a slightly different statement:

Theorem 1. Let B be n × n-matrix with entries bij = cij λ + dij for some constants cij , dij . Then

P (λ) = det B is a polynomial. Moreover, the degree of P is at most n.

Proof. We use induction on n to prove both claims about P . The statement is true for n = 1 as then

P (λ) = c11λ + d11.

Suppose it is true for n− 1. Let us prove it for n. By expanding along the first row, we obtain

P (λ) =
n∑

i=1

(−1)i+1(c1iλ + d1i) det B1i.

By the induction assumption, each detB1i is a polynomial of degree at most n− 1. Hence, P (λ) is the

sum of polynomials of degree at most n, so it is itself a polynomial of degree at most n.

By Theorem 1 we know that PA(λ) = det(A − λI) is a polynomial of degree at most n. We cannot

immediately conclude that the degree is precisely n because, perhaps, all terms λn cancelled each other.

So we recourse to induction again.

Theorem 2. For any n× n-matrix A, the polynomial PA(λ) = det(A− λI) has degree precisely n.

Proof. We use induction on n. For n = 1 we have PA(λ) = a11 − λ and the claim is true. (As usual, aij

is the ij-th entry of A.)

Suppose the claim is true for n− 1. Let us prove it for n. Let B = A− λI. By applying the expansion

along the first row, we obtain

PA(λ) = (a11 − λ) detB11 − a12 det B12 + a13 detB13 − . . .

By the induction assumption, detB11 = PA11(λ) is a polynomial of degree precisely n−1. By Theorem 1,

each detB1i with i ≥ 2 is a polynomial of degree at most n−1. Hence, PA(λ) is the sum of one polynomial

of degree n (namely (a11−λ) det B11) and some polymonials of degree at most n− 1. Hence, the degree

of PA(λ) is precisely n.



Section 3.2

Exercise 24: Using determinats to decide if the given set of vectors is linearly dependent:
4

6

−7

 ,


−7

0

2

 ,


−3

−5

6

 .

Solution. We make a matrix whose columns are these vectors:

A =


4 −7 −3

6 0 −5

−7 2 6

 .

This is 3 × 3-matrix, that is, a square matrix. By the Invertible Matrix Theorem, the colums of A

are linearly independent if and only if A is invertible, which happens if and only if its determinant is

non-zero. We have∣∣∣∣∣∣∣∣
4 −7 −3

6 0 −5

−7 2 6

∣∣∣∣∣∣∣∣ = (−1)× (−7)×

∣∣∣∣∣ 6 −5

−7 6

∣∣∣∣∣ + (−1)× 2×

∣∣∣∣∣ 4 −3

6 −5

∣∣∣∣∣ = 7 + 4 = 11

Hence, the vectors are linearly independent.

Section 5.1

Exercise 14: Find a basis for the eigenspace for

A =


1 0 −1

1 −3 0

4 −13 1

 , λ = −2.

Solution. We have to find the solution set to A + 2I = 0. Apply row transforms:

A + 2I =


3 0 −1

1 −1 0

4 −13 3

 ∼


1 −1 0

3 0 −1

4 −13 3

 ∼


1 −1 0

0 3 −1

0 −9 3

 ∼


1 −1 0

0 1 −1/3

0 0 0

 ∼


1 0 −1/3

0 1 −1/3

0 0 0


The general solution can be written as x = x3(1/3, 1/3, 1). Hence, the basis of this eigenspace consists

of one vector v, namely

v =


1/3

1/3

1

 .



Exercise 26: Show that if A2 is the zero matrix, then the only eigenvalue of A is 0.

Solution. If λ is an eigenvalue of A with an eigenvector x, then

A2x = A(Ax) = A(λx) = λx = λ2x.

On the other hand, we know that A2x = 0. Thus λ = 0.

Section 5.2

Exercise 12: Find the characteristic polynomial of

A =


−1 0 1

−3 4 1

0 0 2


Solution. It is

det(A− λI) =

∣∣∣∣∣∣∣∣
−1− λ 0 1

−3 4− λ 1

0 0 2− λ

∣∣∣∣∣∣∣∣ = (2− λ)

∣∣∣∣∣ −1− λ 0

−3 4− λ

∣∣∣∣∣ = (2− λ)(−1− λ)(4− λ).

Although this is not required, we can immediately tell the eigenvalues: λ1 = −1, λ2 = 2, λ3 = 4 and,

with some extra work, compute the corresponding eigenvectors.

A− λ1I =


0 0 1

−3 5 1

0 0 3

 ∼

−3 5 1

0 0 1

0 0 0

 ∼


1 −5/3 0

0 0 1

0 0 0


Thus v1 = (5/3, 1, 0) is a corresponding eigenvector.

A− λ2I =


−3 0 1

−3 2 1

0 0 0

 ∼


1 0 −1/3

0 1 0

0 0 0

 .

Thus v2 = (1/3, 0, 1) is a corresponding eigenvector. Finally,

A− λ3I =


−5 0 1

−3 0 1

0 0 −2

 ∼


1 0 0

0 0 1

0 0 0

 .

Thus v3 = (0, 1, 0) is a corresponding eigenvector.



Section 5.3

Exercise 14: Diagonalize the matrix

A =


4 0 −2

2 5 4

0 0 5


Solution. First we compute the characteristic polynomial by expanding A− λI along the third row:

PA(λ) = (5− λ)

∣∣∣∣∣ 4− λ 0

2 5− λ

∣∣∣∣∣ = (5− λ)2(4− λ).

Thus the eigenvalues are λ1 = 4 and λ2 = λ3 = 5 (that is, the eigenvalue 5 has multiplicity 2).

Now we look for corresponding eigenvectors:

A− λ1I =


0 0 −2

2 1 4

0 0 1

 ∼


1 1/2 2

0 0 1

0 0 0

 ∼


1 1/2 0

0 0 1

0 0 0

 .

Thus we can take v1 = (−1, 2, 0) for an eigenvector corresponding to λ1 = 4. Next,

A− λ2I =


−1 0 −2

4 0 4

0 0 0

 ∼


1 0 2

0 0 0

0 0 0

 .

Thus the corresponding eigenspace is spanned by v2 = (0, 1, 0) and v3 = (−2, 0, 1).

We see that the vectors v1,v2,v3 are linearly idependent; hence the matrix

P = [v1,v2,v3] =


−1 0 −2

2 1 0

0 0 1

 .

is invertible and we have A = PDP−1, where D is the diagonal matrix with diagonal entries 4, 5, 5.

Just to make sure we did not make any mistake, let us check if AP = PD:

AP =


−4 0 −8

8 5 0

0 0 5

 = PD.

So, our calculations are correct.

Section 5.5

Exercise 2: Find the eigenvalues ans a basis for each eigenspace for the following matrix acting on C2:

A =

[
5 −5

1 1

]
.



Solution. We have

det(A− λI) =

∣∣∣∣∣ 5− λ −5

1 1− λ

∣∣∣∣∣ = (5− λ)(1− λ) + 5 = λ2 − 6λ + 10.

The discriminat is D = 62 − 40 = −4, so the roots are (6±
√

D)/2, that is, λ1 = 3− i and λ2 = 3 + i.

We have

A− λ1I =

[
2 + i −5

1 −2 + i

]
.

We already know that the rows of A−λ1I are linearly dependent, so to find a solution to (A−λ1I)x = 0,

it is enough to satisfy the first equation, which reads (2 + i)x1 − 5x2 = 0. We can take x1 = 5 so that

x2 looks simpler. Then we have x2 = 2 + i. Hence, the corresponding eigenspace is spanned by

v1 =

[
5

2 + i

]
.

Likewise, to solve (A− λ2I)x = 0, we have to solve the first equation, which is (2− i)x1 − 5x2 = 0. We

take x1 = 5 and x2 = 2− i and obtain an eigenvector

v1 =

[
5

2− i

]
.


