Section 2.1

Exercise 6: We have to compute the product AB in two ways, where

b
Il

|
Y
o
S
I

Solution 1. Let by = (1,2) and bs = (3,—1) be the columns of B. Then Ab; = (0,-3,13) and
Aby = (14,-9,4). Thus

0 14
AB = [Ab; Aby]=| -3 -9
8 4
Solution 2.
4-14+(-2)-2 4-3+(-2)-(-1) 0 14
AB=| (-3)-1+0-2 (=3)-340-(-1) | =] -3 -9
3-14+5-2 3:-3+5-(-1) 13 4

Both answers are the same, which is reassuring! [l

Exercise 18: Suppose the first two columns, by and bs of B are equal. What can you say about the
columns of AB (if AB is defined)?

Solution. If B has m columns by, ..., b,,, then
AB = [Aby Aby ... Ab,,)].

We conclude that the first two columns of AB are equal too. [

Section 2.2

Exercise 18: Suppose that P is ivertible and A = PBP~!. Solve for B in terms of A.

Solution. Multiply both sides of the equation by P~! from left and by P from right to obtain
P 'AP =P Y(PBP )P = (P 'P)B(P™'P)=IBI = B.

Thus B = P~1AP. (Note that A and P~*AP are in general two different matrices.) il

Exercise 24: Suppose A is n X n and the equation Ax = b has a solution for each b € R™. Explain

why A must be invertible.



Solution. The assumption means that the columns of A span R™. This is equivalent to having a pivot
in every row (by Theorem 4 in Section 1.4). But the number of rows is equal the number of columuns,
so each column has a pivot. Thus we have n pivots on the main diagonal, which means that A is row

equivalent to I,,. We conclude that A is invertible by Theorem 7 of Section 2.2. 1

Exercise 30: To find the inverse of A, we row reduce the augmented matrix [A I]:

5 10 1 0 5 10 10 5 0 -7 10 10 -7/5 2
4 701 0 -1 —4/5 1 0 1 4/5 -1 01 4/5 -1
—7/5 2
/ . |
4/5 —1

Thus A is invertible and A~! = [

Section 2.3

Exercise 36: Let T be a linear transformation that maps R™ onto R™. Show that T~! exists and maps

R"™ onto R™. Is T~! also one-to-one?

Solution. Let A be the stardard n x m-matrix for 7. By the assumption on T, the columns of A span
R™. Hence, by the Invertible Matrix Theorem A is an invertible matrix. The linear trasformation
S :R™ — R" defined by S(x) = A~ !x is the inverse of T

The linear transformation S is onto because any x € R™ is the image under S of T'(x): x = S(T'(x)). It
is also one-to-one because if S(y) =0, then y = T'(S(y)) = T(0) = 0. Alternatively, the last two claims
can be proved by applying the Invertible Matrix Theorem to A1, 1

Section 2.7

Exercise 4: Write in homogeneous coordinates the matrix of the 2D transformation which first translates

by (—2,3) and then scales the z-coordinate by .8 and the y-coordinate by 1.2.

Solution. These two operations are given by the corresponding matrices:

1 0 -2 .
A=10 1 3, B=] 0 12
0 0
Hence, their composition is given by
0.8 0 —1.6
BA = 0 1.2 36

0 0 1



Section 2.8

Exercise 30: Suppose the columns of a matrix A = [ai,...,a,)] are linearly independent. Explain why

{ai,...,a,} is a basis for ColA.

Solution. The pivot columns of A form a basis for ColA. Since the columns of A are linearly independent,

every column has a pivot, that is, is a pivot column. il

Section 2.9

Exercise 10: We are given a matrix A and its echelon form:

1 =2 95 4 1 =2 95 4
1 -1 6 5 -3 0 1 -3 0 -7
2 0 61 2] o 0o 01 -2
41 9 1 -9 0O 0 00 0

We see that Columns 1, 2, and 4 are pivot columns. Hence ColA has a basis made of vectors (1,1, —2,4),
(—-2,—1,0,1), and (5,5,1,1). Its dimension is 3.

To find a basis for NulA, we have to bring A to the reduced echelon form:

1 -2 9 0 14 10 3 0 0
A 0 -3 0 -7 N 01 -3 0 -7
0 1 -2 0 0 1 -2
0 0 0 0 0 0 0

The free variables are x3 and x5 and we can write the general solution to Ax = 0 as

C g 0]
3 7
X =123 1 |+z5| 0
0 2

L 0_ _1_

Hence, a basis for NulA consists of the vectors (—3,3,1,0,0) and (0,7,0,2,1). Its dimension is 2. 1

Section 3.1

Exercise 32: What is the determinant of an elementary scaling n x n-matrix with k& on the diagonal?



Solution We know that for a diagonal matrix, the determinant is the product of all diagonal entries.

Hence, the answer here is k x --- x k= k". 1



October 20: Xiaohui Luo’s office hours will be 6:30-8:00pm on
this day.

October 28: Exam #2 (Chapters 2 & 3, and Sections 5.1 & 5.2)

A Complete Proof that P4()\) is a Polynomial

Let me give here a carefull proof by induction that det(A — AI) is a polynomial in A. (I did not complete

it on the last lecture.)

First, we prove a slightly different statement:

Theorem 1. Let B be n X n-matrix with entries b;; = ¢;; A + d;; for some constants c¢;;,d;;. Then

P()\) = det B is a polynomial. Moreover, the degree of P is at most n.

Proof. We use induction on n to prove both claims about P. The statement is true for n = 1 as then
P()\) = 611>\ + dll-

Suppose it is true for n — 1. Let us prove it for n. By expanding along the first row, we obtain

P()\) = Z(—l)i+1(01i)\ + dh) det Bli-
i=1
By the induction assumption, each det By; is a polynomial of degree at most n — 1. Hence, P(\) is the

sum of polynomials of degree at most n, so it is itself a polynomial of degree at most n. 1

By Theorem 1 we know that P4(A\) = det(A — AI) is a polynomial of degree at most n. We cannot
immediately conclude that the degree is precisely n because, perhaps, all terms A™ cancelled each other.

So we recourse to induction again.
Theorem 2. For any n x n-matrix A, the polynomial P4(\) = det(A — AI) has degree precisely n.
Proof. We use induction on n. For n =1 we have P4()\) = a11 — A and the claim is true. (As usual, a;;

is the ij-th entry of A.)

Suppose the claim is true for n — 1. Let us prove it for n. Let B = A — AI. By applying the expansion

along the first row, we obtain
PA()\) = (a11 — )\) det B11 — a2 det B12 + a3 det B13 — ...

By the induction assumption, det B1; = Pa,, () is a polynomial of degree precisely n—1. By Theorem 1,
each det By; with ¢ > 2 is a polynomial of degree at most n—1. Hence, P4 () is the sum of one polynomial
of degree n (namely (a11 — \) det B11) and some polymonials of degree at most n — 1. Hence, the degree

of P4(A) is precisely n. I



Section 3.2

Exercise 24: Using determinats to decide if the given set of vectors is linearly dependent:

-7 -3
) 01, | =5
-7 2 6

Solution. We make a matrix whose columns are these vectors:

4 -7 =3
A= 6 0 -5
-7 2 6

This is 3 x 3-matrix, that is, a square matrix. By the Invertible Matrix Theorem, the colums of A
are linearly independent if and only if A is invertible, which happens if and only if its determinant is

non-zero. We have

4 -7 =3 6 5
6 0 —5|=(-1)x(-7)x c 6 + (1) x2x ’:74—4:11
-7 2 6

Hence, the vectors are linearly independent. 1

Section 5.1

Exercise 14: Find a basis for the eigenspace for

1 0 -1
A=|1 -3 0|, A=-2
4 -13 1

Solution. We have to find the solution set to A + 21 = 0. Apply row transforms:

30 -1 1 -1 0
A+2f=|1 -1 0|~ |3 0 —-1]|~
4 -13 3 4 —13 3
1 -1 0 1 -1 0 10 —1/3
0 3 -1 |~|l0 1 —1/3|~]0 1 -1/3
0 -9 3 0 0 0 00 0

The general solution can be written as x = x3(1/3,1/3,1). Hence, the basis of this eigenspace consists
of one vector v, namely
1/3
v=11/3
1



Exercise 26: Show that if A2 is the zero matrix, then the only eigenvalue of A is 0.

Solution. If X is an eigenvalue of A with an eigenvector x, then
A%x = A(Ax) = A(Xx) = Ax = A’x.

On the other hand, we know that A%x = 0. Thus A =0. I

Section 5.2

Exercise 12: Find the characteristic polynomial of

-1 0 1
A= -3 4 1
0 0 2
Solution. It is
—1-A 0 1
—-1-A 0
det(A — M) = -3 4— ) 1 =(2-2) |—(2—/\)(—1—)\)(4—)\).
0 0 2—A

Although this is not required, we can immediately tell the eigenvalues: Ay = —1, Ay = 2, A3 = 4 and,

with some extra work, compute the corresponding eigenvectors.

0 01 -3 5 1 1 -5/3 0
A-MI=| -3 5 1|~ 0 01 |~1]0 0 1
0 0 3 0 0 0 0

Thus vi = (5/3,1,0) is a corresponding eigenvector.

-3 0 10 —1/3
A—Xl=| -3 2 1 |~|0 1 0
0 00 00 0
Thus vo = (1/3,0,1) is a corresponding eigenvector. Finally,
-5 0 1 1 0 0
A-XI=| -3 0 1|~|0 01
0 0 -2 0 00

Thus v3 = (0, 1,0) is a corresponding eigenvector. 1



Section 5.3

Exercise 14: Diagonalize the matrix

Solution. First we compute the characteristic polynomial by expanding A — Al along the third row:

4—-A 0

Pa(A)=(5-2) 5 5_1

=(B-N2%4-N).

Thus the eigenvalues are Ay = 4 and As = A3 = 5 (that is, the eigenvalue 5 has multiplicity 2).

Now we look for corresponding eigenvectors:

00 —2 1 1/2 2 1 1/2 0
A-MI=|21 4|~|0 0 1|~]0 01
00 1 0 0 0 0 0 0

Thus we can take vi = (—1,2,0) for an eigenvector corresponding to A; = 4. Next,

-1 0 -2 1 0 2
A— Xl = 4 0 4 1~10 00
0 0 0 0 0 O

Thus the corresponding eigenspace is spanned by vo = (0,1,0) and vz = (—2,0,1).

We see that the vectors vy, vo, vy are linearly idependent; hence the matrix

-1 0 -2
P= [Vl,VQ,Vg] = 2 1 0
0 0 1

is invertible and we have A = PDP~!, where D is the diagonal matrix with diagonal entries 4, 5, 5.

Just to make sure we did not make any mistake, let us check if AP = PD:

-4 0 -8
AP = 8 5 0 | =PD.
0 0 )

So, our calculations are correct. il

Section 5.5

Exercise 2: Find the eigenvalues ans a basis for each eigenspace for the following matrix acting on C2:

5 —5
A= .
1 1




Solution. We have

5—-A =5

det(A—an)=| " "

=(B-N(1—X)+5=X—6)\+10.

The discriminat is D = 6% — 40 = —4, so the roots are (6 /D) /2, that is, \; =3 — i and Ay = 3 + .

‘We have
241 -5
1 —241

A—-\I=

We already know that the rows of A— ;I are linearly dependent, so to find a solution to (A—A;T)x = 0,
it is enough to satisfy the first equation, which reads (2 + ¢)z1 — 529 = 0. We can take x1 = 5 so that

x9 looks simpler. Then we have x5 = 2 4 ¢. Hence, the corresponding eigenspace is spanned by

5
2+1

V] =

Likewise, to solve (A — A2I)x = 0, we have to solve the first equation, which is (2 —i)zy — bzy = 0. We

take 1 = 5 and x5 = 2 — ¢ and obtain an eigenvector



