
Practice problems for Exam 3

1. Let

A =

 1 1 0
0 2 0
0 1 1


(a) Determine whether A is diagonalizable. If so, find a matrix S such

that S−1AS is diagonal. If not, explain why not.

(b) What are the eigenvalues of A−1? Is A−1 diagonalizable? Explain.

(a) A is indeed diagonalizable. Computing the characteristic polynomial,
which is det(A−λI), one finds the eigenvalues to be 1, 1, and 2. By look-
ing at the nullspace of A − I, and finding it to be two-dimensional, one
concludes that A is indeed diagonalizable. So find three linearly indepen-
dent eigenvectors and use them to construct S. And if this were an actual
problem, you can check that you have a valid diagonalizing matrix S by
computing the products AS and SD (where D is a 3 × 3 matrix with
the eigenvalues of A on the diagonal, in an order which conforms to your
choice of ordering the eigenvectors), and making sure they are the same
. . . because, you see, S−1AS = D can only hold if AS = SD.

(b) First one might ask how we know for sure that A−1 even exists. Well
. . . in this case we know it from part (a), because 0 is not an eigenvalue
of A, which is true if and only if A is invertible. Now refer to Exercise
5.1.25, wherein one proves that if A is invertible, then the eigenvalues of
A−1 are the reciprocals of the eigenvalues of A. In the process of proving
this, one finds that eigenvectors of A are also eigenvectors of A−1. In fact,
the eigenspaces of A−1 and A are the same . . . which makes sense when
you think about this geometrically. Consider E2, for example: The matrix
A doubles all vectors in this line, but these vectors don’t change direction.
So, considering that A−1 “undoes” what A does, what will A−1 do to the
vectors in this line? It will “halve” all of them. So the same line which is
the eigenspace E2 for A is the eigenspace E1/2 for A−1. And the plane
which remains fixed under the action of A will also remain fixed under the
action of A−1.

At any rate, A−1 is indeed diagonalizable, and the eigenvalues are 1, 1,
and 1/2.

2. Produce an example of a 2 × 2 matrix with eigenvalue 1, whose column
space is the line y = −x and whose nullspace is the line y = 2x.

The statement of the problem tells you that the eigenvalues are 1 and
0. The fact that the nullspace is nontrivial means that your matrix can’t
be invertible . . . hence, 0 is an eigenvalue. As we have two distinct real
eigenvalues, the matrix is diagonalizable. So you should be able to write
down a factorized version of your matrix first, as PDP−1, for suitably
constructed P and D. Then multiply out the product, and you have a
2× 2 matrix with the required properties.



3. Suppose two animal species, slinkies and tinkies, coexist in the same habi-
tat. Suppose sk is the slinkie population at time k, and tk is the tinkie

population at time k. Let ~x0 =
[

s0

t0

]
, and assume the initial populations

s0 and t0 are positive. Write down a dynamical system describing this
scenario, which predicts that if t0 < 2s0, then both species will survive in
the long run, but if t0 ≥ 2s0, the slinkies will eventually die out.

I would approach this problem by starting with a drawing of a “trajectory
profile” . . . something like the figure on page 349. For 2 × 2 dynamical
systems with two real eigenvalues, both positive, and neither equal to 1,
we have three possible types of “trajectory profile”; the origin can be an
attractor, a repellor, or a saddle. So which do you need here? Start with
a picture (which includes the whole plane and not just the first quadrant)
of the kinds of trajectories you need. The line t = 2s will have to be
a key feature of this picture. From the problem statement, we see that
trajectories corresponding to initial states on this line will have to head
toward the origin (read, both species are doomed). So this line should be
an eigenspace corresponding to an eigenvalue between 0 and 1 (any such
number will do; this problem has many, many valid solutions). The other
eigenspace should be another line. Where should that line be? (There are,
in fact, many lines which will work, but not just any slope will do.) And
what sort of eigenvalue should the other one be?

Once you have chosen your eigenvalues and eigenspaces, then to get the
coefficient matrix for your dynamical system, you will have to write out
the full diagonalization factorization and then multiply . . . much like what
you did in Problem 2.

4. Let s and t be numbers between 0 and 1. Let

A =
[

s 1− t
1− s t

]
(a) Compute

A

[
1
−1

]
What does this computation tell you about A?

(b) Explain why 1 is an eigenvalue of AT .
(c) Compute lim

k→∞
Ak. Hint: Diagonalize A.

(a) It tells you that s + t− 1 is an eigenvalue of A, and that
[

1
−1

]
is a

corresponding eigenvector.



(b) This follows from a fact you may or may not have remembered (see
Exercise 5.1.29 and, while you’re at it, Exercise 5.1.30): If the rows of a
matrix all add up to the same number, then that number is an eigenvalue
(and in that case, notice that the vector of all ones is a corresponding
eigenvector).

(c) For this part, you need to recognize that part (a) tells you that s+t−1 is
an eigenvalue of A, and that part (b) tells you that 1 is also an eigenvalue
of A (because the eigenvalues of A and AT are the same. You already
have an eigenvector corresponding to s + t − 1; to find an eigenvector
corresponding to eigenvalue 1, look at the nullspace of A − I. I get the
limiting matrix to be

1
s + t− 2

[
t− 1 t− 1
s− 1 s− 1

]
(I hope that’s correct.)

5. This is a three-part question; the three parts are related.

(a) Suppose A is an m×n matrix with linearly independent rows; suppose
~y, ~z ∈ Rm, and suppose AT ~y = AT~z. Show that ~y = ~z.

(b) Suppose A = BC, where

B =


1/
√

2 0
0 1/

√
2

0 −1/
√

2
− 1/

√
2 0

 and C =
[

1 −3 1
0 1 1

]

Show that if A~x = ~b is an inconsistent system, then finding the least
squares solution(s) to this system is equivalent to solving the system
C~x = BT~b.

(c) Let A,B, and C be as in part (b). Find all least squares solutions to
the system

A~x =


1
1
0
1


(a) Rewrite AT ~y = AT~z as AT (~y−~z) = ~0. This is a homogeneous system,
and since the columns of AT are linearly independent, the only solution
is ~0. Therefore ~y − ~z = ~0.



(b) Start with AT A~x = AT~b, and substitute BC for A. Noting that B has
orthonormal columns and applying part (a) appropriately, you can get the
result.

(c) The point here is that you can use part (b), which enables you to avoid
multiplying B and C together.

6. Let

~v1 =

 4
1
1

 , ~v2 =

 − 1
3
1

 , ~v3 =

 − 2
−5
13


(a) Show that ~v1, ~v2, ~v3 form a basis for R3.

(b) Give a formula for the linear transformation S : R3 → R3 which
projects vectors onto the plane spanned by ~v1 and ~v2.

(a) It’s enough to verify that this is a mutually orthogonal triplet.

(b) I just want to point out here that the problem does not ask you for a
matrix; you are only asked for a formula, in which vectors are inputted,
and vectors are outputs.

7. Let A =
[

1/2 1/2
1 0

]
. Determine lim

n→∞
An.

This is somewhat like Problem 4, but simpler. Diagonalize A so that you
can take nth powers of the diagonal matrix, instead of nth powers of A
itself.

8. Let A be a 4× 4 invertible matrix, and suppose B is its inverse.

(a) Establish that the rows of B are linearly independent.

(b) Let V = span( ~B1, ~B2). What is the dimension of V ? Justify your
answer.

(c) Find a basis for V ⊥. Prove that the set of vectors you choose really
is a basis for V ⊥.

(a) Well, B is the inverse of A, so B is also invertible. And matrices are
invertible if and only if they have linearly independent columns, and if
and only if they have linearly independent rows.



(b) Taking all four rows of B gives you a linearly independent set of vectors;
therefore, any subset of these is also a linearly independent set. Therefore
the pair ~B1, ~B2 really is a basis for V , and this gives V dimension 2.

(c) So here’s the tricky part of the problem. You know that, since we’re
working in R4, and since dim V = 2, the dimension of V ⊥ is also 2. So you
know you’re looking for two vectors to form a basis. You need two vectors
~y and ~z such that ~y is orthogonal to ~B1 and to ~B2, and ~z is orthogonal
to ~B1 and to ~B2. Have we used the fact that A and B are inverses? Yes,
but . . . we only used it a little bit, in part (a). Think about the equation
BA = I. On the left is a matrix product. How are the individual entries
of this matrix product computed?

9. Let

V = span




1
1
0
0

 ,


− 1

1
0
0

 ,


0
0
1
−1




Let T : R4 → R4 be orthogonal projection onto V . Find the matrix A
which represents T .

First derive a formula like you did in 6(b). Then remember that to con-
struct the matrix which represents T , you should apply T to each of the
four standard unit vectors.

10. Let V = span(~v1, ~v2, ~v3), where

~v1 =


1
−1

4
4

 ~v2 =


−1
−3

0
8

 ~v3 =


2

−16
3
1


Find an orthonormal basis for V .

This is just a straightforward application of the Gram-Schmidt algorithm,
but remember, if you’re really taking an exam, you should check that the
vectors you end up with really are mutually orthogonal. You don’t need to
write that part down, but you should visually inspect your vectors, and
check mutual orthogonality in your head. Don’t forget to normalize the
vectors at the end; also remember normalizing is easier if you scale to get
rid of all fractions first.



11. Let

A =


1 2 3 4
0 1 2 3
0 0 0 1
0 0 0 1


Find an orthonormal basis for the column space of A.

If you perform Gaussian elimination on A (which requires one measly
step), you find the pivot columns to be ~A1, ~A2, and ~A4. So extract those
three vectors (from the original matrix!) as a basis, and apply Gram-
Schmidt to get an alternate basis consisting of mutually orthogonal vec-
tors. Don’t forget to verify mutual orthogonality and to normalize.


