Part 3

  1. Determine if the following series converges conditionally, converges absolutely, or diverges.

    \begin{displaymath}
\sum_{n=1}^{\infty}
\frac{(-\pi)^n}{n+n!}
\end{displaymath}

    Solution: Converges absolutely. Take absolute value. Compare to $b_n=\frac{\pi^n}{n!}$, series which converges by the ratio test.

  2. Determine if the following series converges or diverges.

    \begin{displaymath}
\sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots
(2n+1)}{1 \cdot 4 \cdot 7 \cdots (3n+1)}
\end{displaymath}

    Solution: Converges by the ratio test.

  3. Determine if the following series converges or diverges.

    \begin{displaymath}
\sum_{n=1}^{\infty} \arctan \left( \frac{1}{n} \right)
\end{displaymath}

    Solution: Diverges by L.C.T, with $b_n=\frac{1}{n}$.

  4. Approximate the sum of the following series to within $0.1$

    \begin{displaymath}\sum_{n=1}^{\infty} \frac{1}{n+4^n}
\end{displaymath}

Solution: Use comparison test, $b_n=\frac{1}{4^n}$. Need $n=1$. $s \approx 0.2$.



Timothy J Flaherty 2006-05-10