
Section 1.1

Exercise 10: We are given the following augumented matrix
1 −2 0 3 −2

0 1 0 −4 7

0 0 1 0 6

0 0 0 1 −3

 .

We have to bring it to the diagonal form. The entries below the diagonal are already zero, so we work

from bottom to top. Adding the fourth row with coefficients −3 and 4 to the first and second rows, we

obtain 
1 −2 0 0 7

0 1 0 0 −5

0 0 1 0 6

0 0 0 1 −3

 .

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain
1 0 0 0 −3

0 1 0 0 −5

0 0 1 0 6

0 0 0 1 −3

 .

Thus (−3,−5, 6,−3) is the unique solution.

Exercise 26: The obvious augmented matrix with the unique solution (−2, 1, 0) is
1 0 0 −2

0 1 0 1

0 0 1 0

 .

Possible matrices can be obtained by applying one or a few row operation to the above matrix. Here are

two more examples: 
3 0 0 −6

0 1 0 1

0 0 1 0

 and


3 0 0 −6

0 1 0 1

3 0 1 −6

 .
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Section 1.2

Exercise 4: We have to reduce the matrix
1 3 5 7

3 5 7 9

5 7 9 1


to reduced echelon form. We take the first non-zero column which is Column 1 and choose the entry 1

for pilot. Using row replacement, we create zeros below 1:
1 3 5 7

0 −4 −8 −12

0 −8 −16 −34

 .

Now (Step 4) we ignore Row 1 and Column 1. The entry −4 is the pivot now:
1 3 5 7

0 −4 −8 −12

0 0 0 −10

 .

The matrix is in echelon form now. Its pivots are the entries 1, −4, and −10, located in Columns 1,

2, and 4 respectively. Now we start Step 5. First we multiply Row 3 by −1/10 and eliminate non-zero

entries above this pivot: 
1 3 5 0

0 −4 −8 0

0 0 0 1

 .

Next, we multiply the second row by −1/4 and reduce the entry above the pivot to zero:
1 0 −1 0

0 1 2 0

0 0 0 1

 .

The matrix is in reduced echelon form now.

Exercise 8: We have to find the general solution, given the following augmented matrix:[
1 4 0 7

1 7 0 10

]
.

We bring it first to echelon form by adding Row 1 multiplied by −2 to Row 2.[
1 4 0 7

0 −1 0 −4

]
.

Next, we bring the matrix to reduced echelon form. We have to make leading entries to be equal to 1

by multiplying the second row by −1 and then eliminate the 4 above it:[
1 0 0 −9

0 1 0 4

]
.
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We see that the system has infinitely many solutions: x1 = −9, x2 = 4, x3 is free.

Section 1.3

Exercise 18: The question, if rephrased, asks for which h the system of equations corresponding to the

augmented matrix 
1 −3 h

0 1 −5

−2 8 −3


is consistent. We convert the matrix to echelon form pivoting on the first column and then on the second

column: 
1 −3 h

0 1 −5

0 2 2h− 3

 ∼


1 −3 h

0 1 −5

0 0 2h + 7

 .

Hence, y is in the span of v1 and v2 if and only if h = −7/2.

Section 1.4

Exercise 16: Let

A =


1 −3 −4

−3 2 6

5 −1 −8

 , b =


b1

b2

b3

 .

We have find for which b the system Ax = b has a solution. We start with augmented matrix and bring

to echelon form:
1 −3 −4 b1

−3 2 6 b2

5 −1 −8 b3

 ∼


1 −3 −4 b1

0 −7 −6 3b1 + b2

0 14 12 −5b1 + b3

 ∼


1 −3 −4 b1

0 −7 −6 3b1 + b2

0 0 0 2(3b1 + b2)− 5b1 + b3

 .

We can choose b1, b2, b3 so that 2(3b1+b2)−5b1+b3 = b1+2b2+b3 is non-zero. (For example, b1 = b2 = 0

and b3 = 1.) So, the columns of A do not span R3. The set of b for which the system Ax = b has a

solution consists of those triples with b1 + 2b2 + b3 = 0.

Exercise 32: It is intuitively clear that 3 vectors cannot span R4 but let argue using theorems from the

course. Let the vectors be a1,a2,a3 ∈ R4. Let A be the 4× 3-matrix [a1,a2,a3]. To test if these vectors

span R4 we have to test whether the system Ax = b has a solution for every b ∈ R4. The latter happens

if and only if A has pivots in every row. But the number of pivots in A is at most 3 (the number of
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columns), so we cannot have a pivot in every row.

Section 1.5

Exercise 12: We have to describe all solutions of Ax = 0 in vector parametric form, where

A =


1 5 2 −6 9 0

0 0 1 −7 4 −8

0 0 0 0 0 1

0 0 0 0 0 0

 .

We bring A to reduced echelon form:

A ∼


1 5 2 −6 9 0

0 0 1 −7 4 0

0 0 0 0 0 1

0 0 0 0 0 0

 ∼


1 5 0 8 1 0

0 0 1 −7 4 0

0 0 0 0 0 1

0 0 0 0 0 0

 .

Thus x2, x4, x5 are the free variables. The general solution of Ax = 0 has the form

x1 = −5x2 − 8x4 − x5,

x3 = 7x4 − 4x5

x6 = 0.

We can rewrite it as

x = x2



−5

1

0

0

0

0


+ x4



−8

0

7

1

0

0


+ x5



−1

0

−4

0

1

0


= x2u + x4v + x5w.

Thus x = ru + sv + tw (where we replaced the free variables by parameters r, s, t) is the required

parametric vector form.

Section 1.6

Exercise 8: We have to find coefficents in the following chemical reaction:

(x1) KMnO4 + (x2) MnSO4 + (x3) H2O → (x4) MnO2 + (x5)K2SO4 + (x6)H2SO4.

4



Since there are 5 types of atoms, namely (K, Mn,O, S,H), we use vectors in R5. We get

x1



1

1

4

0

0


+ x2



0

1

4

1

0


+ x3



0

0

1

0

2


= x4



0

1

2

0

0


+ x5



2

0

4

1

0


+ x6



0

0

4

1

2


.

This corresponds to a matrix equation Ax = 0 with

A =



1 0 0 0 −2 0

1 1 0 −1 0 0

4 4 1 −2 −4 −4

0 1 0 0 −1 −1

0 0 2 0 0 −2


∼



1 0 0 0 −2 0

0 1 0 −1 2 0

0 4 1 −2 4 −4

0 1 0 0 −1 −1

0 0 2 0 0 −2


∼



1 0 0 0 −2 0

0 1 0 −1 2 0

0 0 1 2 −4 −4

0 0 0 1 −3 −1

0 0 2 0 0 −2



∼



1 0 0 0 −2 0

0 1 0 −1 2 0

0 0 1 2 −4 −4

0 0 0 1 −3 −1

0 0 0 −4 8 6


∼



1 0 0 0 −2 0

0 1 0 −1 2 0

0 0 1 2 −4 −4

0 0 0 1 −3 −1

0 0 0 0 −4 2


∼



1 0 0 0 0 −1

0 1 0 −1 0 1

0 0 1 2 0 −6

0 0 0 1 0 −5/2

0 0 0 0 1 −1/2



∼



1 0 0 0 0 −1

0 1 0 0 0 −3/2

0 0 1 0 0 −1

0 0 0 1 0 −5/2

0 0 0 0 1 −1/2


Here x6 is a free variable. Since the last column involves division by 2, let us take x6 = 2. This gives us

x = (2, 3, 2, 5, 1, 2).

Let us make a check. For example, of oxygen atoms we have 2 · 4 + 3 · 4 + 2 · 1 = 22 in the left-hand side

and 5 · 2 + 1 · 4 + 2 · 4 = 22 on the right-hand side, which is reassuring.

Section 1.7

Exercise 8: We have to check whether the given 3× 4-matrix has linearly independent columns. Actu-

ally, we can tell that the column must be linearly independent for any matrix A with these dimensions.

Indeed, after we bring A to echelon form, there will be at most 3 pivots (at most one per row). So,

the corresponding linear homogeneous system x = 0 has free variables and, hence, non-trivial solutions.

Exercise 40: Suppose an m× n matrix A has n pivot columns. We have to explain why for each b the

equation Ax = b has at most one solution.
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As no two pivots can be in one column, we have exactly one pivot in each column. If we had two different

solutions to Ax = b, say y and z, then we would have A(z−y) = 0. But the homegenous system Ax = 0

has no free variable and, therefore, cannot have any non-trivial solutions.

Section 1.8

Exercise 2: We have

T (v) = Av =


.5 0 0

0 .5 0

0 0 .5




a

b

c

 = a


.5

0

0

 + b


0

.5

0

 + c


0

0

.5

 =


.5a

.5b

.5c

 .

For u = (1, 0, 4) we obtain T (u) = (.5, 0,−2). (Recall that (x1, . . . , xp) is a shorhand notation for the

vector whose components are x1, . . . , xp.)

Exercise 24: Suppose vectors v1, . . . ,vp span Rn, and let T : Rn → Rn be a linear transformation.

Suppose that T (vi) = 0 for i = 1, . . . , p. Show that T is the zero transfomation.

Solution: Take any x ∈ Rn. As v1, . . . ,vp span Rn, we have x = c1v1 + . . .+ cpvp for some real numbers

c1, . . . , cp. (This representation may be not unique, but this does not affect our argument.) By the

properties of linear transformations, we have

T (x) = T (c1v1 + . . . + cpvp) = c1T (v1) + . . . + cpT (vp) = 0,

the last equality being true as T (vi) = 0 for every i.
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